A note on Arhangelskii's inequality

By Shu-Hao SUN

(Received July 29, 1985)

As we know, the famous Arhangelskii's inequality, " $X \in \mathcal{I}_2$, $|X| \leq 2^{L(X) \cdot \chi(X)}$ " has been generalized to " $|X| \leq 2^{L(X) \cdot \psi(X) t(X)}$ " ([1]) and the latter has not been improved so far. In this paper, we will do this, see Theorem below.

Let X be a topological space and k, λ infinite cardinal, ω_0 the smallest infinite ordinal and the smallest infinite cardinal. $[X]^{\leq k}$ will denote the collection of subsets A of X with $|A| \leq k$. Let us write ([3]) $qL(X) = \omega_0 \cdot \min\{k \mid \text{there exists an } A \in [X]^{\leq 2k}$, such that (*) for each open cover $\mathcal U$ of X, there exists a $\mathcal U \in [\mathcal U]^{\leq k}$, and $B \in [A]^{\leq k}$ satisfying $\mathcal U \cup \overline{B} = X$.

Clearly, $d(X) \ge qL(X)$, $L(X) \ge qL(X)$, $s(X) \ge qL(X)$, and all the inequalities are strict.

It is only slightly less trivial to show that $s(X) \ge qL(X)$, where $s(X) = \sup\{|A|: A \text{ is a discrete subspace of } X\}$. To do this, we have to apply the following lemmas.

LEMMA 1 (Šapirovskii [4]). Let $X \in \mathcal{I}_2$, if s(X) = k, then there is a set S of X with $|S| \leq 2^k$ such that $X = \bigcup \{\overline{A} : A \subseteq S, |A| \leq k\}$.

LEMMA 2 (Šapirovskii). Let V be an open cover of a topological space X, let s(X)=k, then there is a subset A of X with $|A| \le k$ and a subcollection V of V with $|V| \le k$ such that $X=\overline{A} \cup (\bigcup V)$.

By virtue of Lemma 1, we only show that the set S in Lemma 1 satisfies (*) in the definition of qL(X). In fact, for each open cover $\mathcal U$ of X, let subset B satisfy the condition in Lemma 2, for each $b \in B$, there is an $A_b \subset S$ with $|A_b| \leq k$ such that $b \in \overline{A}_b$. Let $A = \bigcup_{b \in B} A_b$, then $|A| \leq k \cdot k = k$, $A \subset S$, $\overline{B} \subset \overline{A}$ and $X = \overline{B} \cup (\bigcup \mathcal V) \subseteq \overline{A} \cup (\bigcup \mathfrak B)$. This completes the proof of the inequality $s(X) \geq qL(X)$.

Again let us write $S\psi(X) = \omega_0 \cdot \min\{k \mid \text{ for each } x \in X, \text{ there exists a family of open neighborhoods } \{U_\alpha(x)\}_{\alpha < k}, \text{ such that } \{x\} = \bigcap_{\alpha < k} \overline{U_\alpha(x)} \}.$

LEMMA. Let X be a space with $t(X) \cdot S\psi(X) \leq k$, then for each $A \in [X]^{\leq a^k}$, we have $|\overline{A}| \leq a^k$, where $a \geq 2$.

PROOF. For each $x \in \overline{A}$, by $S\psi(X) \leq k$, there exists a family of open neighborhoods $\{U_{\alpha}(x)\}_{\alpha \leq k}$, such that $\{x\} = \bigcap_{\alpha \leq k} \overline{U_{\alpha}(x)}$. Thus $\{x\} = \bigcap_{\alpha \leq k} \overline{U_{\alpha}(x)} \cap \overline{A}$. By

364 S.-H. Sun

 $t(X) \le k$, $\forall \alpha < k$, there exists $A_{\alpha} \subset U_{\alpha}(x) \cap A \subset A$ satisfying $|A_{\alpha}| \le k$ and $x \in \overline{A}_{\alpha}$, hence, $\{x\} = \bigcap_{\alpha \le k} \overline{A}_{\alpha}$ and $\{A_{\alpha}\}_{\alpha \le k} \in [[A]^{\le k}]^{\le k}$. Therefore, $|\overline{A}| \le |[A]^{\le k}|^{\le k} = a^k$.

Theorem. If $X \in \mathcal{I}_2$, then $|X| \leq 2^{qL(X) \cdot t(X) \cdot S\phi(X)}$.

PROOF. Let $qL(X)\cdot t(X)\cdot S\phi(X)=k$, then there exists a subset $A\subset X$ with $|A|\leq 2^k$ satisfying (*). For each $x\in X$, let \mathfrak{B}_x denote a family of open neighborhoods $\{U_\alpha(x)\}_{\alpha< k}$ such that $\{x\}=\bigcap_{\alpha< k}\overline{U_\alpha(x)}$. Construct an increasing sequence $\{H_\alpha:0\leq \alpha< k^+\}$ of closed sets of X and a sequence $\{\mathfrak{B}_\alpha:0\leq \alpha< k^+\}$ of open collections in X such that

- (1) $|H_{\alpha}| \leq 2^k$, $0 \leq \alpha < k^+$,
- (2) $\mathfrak{V}_{\alpha} = \{V : V \in \mathfrak{V}_{p}, p \in \bigcup_{\beta < \alpha} H_{\beta}\}, 0 < \alpha < k^{+},$
- (3) if W is the union of $\leq k$ elements of \mathfrak{V}_a , $B \in [A]^{\leq k}$ and $X \setminus (W \cup \overline{B}) \neq \emptyset$, then $H_a \setminus (W \cup \overline{B}) \neq \emptyset$.

The construction is by transfinite induction. Let $0 < \alpha < k^+$ and assume that $\{H_{\beta} : \beta < \alpha\}$ have been constructed. Note that \mathfrak{B}_{α} is defined by (2), so $|\mathfrak{B}_{\alpha}| \le 2^k$. For each set W which is the union of $\le k$ elements of \mathfrak{B}_{α} , and for each $B \in [A]^{\le k}$ which $X \setminus (W \cup \overline{B}) \ne \emptyset$. Choose one point $P_{W,B}$ of $X \setminus (W \cup \overline{B})$, let A_{α} be the set of points chosen in this way. Since $|\mathfrak{B}_{\alpha}| \le 2^k$, $|A| \le 2^k$, thus $|A_{\alpha}| \le 2^k$. Let $H_{\alpha} = \overline{A_{\alpha} \cup \bigcup_{\beta < \alpha} H_{\beta}}$, by lemma, $|H_{\alpha}| \le 2^k$ and $|H_{\alpha}|$ is closed, $|H_{\alpha} \supset H_{\beta}|$, for $|B| < \alpha$. This completes the construction of $|\{H_{\alpha} : 0 \le \alpha < k^+\}$.

Now let $H = \bigcup_{\alpha < k} + H_{\alpha}$, it is closed (since $t(X) \le k$ and $\forall \alpha < k^+$, H_{α} is closed). We will show that $H \cup \overline{A} = X$, i.e., $X \setminus H \subset \overline{A}$. Let $q \in X \setminus H$, for each $p \in H$, take $V_p \in \mathfrak{B}_p$ such that $q \notin \overline{V}_p$. So $\bigcup \{V_p : p \in H\} \supset H$, by $qL(X) \le k$, there exist $CV \in [\{V_p : p \in H\}]^{\le k}$, $B \in [A]^{\le k}$ such that $H \subset \bigcup CV \cup \overline{B}$. If $q \in \overline{B} \subset \overline{A}$, then the proof is complete. If $q \notin \overline{B}$, then $q \notin \bigcup CV \cup \overline{B}$, i.e., $\bigcup CV \cup \overline{B} \ne X$. Thus, we have $P_{\bigcup CV_p, B} \in X \setminus (\bigcup CV \cup \overline{B}) \subset X \setminus H$. On the other hand, there exists $\beta < k^+$ with $CV \in [\mathfrak{B}_{\beta}]^{\le k}$, so $P_{\bigcup CV_p, B} \in H_{\beta+1} \subset H$, a contradiction with the fact $P_{\bigcup CV_p, B} \in X \setminus H$.

COROLLARY 1. If $X \in \mathcal{I}_2$, then $|X| \leq 2^{L(X) \cdot t(X) \cdot \phi(X)}$.

PROOF. Since $S\psi(X) \leq L(X) \cdot \psi(X)$ (it is easy). Thus $L(X) \cdot \psi(X) = L(X) \cdot S\psi(X)$. We have $|X| \leq 2^{qL(X) \cdot t(X) \cdot S\psi(X)} \leq 2^{L(X) \cdot t(X) \cdot S\psi(X)} = 2^{L(X) \cdot t(X) \cdot \psi(X)}$.

EXAMPLE. Let X be Niemytzki plane [2, Example 1.2.4], then d(x)=qL(X) = $\chi(X)=t(X)=S\phi(X)=\omega_0$. But $L(X)\cdot t(X)\cdot \phi(X)\geq L(X)>\omega_0$.

COROLLARY 2 ([3]). If $X \in \mathcal{I}_3$, then $|X| \leq 2^{qL(X) \cdot t(X) \cdot \phi(X)}$.

PROOF. Since $X \in \mathcal{I}_3$, we have $S\phi(X) = \phi(X)$.

COROLLARY 3 ([3]). If $X \in \mathcal{I}_2$, then $|X| \leq 2^{qL(X) \cdot \chi(X)}$.

REMARK 1. In the theorem, $S\phi(X)$ cannot be replaced by $\phi(X)$, since there

exists a Hausdorff space X of cardinality 2^c that contains a countable dense subset A consisting of isolated points of X such that the subspace $X \setminus A$ is discrete. ([2, Ex. 3.1. F.(d) Hint]). It is easy to check $qL(X) = d(X) = \omega_0 = \psi(X) = t(X)$. But $|X| > c = 2^{qL(X) \cdot t(X) \cdot \psi(X)}$.

For example, "Assume $(2^{\omega_0} < 2^{\omega_1})$, let X be a normal space with $qL(X) = \omega_0$, then $e(X) = \omega_0$, where e(X), called the extent of X, is the smallest cardinal number $m \geq \aleph_0$ such that every closed subset of X consisting exclusively of isolated points has cardinality $\leq m$." which generalized Jones' theorem that if $2^{\omega_0} < 2^{\omega_1}$, then every separable normal Moore space is metrizable.

References

- [1] I. Juhász, Cardinal functions in topology—ten years later, Math. Centrum, Amsterdam, 1980.
- [2] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.
- [3] Liu Xiao-Shi, Two kinds of cardinal function of topological spaces and improvements of some famous cardinal inequalities, Acta Math. Sinica, 29-4 (1986), 494-497.
- [4] B. Šapirovskii, On discrete subspaces of topological spaces. Weight, tightness and the souslin number, English transl.: Soviet Math. Dokl., 13 (1972), 215-219.

Shu-Hao SUN
Department of Mathematics
Sichuan University
PRC