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Abstract. An important requirement of numerical methods
for the integration of nonlinear stiff initial value problems is
B-stability. In many applications it is also convenient to use
splitting methods to take advantage of the special structure of
the differential operator that defines the model. The purpose
of this paper is to provide a necessary and sufficient condi-
tion for the B-stability of additive Runge–Kutta methods. We
also present a family of B-stable fractional step Runge–Kutta
methods.

1 Introducion

In recent literature much interest has been devoted to numer-
ical integration of nonlinear stiff problems defined by opera-
tors that may be decomposed into a sum of two or more parts.
Several physical phenomena are described by these prob-
lems. We mention, for instance, reactive flow processes and
combustion theory [13], multi-phase flow in heterogeneous
porous media [9], chemical reaction problems, atmospheric
circulation problems [11], air pollution [14], etc. To obtain ac-
curate numerical solutions for these problems, it is desirable
to use numerical methods with good stability properties and,
in addition, that take into account the special structure of the
equations.

We focus our attention on the numerical solution of non-
linear stiff systems of ODE’s, that may be viewed as a semi-
discrete version of a stiff PDE’s. For the time integration
of these problems, the concept of B-stability, introduced by
J.C. Butcher [6] for standard Runge–Kutta schemes, turned
out to be crucial for the analysis of the numerical methods.
A commonly used approach to the solution of these prob-
lems is based on splitting methods [12]. In the last decades,
the emergence of new methods for special problems, leads
us to the class of additive methods, which contain, as par-
ticular case, the class of alternating direction and fractional
step schemes [4]. This work is devoted to the study of the
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B-stability properties for the class of Additive Runge–Kutta
methods.

The paper is organized as follows. In Sect. 2 we present
the motivation for the definition of additive Runge-Kutta
methods and introduce, as a particular case, the subclass of
fractional step Runge–Kutta methods. In Sect. 3 we present
the concepts of B-stability and algebraic stability. The main
result of this paper is a necessary and sufficient condition for
the B-stability of additive Runge–Kutta methods. The con-
cepts of AN-stability for linear non-autonomous stiff prob-
lems and B-stability for nonlinear ones are also introduced.
Section 4 is devoted to fractional step Runge–Kutta methods.
In this section we particularize the main result of this paper
to this class of methods. A class of B-stable fractional step
Runge–Kutta methods is also presented.

2 Additive Runge–Kutta methods

Let us consider the initial value problem{
y′ = f [1](t, y)+· · ·+ f [N](t, y) ,

y(0) = y0 ,
(1)

where f [ν] : R+
0 ×RD −→ R

D, ν = 1, . . . , N, are vectorial
functions with components f [ν]i , i = 1, . . . , D.

If, in (1), N = 2 and f [1] is stiff while f [2] is not, then
it is common to combine an implicit integrator for f [1] with
an explicit integrator for f [2]. For instance, in a reaction-
diffusion partial differential problem we may combine an
implicit method for the diffusion with an explicit one for the
reaction [2].

In this paper, we are specially interested on the case where
each part f [ν], ν = 1, . . . , N, is stiff. This situation occurs,
for instance, in molecular dynamics applications where the
different f [ν] may correspond to forces of different stiffness.
It is sometimes inappropriate to sample the net force f ; one
may wish to sample the stiffer parts more frequently than
the softer parts. This leads to the idea of multiple time-step
methods [3]. An example, with N = 2, of a multiple time-step
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method is given by the time-symmetric concatenation

ψMP
h,α f [1] ◦ψMP

h,(1−2α) f [1]+ f [2] ◦ψMP
h,α f [1] , (2)

where α is a real constant and ψMP
h,g denotes a step of length

h of the implicit midpoint rule applied to a differential sys-
tem with right-hand side g. Clearly (2) is a multiple time-step
method that uses f [2] less frequently than f [1].

To take into account the special structure of the right hand
side of the equation, let us consider the class of Additive
Runge–Kutta methods defined in the following way [7].

Definition 1. An Additive Runge–Kutta (ARK) method of s
stages and N levels is a one-step numerical method which, for
a known approximation yn to y(tn), obtains an approximation
yn+1 to y(tn+1), with tn+1 = tn +h, where h is called the step
size, according to the process




Yn,i = yn +h
N∑

ν=1

s∑
j=1

a[ν]
ij f [ν](tn + cjh, Yn, j)

yn+1 = yn +h
N∑

ν=1

s∑
i=1

b[ν]
i f [ν](tn + cih, Yn,i) .

(3)

The coefficients of the method may be organized in the
Butcher tableau

c A[1] A[2] · · · A[N]

b[1]T
b[2]T · · · b[N]T , (4)

where c = [c1, . . . , cs]T and, for ν = 1, . . . , N, b[ν] =[
b[ν]

1 , . . . , b[ν]
s

]T
and A[ν] =

(
a[ν]

ij

)s

i, j=1
.

Note that the multiple time-step method (2) is also an
ARK method (3), with N = 2. In fact, if the differential sys-
tem (1) is autonomous, then (2) is the ARK method with
tableau

α

2
0 0 0 0 0

α
1 −2α

2
0 0

1

2
0

α 1 −2α
α

2
0 1 0

α 1 −2α α 0 1 0

. (5)

An important subclass of the ARK methods is the class of
fractional step Runge–Kutta methods defined as follows [4].

Definition 2. A Fractional Step Runge–Kutta (FSRK) method
is an ARK method (3) which verifies:

(i) a[ν]
ii ≥ 0, for i = 1, . . . , s, and ν = 1, . . . , N, and

a[ν]
ij = 0, for all j > i;

(ii)
∣∣∣b[ν]

j

∣∣∣+ s∑
i=1

∣∣∣a[ν]
ij

∣∣∣ = 0 ⇒
∣∣∣b[µ]

j

∣∣∣+ s∑
i=1

∣∣∣a[µ]
ij

∣∣∣ �= 0 ,

for ν,µ = 1, . . . , N such that µ �= ν, and i, j = 1, . . . , s;
(iii) a[µ]

ii a[ν]
ii = 0, for ν,µ = 1, . . . , N such that µ �= ν, and

i = 1, . . . , s.

According to the property (2) of the previous definition,
a FSRK method given by (3) can be expressed in a condensed
way in the form

θT

c A
bT

, (6)

with the vector b given by

b =
(

b
[θj ]
j

)s

j=1
=

N∑
ν=1

b[ν] ,

the matrix A defined by

A =
(

a
[θj ]
ij

)s

i, j=1
=

N∑
ν=1

A[ν]

and where θ = [θ1, . . . , θs]T , θj ∈ {1, . . . , N} satisfies

N∑
ν=1
ν �=θj

(∣∣∣b[ν]
j

∣∣∣+ s∑
i=1

∣∣∣a[ν]
ij

∣∣∣
)

= 0, for j = 1, . . . , s .

With this notation, a FSRK method may be written in the
form


Yn,i = yn +h
s∑

j=1

a
[θj ]
ij f [θj ](tn + cjh, Yn, j)

yn+1 = yn +h
s∑

i=1

b[θi ]
i f [θi ](tn + cih, Yn,i) .

(7)

3 B-stable additive Runge–Kutta methods

It is well known that we must consider A-stable methods
when we are solving stiff ODE’s. This stability property is
a main tool of the so-called linear stability theory. When
we deal with non-linear problems this theory is lacking
rigor. A more convenient stability concept is the notion of
B-stability which is well known for standard Runge–Kutta
methods [5, 6, 8]. We now generalize this notion to the class
of ARK methods.

Definition 3. An ARK method (3) is called B-satble if, for
ν = 1, . . . , N, the contractivity condition〈
f [ν](t, y)− f [ν](t, z), y − z

〉 ≤ 0 , t ≥ 0 , ∀y, z ∈ RD, (8)

implies for all h ≤ 0

‖yn+1 − ỹn+1‖ ≤ ‖yn − ỹn‖ , (9)

where ỹn+1 and ỹn+1 are the numerical solutions obtained
from yn and ỹn, respectively.

Our goal is to construct methods with this contractivity
property. To characterize stable methods, let us introduce the
notion of algebraic stability for the class of ARK methods (3).
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Definition 4. An ARK method of type (3) is called alge-
braically stable if the matrices

(i) B[ν] := diag
(

b[ν]
1 , . . . , b[ν]

s

)
, for ν = 1, . . . , N, and

(ii) M[νµ] := B[ν] A[µ] + A[ν]T B[µ] − b[ν]b[µ]T , for ν,µ = 1,
. . . , N,

are non-negative.

We may now state the following result which is a gener-
alization of an analogous result for the standard Runge–Kutta
case [10].

Theorem 1. A sufficient condition for an ARK method (3) to
be B-stable is to be algebraically stable.

Proof. Let us consider v0 = yn − ỹn , vi = Yn,i − Ỹn,i , v =
yn+1 − ỹn+1 and

w
[ν]
i = h

[
f [ν](tn + cih, Yn,i)− f [ν](tn + cih, Ỹn,i)

]
.

With this notation we have

‖v‖2 =‖v0‖2 +2
N∑

ν=1

s∑
i=1

b[ν]
i

〈
v0, w

[ν]
i

〉

+
N∑

ν,µ=1

s∑
i, j=1

b[ν]
i b[µ]

j

〈
w

[ν]
i , w

[µ]
j

〉

=‖v0‖2 +2
N∑

ν=1

s∑
i=1

b[ν]
i

〈
vi, w

[ν]
i

〉

−
N∑

ν,µ=1

s∑
i, j=1

m[ηµ]
i, j

〈
w

[ν]
i , w

[µ]
j

〉
.

If the matrices B[ν] and M[νµ], ν,µ = 1, . . . , N, are non-
negative, then ‖v‖2 ≤ ‖v0‖2, because, by hypothesis〈
vi , w

[ν]
i

〉
≤ 0. �

Before proving the converse result, we introduce the no-
tion of AN-stability. In order to define this concept, let us
consider the non-autonomous linear test problem

y′ =
N∑

ν=1

λ[ν](t)y(t), λ[ν](t) ∈C, t ≥ 0, y(0) = y0 . (10)

If we apply the ARK method (3) to this problem we obtain


Yn = eyn +
N∑

ν=1

A[ν]ξ [ν]Yn

yn+1 = yn +
N∑

ν=1

b[ν]ξ [ν]Yne .

(11)

where Yn = [Yn,1, . . . , Yn,s]T , e = [1, . . . , 1]T and, for ν =
1, . . . , N,

ξ [ν] = diag
(
ξ

[ν]
1 , . . . , ξ [ν]

s

)
, (12)

with ξ
[ν]
i = hλ[ν](tn + cih), i = 1, . . . , s. If the matrix

Ξ = I −
N∑

µ=1

A[µ]ξ [µ] (13)

is regular the ARK method (11) may be written in the form
yn+1 = R(ξ)yn, with

R(ξ) := R
(
ξ [1], . . . , ξ [N]) = 1 +

N∑
ν=1

b[ν]T
ξ [ν]Ξ−1e . (14)

Definition 5. The ARK method (3) is called AN-stable if
|R(ξ)| ≤ 1, for all ξ [ν] given by (12) with ξ

[ν]
i �= ξ

[ν]
i whenever

ci �= cj and such that Re
(
ξ

[ν]
i

)
≤ 0, for i = 1, . . . , s.

We note that, according to this definition, we may eas-
ily conclude, such as for the standard Runge–Kutta case [10],
that B-stability implies AN-stability (which also implies A-
stability).

We are now in position to prove the converse result of the
previous theorem.

Theorem 2. Let us consider a non-confluent ARK method (3)
(where ci �= cj for i �= j). Then the concepts of AN-stability,
B-stability and algebraic stability are equivalent.

Proof. According to the previous results, we only need to
prove that AN-stability implies algebraic stability.

Let us first note that, if we consider, in the proof of Theo-
rem 1, v0 = 1 and w

[ν]
i = ξ

[ν]
i vi , we have v = R(ξ). Then,

following the same steps as before and noticing that ξ [ν]
i could

not be real, we may conclude that

|R(ξ)|2 = 1 +2
N∑

ν=1

s∑
i=1

b[ν]
i Re

(
ξ

[ν]
i

)
|Yn,i |2

−
N∑

ν,µ=1

s∑
i, j=1

m[νµ]
ij ξ

[ν]
i Yn,iξ

[µ]
j Yn, j , (15)

where Yn,i is the solution of the algebraic equations in (11)
with yn = 1.

The method is non-confluent and so ξ
[ν]
i , i = 1, . . . , s,

ν = 1, . . . , N, can be chosen arbitrarily in C−
0 . Let us con-

sider ξ
[ν]
i = −ε and ξ

[µ]
j = 0, for j �= i, µ = 1, . . . , N, so that

the matrix Ξ given in (13) is regular. If we replace these
values in (15) we obtain

|Re(ξ)|2 −1 = −2εb[ν]
i |Yn,i |2 −m[νν]

ii ε2|Yn,i|2 .

Choosing an ε sufficiently small we conclude that AN-
stability implies b[ν]

i ≥ 0. With the same arguments we prove
that AN-stability is a sufficient condition to have B[ν] ≥ 0,
ν = 1, . . . , N.

To prove the non-negativity of M[νµ], let us consider η
[ν]
j ,

j = 1, . . . , s, ν = 1, . . . , N, arbitrary real numbers and ξ
[ν]
j =

εη
[ν]
j pure imaginary numbers. If we replace these values in

(15) we obtain

|Re(ξ)|2 −1 = −ε2
N∑

ν,µ=1

s∑
i, j=1

m[νµ]
ij η

[µ]
i η

[ν]
j Yn,i Yn, j .
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It is also possible to choose ξ
[ν]
j such that Yn, j = 1 +O(ε),

as ε → 0, for all j and ν. By hypothesis, and taking ε small
enough, we conclude that M[νµ] must be non-negative. �

We remark that B-stable ARK methods suffer from a se-
rious practical disadvantage. In fact, as we may easily see,
these methods are always implicit, which means that we can-
not find any B-stable Implicit-Explicit method [2].

In the next section we will present a class of B-stable frac-
tional step Runge–Kutta methods of order 2. These methods,
which are a particular case of B-stable ARK methods, have
some good numerical properties.

4 A class B-stable fractional step Runge–Kutta methods

The concept of algebraic stability can be adapted to FSRK
methods in the following way.

Definition 6. A FSRK method (7) is called algebraically sta-
ble if the matrices

(i) B := diag
(

b[θ1]
1 , . . . , b[θs]

s

)
and

(ii) M := BA + AT B −bbT

are non-negative.

Taking into account the special structure of these methods,
the following corollary results immediately from Theorem 1
and Theorem 2.

Corollary 1. A sufficient condition for an FSRK method (3)
to be B-stable is to be algebraically stable. For non-confluent
methods, the converse result is also true.

Let us now find a class of B-stable FSRK methods (7)
of order 2 with s = 3 and such that the corresponding ARK
method has N = 2 levels. Without loss of generality we may
consider θ = [1, 2, 1]T . The order conditions are the follow-
ing [1].

Order 1: For the consistency of the method we must impose∑
i:θi=ν

b[θi ]
i = 1, ν = 1, 2 .

In our case these conditions correspond to

b[1]
3 = 1 −b[1]

1 , b[2]
2 = 1 .

Order 2: To obtain FSRK methods of order 2 the coefficients
of the method must satisfy

∑
i:θi=ν

∑
j: j≤i
θj =µ

b[θi ]
i a

[θj ]
ij = 1

2
, ν, µ = 1, 2 .

We may easily conclude that these conditions imply
that

a[2]
21 = a[2]

22 = 1

2
, a[2]

32 = 1

2
(

1 −b[1]
1

) ,

a[1]
31 = a[2]

32

(
1 −2a[1]

11 b[1]
1

)
−a[1]

33 .

Thus, in a FSRK method (7) of order 2 with s = 3 and
θ = [1, 2, 1]T , the coefficients a[1]

11 , a[1]
33 and b[1]

1 are free pa-
rameters.

For the method to be B-stable, we must also impose
the conditions presented in the Definition 6. We may easily
prove that these two conditions imply that b[1]

1 = 1
2 and that

a[1]
11 = a[1]

33 = c, with c a free parameter such that c ≥ 1
4 . So,

the class of FSRK methods (7) of order 2 with s = 3 and
θ = [1, 2, 1]T is of the form

1 2 1

c 0 0

1

2

1

2
0

1 −2c 1 c

1

2
1

1

2

, c ≥ 1

4
.

We denote the methods of this class by FSRKh[c], where
c ≥ 1/4 and h ∈ R.

Using composition methods, we may describe a procedure
that enables us to construct higher order B-stable numerical
methods. Let us consider c = 1/4. Then we obtain the nu-
merical method FSRKh[1/4] which is a particular case of (2),
with α = 1/2, i.e.

FSRKh[1/4] = ψMP
h/2, f [1] ◦ψMP

h, f [2] ◦ψMP
h/2, f [1] .

Note that this method is a symmetric method of order two.
According to [12, Theorem 22], the composition

(ψw1h)
m1 ◦ (ψw2h)

m2 ◦ (ψw1h)
m1 ,

of a symmetric method ψh of order 2k is symmetric and has
order 2k +2 , provided that

w1 =
(

2m1 − (
2m1m2k

2

)1/(2k+1)
)−1

,

w2 = (1 −2m1w1)/m2 .

In our case, the method

FSRKw2h[1/4] ◦ FSRKw1h[1/4] ◦ FSRKw2h[1/4],

with w1 = (2 − 21/3)−1, w2 = 1 − 2w1, is symmetric, has
order 4 and is B-stable, since the composition of B-stable
methods is a B-stable method.

In spite of the fact that B-stable FSRK methods are (diag-
onally) implicit, the splitting (1) can be done in a such a way
that the resulting method could have great computational ad-
vantages. In some special cases we may obtain an “almost
explicit” B-stable method, i.e. a B-stable method with com-
putational efficiency similar to an explicit solver. To give
an example, let us consider the Robertson chemical reaction
equation [10]


y′
1 = −0.04y1 +104y2y3,

y′
2 = 0.04y1 −104y2y3 −3 ×107y2

2,

y′
3 = 3 ×107y2

2 .
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If we consider the following decomposition

f [1](y) =



−0.04y1

0.04y1 −3 ×107y2
2

3 ×107y2
2


 ,

f [2](y) = 104




y2y3

− y2y3

0


 ,

and integrate this problem using the FSRKh[1/4] method we
can avoid Newton iterations. because the non-linear equation
can be explicitly solved.
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