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1. Introduction

Let X1, Xs,... be a sequence of independent and identically distributed (i.i.d.)
random variables from a normal population N (p, 0?) where the mean u € (—o00, 00)
and the variance o? € (0,00) are both unknown. Having recorded X, ..., X, we
define X, = n7!37  X; and S2 = (n — 1)1 3" (X; — Xp)2 for n > 2. Let
d € (0,00) and a € (0,1) be any preassigned numbers. On the basis of the random
sample of size n, we consider a confidence interval I,, = [ X, —d, X, +d] for u with
confidence coefficient 1 — a. If we take the sample of size n such that

n > a®o®/d* = ny,

where a is the upper 100 x a/2% point of the standard normal distribution, then
it holds that P(u € I,) > 1 — « for all fixed u, 02, o and d. Unfortunately, o2 is
unknown, so we cannot use the optimal fixed sample size ng.

Stein’s two-stage procedure does not have the asymptotic second-order efficiency.
Mukhopadhyay and Duggan (1997) proposed the following two-stage procedure,
provided that o2 > 0% where o is positive and known to the experimenter. Let

m = m(d) = max {mq, [a®0% /d*]* + 1},

where mq (> 2) is a preassigned integer and [z]* denotes the largest integer less than
z. By using the pilot observations X1, ..., X,,, calculate S? and define

N = N(d) = max {m, [b2,5%/d*]* + 1},

where by, is the upper 100 X a/2 % point of the Student’s ¢ distribution with m — 1

AR, BEHARYBREE (ERTASRESIRE) BB (C) HEES 24540107 (FF
FARE FHH) »oMEBBREZITVET,



34

degrees of freedom. If N > m, then take the second sample Xy 11,..., Xn. Based
on the total observations Xj, ..., Xn, consider the fixed-width confidence interval
Iy =[Xny—d, Xy+d] for u, where Xy = (X1+---+Xn)/N. Then, it is possible
to show the exact consistency, that is, P(u € Iy) > 1 — « for all fixed u, 02, d and
a. Mukhopadhyay and Duggan (1997) showed that as d — 0

1+ o(ng¥?) < E(N —no) < n+ 1+ o(ng ™%,

where n = (1/2)(a*41)020;?, and so the above two-stage procedure has the asymp-

totic second-order efficiency. Aoshima and Takada (2000) gave a second-order ap-
proximation to the average sample number: E(N — ng) = n+ (1/2) + O(ng /%) as
d — 0, and further Isogai et al. (2012) showed that E(N —ng) = n+(1/2)+O0(ng") as
d — 0. As for the coverage probability, Mukhopadhyay and Duggan (1997) showed

that as d — 0
1—a+ong!) < Pluely)<1—a+24n5'+o(ny?),

where A = (1/2)a¢(a) and ¢(x) is the probability density function (p.d.f.) of the
standard normal distribution. Aoshima and Takada (2000) gave a second-order
approximation to the coverage probability:

PluelIy)=1—a+Ang' +o(ny') asd—0.

Define Ty = 2,52 /d?, t5 = ng"/*(Ty — no) and Uy = [Ty)* + 1 — Ty. Isogai et
al. (2012) showed that as d — 0

Ppuely)=1—-a+ Ang' +€dn53/2+0(n53/2),

where g4 = —A(a? + 1)E(t,U;) and |e4| < A(a® + 1)/0?/(60%) + O(ng*’?). Uno
(2013) established the asymptotic independence of ¢ and Uy, and obtained that

Pluely)=1—a+Ang'+o(ng*?) asd—0. (1)

In this article, we shall apply the result of Uno (2013) to the slight general case of
Mukhopadhyay and Duggan (1999) in Section 2 and give some examples in Section
3.

2. Asymptotic theory

We consider the case of Mukhopadhyay and Duggan (1999) with 7 = 1. Let
X1, X, ... be a sequence of i.i.d. random variables from a population. Several
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optimal fixed sample sizes which arise from problems in sequential point and interval
estimation may be written in the form

ng = qe/h,

where ¢ and h are known positive numbers, but 6 is the unknown and positive
nuisance parameter. We assume that

0>0;,

where 07,(> 0) is known to the experimenter. Mukhopadhyay and Duggan (1999)
proposed the following two-stage procedure. The initial sample size is defined by

m = m(h) = max {my, [¢0r/h]" + 1},

where mg (> 2) is a preassigned positive integer. By the pilot sample X3,..., X,, of
size m, we consider an unbiased estimator V(m) of 8 satisfying P{V(m) > 0} = 1.
Further, suppose that

Y, = pnV(m)/0 is distributed as Xf,m with p,, = cim + ¢,

where p,, is a positive integer with a positive integer ¢; and an integer c,, and
Xf,m stands for a chi-square distribution with p,, degrees of freedom. We consider
asymptotic theory as A — 0, namely, no — oo. Then,

m—o0o and V(m) =+ 6 ash—0,

where “-25” stands for convergence in probability. Let ¢, be positive where
G=qg+cm ' +0(m™?) ash—=0

with some real number ¢;. Define
N = N(h) = max {m, [¢;,V(m)/h]" + 1}.

If N > m, then one takes the second sample X,,.1,..., Xy. The total observations
are Xi,...,Xy. Throughout the remainder of this article, let

Th =g, V(m)/h, t;=ng"*(Th—no) and U,=[Tp]*+1—Th.
Then we obtain the following theorem.

Theorem 1. U, and t; are asymptotically independent as h — 0. The asymptotic
distribution of Uy, is uniform on (0,1); and the asymptotic distribution of t}, is normal
with mean 0 and variance 26 /(c,0z).
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The proof of Theorem 1 is similar to that of Theorem (i) of Uno (2013). So we
omit the details.

Let Rt = (0,00) and suppose that g: Rt — R* is a three-times differentiable
function and the third derivative ¢‘® (z) is continuous at z = 1. By Taylor’s theorem,
we have

9(N/no) = g(1) + ¢'(L)ng (N — no) + (1/2)g"(1)ng *(N — no)?
+(1/6)9® (W)ng®(N —no)?,
where W is a random variable such that [W — 1| < |(N/ng) — 1|. Uno and Isogai

(2012) showed that if {g‘®(W)n, /2 (N = ng)3; 0 < h < ho} is uniformly integrable
for some sufficiently small ho > 0, then as A — 0

E{g(N/no)} = g(1) + Bong™ + enng*’* + o(ng*/), 2)
where
Bo=(1/2)d'(1) + A(8/8), A=csqg'(1) +cig"(1),

v =¢"(VE(t;Us) and x| < |g"(1)]v/8/(6c182) + O(ng'?).

We obtain the next theorem.

Theorem 2. If {g®(W)ny 3/ (N —ng)3; 0 < h < ho} is uniformly integrable for
some sufficiently small hg > 0, then as h = 0

E{g(N/no)} = g(1) + Bong* + o(ng*).

Proof. It is easily seen from Lemma 2.2 of Mukhopadhyay and Duggan (1999)
that {|t;Ux|; 0 < h < ho} is uniformly integrable for some sufficiently small hy > 0.
Therefore, we have from Theorem 1 that E(t; U,) = o(1) as h — 0, which yields
e, =0(1)in (2). O

Remark. If A = 0, then the approximation of Theorem 2 does not depend on 6y,
up to the order term.

Recall the fixed-width interval estimation of u of N(u,o?) described in Section
1. We take ¢ = a?, h = d?, 0 = 02, 6, = 0%, V(m) = S2, and ¢}, = b%,. Then
we have pp, = m — 1 (c; = 1, ¢ = —1) and ¢, = b2, = a®? + cm™ + O(m™?)
with c3 = (1/2)a?(a? + 1). Taking g(z) = 2®(a+/z) — 1, where ® is the cumulative
distribution function of N(0,1), we have g(1) = 1 — ¢, ¢'(1) = aé(a) and ¢"(1) =
—(1/2)a(a® + 1)¢(a). Thus, from Lemma 4.1 of Isogai et al. (2012) and Theorem



2, we obtain P(u € Iy) = E{g(N/n¢)} = 1 — a + (1/2)ag(a)ny " + o(ng>’?), which
becomes the approximation (1). Note that A = c3¢71¢/(1) + ¢;'¢"(1) = 0, and so
By = (1/2)a¢(a) does not depend on 2.

3. Examples

We shall apply our theorem to three problems.

3.1. Bounded risk estimation of the normal mean

We consider a sequence of i.i.d. random variables X;, X5,... from a normal
population N(u,0?) where p € R = (—00,00) and ¢®> € R* are both unknown.
We assume that there exists a known and positive lower bound ¢ for ¢? such
that 0 > 02. Having recorded X3,...,X,, we define X, = n! Y. X; and
V(n)=(n—-1)"t3"  (X;— X,)? for n > 2. On the basis of the random sample
Xi,...,X, of size n, we want to estimate y by X,, under the loss function

Ly, = (X, — p)
Then, the risk is given by R,, = E(L,) = ¢*/n. For any preassigned w > 0, we hope
that R, = 0?/n < w, which is equivalent to

n>o?/w=ng.

Unfortunately o is unknown, so we can not use the optimal fixed sample size n.
Thus we define a two-stage procedure. Let

m = m(w) = max {my, [0 /w]* +1},
where mo > 4. By using the pilot observations X, --- , X,,,, we calculate V(m) and
N = N(w) = max {m, [b,V(m)/w]* + 1},

where b, = (m — 1)/(m — 3). The risk is given by Ry = E(Xy — p)?. It follows
from (7c.6.2) and (7¢.6.7) with ¢ = w and b% = b, in section 7c.6 of Rao (1973)
that Ry < w for all fixed u, 0 and w. Therefore our requirement is fulfilled. In
the notations of Section 2, note that h = w, § = 0% 0L = 0%, ¢ =1, ppp =m —1
(@ =1, ¢ =-1)and ¢, = by, = 1 +2m™' + O(m™2) with ¢ = 2. Taking
g(z) = 27! for z > 0, we have Ry = E(6?/N) = wE{g(N/no)} and A = 0. From
Proposition 1 of Uno and Isogai (2012) and Theorem 2, we obtain

Ry/w=1-(1/2)n5' + o(ny®*) asw — 0.

37
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3.2. Fized-width interval estimation of the negative exponential location

Let X1, X,,... be a sequence of i.i.d. random variables from a population having
the following p.d.f.:

f(z) = o exp{~(z — p)/o}, z>u,

where u € R and ¢ € R* are both unknown. We assume that there exists a known
and positive lower bound o, for ¢ such that o > or. For any preassigned numbers
d > 0and a € (0,1), we want to construct a confidence interval I,, for the location
parameter u based on the random sample X7,..., X, of size n such that the length
of I, is fixed at d and P{u € I,} > 1 — « for all fixed y and o. Having recorded
X1,..., Xn, we define X1y = min{Xy,...,X,} and V(n) = (n — 1)71 37 | (X; —
Xny) for n > 2, and consider a confidence interval I, = [Xpq) — d, Xp(1)] for the
location u. Then P{u € I,} > 1 — « for all fixed u, o, @ and d, provided

n>ac/d=ny witha=1In(1/a)(>0).

Mukhopadhyay and Duggan (1999) proposed the following two-stage procedure. Let
m = m(d) = max {my, [acr/d]* + 1},

where mg > 2. By using the pilot observations Xj, ..., X,,, we calculate V(m) and
N = N(d) = max {m, [b,V(m)/d]" + 1},

where by, is the upper 100a% point of the F-distribution with 2 and 2(m—1) degrees
of freedom. Then the interval Iy = [Xn(1) — d, Xn(1)] is proposed for u. It follows
from (3.3) of Mukhopadhyay and Duggan (1999) that P{u € Ix} > 1 — « for all
fixed 4, 0, d and a. Then, let h = d, 8§ = o0, 0, = 01, ¢ = a, pp, = 2m — 2
(1 =2, cg=-2) and ¢, = b, = a + (1/2)a®>m™! + O(m~2) with ¢3 = (1/2)a? in
the notations of Section 2. Taking g(z) = 1 —e™% for z > 0, we have P{u € Iy} =
E{l1 — exp(—Nd/o)} = E{g(N/ng)} and A = 0. From Proposition 2 of Uno and
Isogai (2012) and Theorem 2, we obtain

P{pe Iy} =1—oa+(1/2)aong' +o(ng*?) asd— 0.

3.3. Selecting the best normal population

Suppose there exist k (> 2) independent populations m;, ¢ = 1,...,k and each m;
has a normal distribution N(u;, 0?), where the mean u; and the common variance o2
are unknown. Let us denote g = (i1, ..., pe) and write ) < -+ < pp—1) < ppy for



the ordered u values. Along the line of Bechhofer (1954), we consider the problem
of selecting the population associated with the largest p), referred to as the best
population, while guaranteeing

P{CS} > P* whenever u € Q(6) (3)

for given § (> 0) and P* € (k™ ',1), where Q(6) = {1 : ) — pp—1) > 0} and the
complementary subspace 2°(d) is called the indifference zone. Here and elsewhere,
“CS” stands for “Correct Selection”. Let X1, X;s,... be i.i.d. random variables
from m; for i = 1,..., k. Having recorded X, ..., X;, with fixed n (> 2) from each
m;, we compute X, = n > =1 Xij and Xjkn] = maXi<ic<k Xin. If 02 were known,
one implements the following selection rule (SR) for fixed n:

SR, : Select the population which gives rise to the largest sample

mean _X[kn] as the best population. (4)

Then, it follows from the equation (2.2) of Aoshima and Aoki (2000) that

inf P{CSsg,} = /oo ®* L (y + /nd?/a?)d(y)dy,

1eQ(d)

where C'S(sr,) stands for “Correct Selection” under the selection rule SR,. The
infimum is attained when p;y) = -+ = pp-1) = p — 9, which is known as the least
favorable configuration. Let

@) = [ T8y VE)ew)dy, @3>0

and z = z(k, P*) is a positive constant which satisfies the integral equation H(2?) =
P*. The requirement (3) is satisfied if

n > 2202/52 =ng.

Since ¢? is unknown, we can not use the optimal fixed sample size ng. The two-
stage procedure proposed by Bechhofer et al. (1954) satisfies (3) and hence it has
the exact consistency.

Let us assume that o® > o2 where 02 (> 0) is known, and define

m = m(8) = max {my, [s%07/6*]" + 1}, (5)

where my > 2. Take the initial sample X1, ..., X;, from each 7; and compute X,
i=1,...,kand V(m) = k! Zle Vim where Vi, = (m — 1)71 Z;.nzl(Xij — Xim)2.
Aoshima and Aoki (2000) proposed

N = N(8) = max {m, [t*V(m)/6*]" + 1}, (6)

39
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where t = t(k, P*) is a positive constant such that E{H (t*Y,,/pm)} = P*. Here,
Yy = pmV(m)/o? has the distribution x2  with p, = k(m — 1). In the notations

of Section 2, note that ¢ = 22, § = 0%, 0, = 02, h = 6%, ¢; = k, ¢o = —k and
q;, = t%. Secondly, one takes the additional sample Xj(m+1),..., Xy of size N —m
from each 7; and computes X;y = Z;V:1 Xij/N,i=1,...,k. Then, we implement

the selection rule SRy given by (4) associated with _X—[kN] = maxj<i<k X,;n. For the
two-stage procedure defined by (5) and (6), Aoshima and Aoki (2000) showed the
exact consistency, namely, inf,cqs) P{CS(sry)} = P* for each fixed 4. It follows
from the equation (2.9) of Aoshima and Aoki (2000) that as § — 0

4,2
) _ B Z*H"(2%)
t° = 22 + c3m ! + O(m 2), where C3 = —W .

Here, H' and H” are the first and second derivatives of H, respectively. Taking
g(z) = H(z%z) for x > 0, we have inf,,cqis) P{CS(sry)} = E{9(N/no)} and A = 0.
From Proposition 4 of Uno and Isogai (2012) and Theorem 2, we obtain

11(12{5) P{CS(sry)} = P* + (1/2)22H'(*)ng* + o(ng *'?).
ne

Mukhopadhyay and Duggan (1999) proposed
N = N1(§) = max {m, [*V(m)/8*]" + 1} . (7)

For the two-stage procedure defined by (5) and (7), the exact consistency does not
hold and A = k~!2*H"(2%). Hence, from Proposition 3 of Uno and Isogai (2012)
and Theorem 2, we have

Jinf P{CS(sm,n} = P"+ Bing' +o(ng ¥,

where B} = (1/2)22H"(2%) + k~'2*H"(2*)0%0;2, which depends on o?.
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