
88

Journal of mathematics and computer Science 15 (2015) 88 - 96

A Note on Automata

Dasharath Singh1, Ahmed Ibrahim Isah2

1 (Former Professor, Indian Institute of Technology, Bombay) Professor, Mathematics Department,

Ahmadu Bello University, Zaria, Nigeria

mathdss@yahoo.com
2 Mathematics Department, Ahmadu Bello University, Zaria, Nigeria

aisah204@gmail.com

Article history:

Received November 2014

Accepted February 2015

Available online February 2015

Abstract
In this paper, a brief description of finite automata and the class of problems that can be solved by such

devices is presented. The main objective is to introduce the concept of length product, illustrate its

application to finite automata, and prove some related results.

Keywords: Formal language, Automata, Length product

1. Introduction

Formal languages (or simply languages) were developed in the 1950s by Noam Chomsky in an

endeavor to systematically describe natural languages with an objective to make passages easier from

one language to another using computers. Although, endeavors in this direction have only been

partially successful, it has found a number of applications in computer science such as compiler

construction for high-level programming languages, etc.

A language is a set of strings over an alphabet. A language can be finite or infinite. A finite language

can be described by listing its strings which is not the case for infinite languages; even for some finite

languages the listing could be quite cumbersome. Moreover, in general, for a language to be

interesting mathematically, it needs to have an infinite set of strings.

Formal language theory develops mathematical and computational techniques for specifying

languages. How simple or complex a language could be depends on the level of its description. There

are two fundamental machineries for defining or specifying languages: grammars (which generate the

mailto:mathdss@yahoo.com
mailto:aisah204@gmail.com

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

89

strings) and automata (which recognize the strings) of a language. Regular expressions could also be

used to define regular languages.

A grammar is a mathematical system that provides structures on the strings or sentences of a language.

Essentially, a grammar of a language 𝐿 is a finite set of production or grammatical rules that describe

how to form valid strings from the alphabet of 𝐿. In other words, a grammatical structure of a

language provides means to determine whether or not a string belongs to the set of valid strings. A

computer programmer is mainly concerned with applying the production rules (or rules of syntax) to

produce syntactically correct programs.

Chomsky [2, 4] classified grammars into the following four classes by imposing restrictions on the

production rules, known as the Chomsky hierarchy: unrestricted grammars (or Type 0), context-

sensitive grammars (or Type 1), context-free grammars (or Type 2), and regular grammars (or Type

3). The languages generated by Type 0, Type 1, Type 2 and Type 3 grammars are, respectively, called

type 0 (or computably enumerable), Type 1 (or context-sensitive), Type 2 (or context-free) and Type 3

(or regular) languages (see [9] for details).

For simplicity, let the class symbols 𝑇0, 𝑇1, 𝑇2 and 𝑇3 denote, respectively, the Type 0, Type 1, Type 2,

and Type 3 languages. Chomsky also showed that 𝑇3 ⊂ 𝑇2 ⊂ 𝑇1 ⊂ 𝑇0 and hence the Chomsky

hierarchy. Nevertheless, it is known [5] that both 𝑇2 and 𝑇3 perform equally as far as only the issues

related to expressibility and ease of parsing are taken into consideration, however, they are designed to

deal with problems of different nature. In course of time, both extensions and modifications on

Chomsky’s original formulation of hierarchy of formal grammars, such as the notions of mildly

context-sensitive languages and sub-regular hierarchies, etc., (see [8, 11, 14] for details) have

appeared.

Chomsky [3] pointed out that as English has centre embedding constructions: involving two

dependent elements a and b that are not adjacent, and that may contain another instance of the same

construction between the two parts, such as neither-nor constructions, it is not regular.

Huybregts [7] and Shieber [16] argued that Swiss-German is not context-free as the dependencies

between verbs and their objects were unbounded in length. In fact, it has crossing dependencies

between objects and verbs, and the number of these interlocked dependencies is potentially

unbounded. Since context-free grammars can handle an unbounded number of interlocked

dependencies only if they are nested, Swiss-German cannot be context-free. On the same lines, Postal

and Langendoen [13] observed that English was not context-free. In view of the fact that the aforesaid

constructions were seen to extend to almost all other natural languages, it became imperative to design

grammars formalisms that could be suitable for doing linguistics and also be in the vicinity of context-

free grammars along with preserving its computational tractability.

Joshi [10] described a list of properties that an extension of the context-free languages should have if it

is to be of practical use for linguistics: It should contain all context-free languages, it can describe a

limited number of types of cross-serial dependencies, its membership problem has polynomial

complexity, and all languages in it have constant growth property. He called classes of languages

having these properties mildly context-sensitive as they extend the context-free languages and slightly

absorbing some context-sensitive languages. In the literature, the classes of mutually equivalent

formalisms satisfying the said properties are the TAG-languages (TAG abbreviating Tree Adjoining

Grammar) and the MG-languages (MG abbreviating Minimalist Grammar).

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

90

TAG-languages consist of Tree Adjoining Grammars (TAGs), Combinatory Categorical Grammars

(CCGs), Linear Indexed Grammars (LIGs), and Head Grammars (HGs). Joshi et al. [11] observed that

they were equivalent as they described the same class of languages. MG-languages include Linear

Context-free Rewrite Systems and Set-Local Multi-Component TAGs, and the formalisation of Noam

Chomsky’s Minimalist Grammars. The membership problem for TAG-languages is 𝑂(𝑛6). Non-

context free languages that belong to the TAG-languages are 𝑎𝑛𝑏𝑚𝑐𝑛𝑑𝑚, the copy language, 𝑎𝑛𝑏𝑛𝑐𝑛,

𝑎𝑛𝑏𝑛𝑐𝑛𝑑𝑛, etc. Examples of MG-languages include 𝑎1
𝑛 … 𝑎𝑘

𝑛 for arbitrary k, the k-copy language for

any k (𝑤𝑘 for arbitrary k).

It may be observed from the examples above that TAG-languages may contain only up to four

different types of interlocked unlimited (crossing or nesting) dependencies, but there is no such upper

bound for MG-languages. This leads to a higher computational complexity of the membership

problem for MG-languages. Becker et al. [1] argued that this added complexity was actually needed to

capture all aspects of string order variation in German which could be applicable to other natural

languages. Currently, though investigations are still on, it is assumed that all natural languages were

MG-languages.

2. Finite automata

Automata theory studies mathematical models of computing devices (or machines) and the class of

problems that can be solved by such devices. An automaton is an abstract computing device that

recognizes strings of a language. It has a mechanism to read input, which is a string over a given

alphabet, process it and decide whether the string is in the language or not (see [6, 12, 15] for details).

An automaton is finite if it has a finite memory.

The languages defined by finite automata are exactly regular (Type 3) languages. Thus, in order to

prove a language 𝐿 regular, one needs to construct Type 3 grammar, regular expression or a finite

automation that specifies it. Dually, in order to show that a language is not regular, it is to show that

there does not exists a Type 3 grammar, regular expression or a finite automation that specifies it.

In the following, besides a brief description of finite automata, the notion of Length product is

introduced, its application to finite automata is illustrated, and some related results are proved.

A finite automation is like a finite-state machine except that it has a set of acceptable states whereas

the latter has an output alphabet. The class of finite automata is broadly divided into deterministic and

non-deterministic types. In a deterministic finite automaton, if the internal state, input and contents of

the storage are known, it is possible to predict the future behavior of the automaton, otherwise it is

non-deterministic.

Deterministic finite automaton (DFA)

A DFA is a quintuple (or 5 − tuple) 𝑀 = (𝑄,Ʃ, 𝑞0, , 𝐴) where

𝑄 is a finite set of states (at all times, the internal memory is in some state 𝑞 ∈ 𝑄);

Ʃ is the set of input symbols (the machine only operates on strings over the alphabet Ʃ);

𝑞0 is the initial state (𝑞0 ∈ 𝑄);

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

91

 is the (state) transition function which maps each pair (𝑞𝑖, 𝑎), where 𝑞𝑖 is a state and 𝑎 is an input

symbol, to a unique next state 𝑞𝑗: (𝑞𝑖, 𝑎) = 𝑞𝑗; and

𝐴 is a set of terminal (final or accepting) states (𝐴 ⊆ 𝑄).

The string is accepted if the internal state of the machine, after reading the whole input, is some state

of 𝐴, rejected otherwise.

As its input, the automaton 𝑀 receives a string 𝑢 = 𝑎1 ··· 𝑎𝑛 which it starts to read from the left. In

the beginning, 𝑀 is in its initial state 𝑞0 reading the first symbol 𝑎1 of 𝑢. The next state 𝑞𝑘 is

determined by the transition function: 𝛿(𝑞0, 𝑎1) = 𝑞𝑘. Note that if 𝑀 is in state 𝑞𝑘 reading the

symbol 𝑎𝑚, its next state is 𝛿(𝑞𝑘 , 𝑎𝑚). If the final state of 𝑀, after the last input symbol 𝑎𝑛 is read, is

a state of 𝐴, then 𝑀 accepts 𝑢, otherwise 𝑢 is rejected.

𝑀 accepts the empty input 휀 if the initial state 𝑞0 is also a terminal state.

The language recognized by an automaton 𝑀, denoted 𝐿(𝑀), is the set of all strings accepted by 𝑀.

Non-deterministic finite automata (NFA)

Non-determinism refers to availability of choices in state transitions. An NFA, unlike a DFA, allows

several outgoing transitions at the same time, however, some of them may lead to a non-final state.

Nevertheless, a string is accepted if there is at least one choice of transitions that takes the machine to

a final state.

A Nondeterministic Finite Automaton (NFA) is a quintuple (or 5 − tuple) 𝑀 = (𝑄, Σ, 𝑞0, 𝛿, 𝐴) where

𝑄, Σ, 𝑞0 and 𝐴 are as for DFA; and the transition function is defined as

 ∶ 𝑄 × Σ ⟶ 2𝑄.

2𝑄, as usual, is the power set of 𝑄. That is, for each state 𝑞𝑖 and an input letter 𝑎, the transition

function maps each pair (𝑞𝑖, 𝑎) to exactly one subset (possible next states) of 𝑄.

NFA with 𝜺 – moves

휀 – moves are spontaneous transitions that result in a change of states without reaching any input letter

and there is no restriction on its number i.e., any number of ε – moves are allowed.

An NFA 𝑀 with 휀 − moves (휀 − NFA, for short) is defined as 𝑀 = (𝑄, Σ, , 𝑞0, 𝐴) where 𝑄, Σ, 𝑞0,
and 𝐴 are the same as for an arbitrary NFA, but the function is defined as

 ∶ 𝑄 × (Σ ∪ {휀}) ⟶ 2𝑄,

satisfying for each 𝑞, the transitions with all input letters 𝑎 and 휀.

i. (𝑞, 𝑎) is the set of states 𝑝 such that there is a move from 𝑞 to 𝑝 with input 𝑎, and

ii. (𝑞, 휀) is the set of states 𝑝 such that there is a spontaneous move from 𝑞 to 𝑝.

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

92

3. Operations on regular languages

It is known [12, 15] that if 𝐿1, 𝐿2 are regular languages, then 𝐿1 ∪ 𝐿2, 𝐿1 ∩ 𝐿2, 𝐿1 − 𝐿2, 𝐿1, 𝐿1𝐿2,

etc., are regular languages. In other words, if there exist finite automata 𝑀1, 𝑀2 for 𝐿1, 𝐿2

respectively, then there exist finite automata for set-theoretic operations over them. In the case of

context-free languages, intersection and complement do not hold.

We introduce below a new operation termed length product, illustrate its application to finite automata

and prove some related results.

3.1 Definition Length Product

Let 𝐿1 = {𝑢1, 𝑢2, … } and 𝐿2 = {𝑣1, 𝑣2, … } be languages. Then, the length product of 𝐿1 and 𝐿2,

denoted 𝐿1 ⊗ 𝐿2, is defined as 𝐿1 ⊗ 𝐿2 = {(𝑢𝑖, 𝑣𝑗)||𝑢𝑖| = |𝑣𝑗|, 𝑢𝑖 ∈ 𝐿1, 𝑣𝑗 ∈ 𝐿2} where |𝑢𝑖|

denotes the length of the string 𝑢𝑖 and (𝑢𝑖, 𝑣𝑗) represents an ordered pair. It may be noted that unlike

Cartesian product, in order that the operation ⊗ to be defined, the strings need to be of equal length.

Theorem 3.1

If the languages 𝐿1 and 𝐿2 are recognized by finite automata 𝑀1 and 𝑀2 respectively, then their length

product 𝐿1 ⊗ 𝐿2 is recognized by a finite automaton. In other words, if 𝐿1 and 𝐿2 are regular

languages, then their length product is also a regular language.

Proof

Let 𝑀1 = (𝑄, 𝛴1, 𝑞0, 𝛿, 𝐹) and 𝑀2 = (𝑃, 𝛴2, 𝑝0, 𝛽, 𝐺) be two automata such that 𝑀1 recognizes 𝐿1

and 𝑀2 recognizes 𝐿2. Then an automaton 𝑀, recognizing 𝐿1 ⊗ 𝐿2, is constructed as follows:

𝑀 = (𝑅, Σ, r0, μ, D) where 𝑅 = 𝑄 × 𝑃, Σ = 𝛴1 × 𝛴2, 𝑟0 = (𝑞0, 𝑝0), 𝐷 = 𝐹 × 𝐺, and if 𝛿(𝑞𝑘, 𝑎) =
 𝑞𝑟 and 𝛽(𝑝𝑚, 𝑏) = 𝑝𝑠, then μ is defined as μ((𝑞𝑘, 𝑝𝑚), (𝑎, 𝑏)) = (𝑞𝑟, 𝑝𝑠) where 𝑎 ∈ 𝛴1, 𝑏 ∈
𝛴2, 𝑞𝑘 ′𝑠 ∈ 𝑄, 𝑝𝑚′𝑠 ∈ 𝑃.

Let us consider a miniature example to illustrate the aforesaid process.

Let 𝑀1 = (𝑄, 𝛴1, 𝑞0, 𝛿, 𝐹) with 𝑄 = {𝑞0, 𝑞1, 𝑞2}, 𝛴1 = {𝑎, 𝑏}, 𝑞0 = 𝑞0, 𝐹 = {𝑞2}, and is given

as below:

The transition diagram for 𝑀1 is the following:

 𝑎 𝑏

𝑞0 𝑞0 𝑞1

𝑞1 𝑞2 𝑞1

𝑞2 𝑞2 𝑞0.

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

93

 Transition diagram for 𝑀1

Also, 𝐿(𝑀1) = {𝑏𝑎, 𝑎𝑏𝑎, 𝑏𝑏𝑎, … }.

Let 𝑀2 = (𝑃, 𝛴2, 𝑝0, 𝛽, 𝐺) with 𝑃 = {𝑝0, 𝑝1}, Σ2 = {0,1}, 𝑝0 = 𝑝0, 𝐺 = {𝑝1}, and

𝛽 is given as below:

The transition diagram for 𝑀2 is the following:

 Transition diagram for 𝑀2

Also, 𝐿(𝑀2) = {01,011,001, … }.

Now the automaton 𝑀, recognizing 𝐿1 ⊗ 𝐿2, is defined as follows:

𝑀 = (𝑅, Σ, r0, μ, D) where 𝑅 = {(𝑞0, 𝑝0), (𝑞0, 𝑝1), (𝑞1, 𝑝0), (𝑞1, 𝑝1), (𝑞2, 𝑝0), (𝑞2, 𝑝1)}, Σ =
{(𝑎, 0), (𝑎, 1), (𝑏, 0), (𝑏, 1)}, 𝑟0 = (𝑞0, 𝑝0), 𝐷 = {(𝑞2, 𝑝1)}, and μ as constructed below:

 0 1

𝑝0 𝑝0 𝑝1

𝑝1 𝑝1 𝑝1.

q0 q1 q2

𝑎 𝑎

𝑎

𝑏

𝑏

𝑏

p0 p1

0

1

0,1

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

94

The transition diagram for 𝑀 is as follows:

 Transition diagram for M

Also, 𝐿(𝑀) = {(𝑏𝑎, 01), (𝑎𝑏𝑎, 011), (𝑎𝑏𝑎, 001), (𝑏𝑏𝑎, 011), (𝑏𝑏𝑎, 001), … }.

Theorem 3.2

The length product is closed under union and intersection.

(𝑏, 0)

(𝑎, 0)

q0, p0 q2, p1

q1, p0

q1, p1

q2, p0

q0, p1

(𝑏, 1)

(𝑏, 0) (𝑎, 1) (𝑏, 1)
(𝑏, 0), (𝑏, 1)

(𝑎, 0), (𝑎, 1)

(𝑎, 0), (𝑎, 1)

(𝑏, 0), (𝑏, 1)

(𝑏, 0), (𝑏, 1)

(𝑎, 0), (𝑎, 1)

(𝑎, 1)

(𝑏, 0) (𝑎, 1)

(𝑏, 1)

(𝑎, 0)

(𝑎, 0)

 (𝑎, 0) (𝑎, 1) (𝑏, 0) (𝑏, 1)

 (𝑞0, 𝑝0) (𝑞0, 𝑝0) (𝑞0, 𝑝1) (𝑞1, 𝑝0) (𝑞1, 𝑝1)

 (𝑞0, 𝑝1) (𝑞0, 𝑝1) (𝑞0, 𝑝1) (𝑞1, 𝑝1) (𝑞1, 𝑝1)

 (𝑞1, 𝑝0) (𝑞2, 𝑝0) (𝑞2, 𝑝1) (𝑞1, 𝑝0) (𝑞1, 𝑝1)

 (𝑞1, 𝑝1) (𝑞2, 𝑝1) (𝑞2, 𝑝1) (𝑞1, 𝑝1) (𝑞1, 𝑝1)

 (𝑞2, 𝑝0) (𝑞2, 𝑝0) (𝑞2, 𝑝1) (𝑞0, 𝑝0) (𝑞0, 𝑝1)

 (𝑞2, 𝑝1) (𝑞2, 𝑝1) (𝑞2, 𝑝1) (𝑞0, 𝑝1) (𝑞0, 𝑝1).

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

95

Proof

Let 𝐿1, 𝐿2, 𝐿3 and 𝐿4 be regular languages. Then, from above, 𝐿1, 𝐿2, 𝐿3, 𝐿4 are regular, and

hence 𝐿1 ∪ 𝐿2 and 𝐿1 ∩ 𝐿2 are regular.

Moreover, applying De Morgan’s laws, 𝐿1 ∩ 𝐿2 = 𝐿1 ∪ 𝐿2, and thus 𝐿1 ∩ 𝐿2 is regular, similarly for

𝐿3 ∩ 𝐿4. Thus, 𝐿1 ∩ 𝐿2 ⊗ 𝐿3 ∩ 𝐿4 is regular from theorem 3.1.

Analogously, 𝐿1 ∪ 𝐿2 ⊗ 𝐿3 ∪ 𝐿4 is also regular.

3. Concluding Remarks

The cardinality bounded language 𝑋𝑛 was introduced in [17], which is a language consisting of the

set of all strings of length ≤ 𝑛 over an alphabet 𝑋, that is, 𝑋𝑛 = 𝑋𝑛 ∪ 𝑋𝑛−1 ∪ … ∪ 𝑋0. Clearly,

{𝑋𝑛 } is a strictly monotonic increasing nested sequence and 𝑋 = 𝑋0 ∪ 𝑋1 ∪ … ∪ 𝑋𝑛 ∪ … gives

an alternative form of representation of the usual one viz., 𝑋 = 𝑋0 ∪ 𝑋1 ∪ … ∪ 𝑋𝑛 ∪ …, where 𝑋𝑛 is

the set of all strings of length 𝑛 over 𝑋. Moreover, ⋃ 𝑋𝑛∞
𝑛=0 = ⋃ 𝑋𝑛∞

𝑛=0 , but ⋂ 𝑋𝑛∞
𝑛=0 = ∅, whereas

⋂ 𝑋𝑛∞
𝑛=0 = {휀}. It is straightforward to see that the length product is also applicable to the language

𝑋𝑛, and hence it seems to have a promise, specially from application points of view to problems

representing physical situations. Nevertheless, the complexity aspects of the operation length product

is yet to be investigated.

References

[1] T. Becker, A. Joshi, and O. Rambow, “Long-distance scrambling and tree adjoining

grammars” In Proceedings of the fifth conference on European Chapter of the Association for

Computational Linguistics, Association for Computational Linguistics, (1991) 21–26.

[2] N. Chomsky, “Three Models for the Description of Languages”, IRE Transactions on Information

Theory, 2 (3) (1956) 113–124.

[3] N. Chomsky, “Syntactic Structures”, Mouton, The Hague, (1957).

[4] N. Chomsky, “On Certain Formal Properties of Grammars”, Information and Control, 2 (2)

(1959) 137–167.

[5] D. Grune and C. H. Jacobs, “Parsing Techniques – A Practical Guide”, Ellis Horwood,

England (1990).

[6] J. E. Hopcroft and J. D. Ullman, “Formal Languages and Their Relations to Automata”,

Addison-Wesley Publishing (1969).

[7] R. Huybregts, “The weak inadequacy of context-free phrase structure grammars”, In Ger Jan de

Haan, Mieke Trommelen, and Wim Zonneveld, editors, Van periferie naar kern, Foris, Dordrecht,

(1984) 81–99.

[8] G. Jäger and J. Rogers, “Formal Language Theory: Refining the Chomsky Hierarchy”,

Philosophical Transactions of Royal Society of London, Series B, Biological Sciences, (2012) 1–

29.

[9] T. Jiang, B. Ravikumar, M. Li and K. W. Regan, “Formal Grammars and Languages”, Lecture

Notes, (2010) 1 – 40.

[10] A. Joshi, “How much context-sensitivity is necessary for characterizing structural descriptions

— tree adjoining grammars” In David Dowty, Lauri Karttunen, and Arnold Zwicky, editors,

Natural Language Processing, Theoretical, Computational and Psychological Perspectives,

Cambridge University Press, Cambridge, UK, (1985).

 D. Singh, A. I. Isah / J. Math. Computer Sci. 15 (2015) 88 - 96

96

[11] A. K. Joshi, K. V. Shanker and D. Weir, “The Convergence of Mildly Context-Sensitive

Grammar Formalisms”, Technical Reports (CIS), Paper 539, (1990) 1–65.

[12] J. Kari, “Automata and Formal Languages”, University of Turku, Finland, (2013) 1– 150.

[13] P. M. Postal and D. T. Langendoen, “English and the Class of Context-Free Languages”,

Computational Linguistics 10 (3 – 4) (1984) 177–181.

[14] J. Rogers and G. Pullum, “Aural pattern recognition experiments and the subregular hierarchy”

In Marcus Kracht, editor, Proceedings of 10th Mathematics of Language Conference, University

of California, Los Angeles (2007) 1–7.

[15] K. Ruohonen, “Formal Languages”, Lecture Notes, (2009) 1–94.

[16] S. Shieber, “Evidence against the context-freeness of natural language”, Linguistics and

Philosophy, 8 (1985) 333–343.

[17] D. Singh and A. I. Isah, “Some Algebraic Structures of Languages”, the Journal of Mathematics

and Computer Science 14 (2015) 250–257.

