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A NOTE ON BAYESIAN c- AND D-OPTIMAL DESIGNS
IN NONLINEAR REGRESSION MODELS1

BY HOLGER DETTE

Technische Universitat Dresden¨
We present a version of Elfving’s theorem for the Bayesian D-opti-

mality criterion in nonlinear regression models. The Bayesian optimal
design can be characterized as a design which allows a representation of a
Ž . 2uniquely determined boundary point of a convex subset of L -integrable
functions. A similar characterization is given for the Bayesian c-optimal-

Ž .ity criterion where a possible nonlinear function of the unknown parame-
ters has to be estimated. The results are illustrated in the example of an
exponential growth model using a gamma prior distribution.

1. Introduction. This paper is intended to serve as an addendum to a
Ž .recent paper of Dette 1993 . In that paper a geometric characterization for

D-optimal designs in linear regression models is presented generalizing the
Ž .famous result of Elfving 1952 for c-optimal designs. In nonlinear models the

information matrix of an experimental design usually depends on the un-
known parameter, say q , and optimal designs cannot, owing to that depen-
dence, be determined in practice. Various optimality criteria have been
proposed in the literature in order to overcome the dependency of the
optimality criterion on the unknown parameters. The most popular ap-
proaches are local optimality criteria and Bayesian optimality criteria. For
the determination of a locally optimal design a best guess of q , say q , is0
needed, and a function of the information matrix evaluated at q has to be0

w Ž .xmaximized see, e.g., Chernoff 1953 . Bayesian optimal designs maximize
Ž .the expectation with respect to a prior distribution of some function of the

information matrix, where the function approximates some utility function
w Ž . Ž . Žsee, e.g., Zacks 1977 , Pronzato and Walter 1985 , Chaloner 1987, 1989,

. Ž .x1993 and Chaloner and Larntz 1989, 1992 . In this paper we are mainly
interested in the Bayesian D-optimality criterion, where the function of the
information matrix is the logarithm of its determinant. In Section 2 we
present a geometric characterization of Elfving type for the optimal designs
with respect to this criterion. The analysis is based on a convex subset of

2 Ž .L -integrable functions with respect to the prior distribution and can be
Ž .seen as an extension of recent results in Dette 1993 for optimal, model-robust

designs in linear regression models. In Section 3 we give a similar characteri-
Ž .zation for a Bayesian c-optimality criterion where a possible nonlinear
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function c of the unknown parameter has to be estimated. The famous
Ž .geometric characterization of Elfving 1952 and the Elfving theorem for

Ž .quadratic loss in Studden 1971 appear as special cases. Finally, some
examples illustrating the results are given in Section 4.

2. Bayesian D-optimality. Consider the nonlinear regression model

Y x s h x , q q « x ,Ž . Ž . Ž .

where x g XX is the explanatory variable, the design space XX : R s is compact
Ž .and q s q , . . . , q 9 g Q is the vector of unknown parameters. The parame-1 k

k Ž .ter space Q : R is an open set and for every x g XX , « x is a normally
2 Ž .distributed random variable with mean 0 and variance s ) 0 such that « x

Ž . Ž .and « y are independent whenever x / y. The regression function h x, q is
Ž .assumed to be differentiable with respect to q for any fixed x g XX and the

Ž . Žpartial derivatives h x, q rq are supposed to be continuous on XX for anyj
. Ž .fixed q g Q . A approximate design j is a probability measure on the design

space XX and the information matrix of j is defined by

2.1 M j , q s f x , q f x , q 9 dj x : R k=k ,Ž . Ž . Ž . Ž . Ž .Hk k k
XX

where

h x , q h x , qŽ . Ž .
l2.2 f x , q 9 s , . . . , g R , l s 1, . . . , k ,Ž . Ž .l ž /q q1 l

Ž .is the vector of the first l components of the gradient of h x, q with respect
to q . An exact design j for the sample size n is a probability measure with
finite support x , . . . , x and masses n rn, . . . , n rn which means that the1 l 1 l
experimenter takes n uncorrelated observations at each x , j s 1, . . . , l. Inj j
this case the inverse of the information matrix is proportional to the asymp-
totic covariance matrix of the maximum likelihood estimator for the parame-

w Ž . xter vector q see, e.g., Silvey 1980 , page 3 . In practice, efficient exact
designs can be found from optimal approximate designs by the use of an

w Ž .xappropriate rounding procedure see Kiefer 1971 .
Throughout this paper we will assume that the partial derivatives
Ž . 2h x, q rq are L -integrable with respect to a prior distribution m on Q. Aj

design j * is called Bayesian D-optimal with respect to the prior m if j *
maximizes

2.3 S j [ E log det M j , q s log det M j , q dm qŽ . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .Hm k k
Q

< Ž . <among all designs for which S j - `. This criterion has been motivated by
Ž .Bayesian arguments in Chaloner and Larntz 1989 and has been applied for

Ž .a couple of models in Chaloner 1987, 1993 and Dette and Neugebauer
Ž . Ž .1996 . The optimality criterion 2.3 appears also in the context of model-
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w Ž .xrobust optimality criteria for linear regression see Lauter 1974a, b . More¨
precisely, assume that for every q g Q we have a linear model

Y s a X f x , q q « x ,Ž . Ž .q k

X Ž .where a and f x, q denote the vector of parameters and regression func-q

tions in the model with index q g Q and « is a normally distributed error
term. Consider the class of linear regression models

X k2.4 FF s a f x , q q g Q , a g R .Ž . Ž .� 4Q q k q

Then for fixed q g Q the information matrix of a design j in the linear model
X Ž . Ž .a f x, q with index q is precisely 2.1 . For the determination of a designq k

that allows efficient estimates of the parameters in all models of the class FF ,Q

Ž . Ž . wLauter 1974a proposed to maximize the function in 2.3 note that¨
y1Ž .M j , q is proportional to the covariance matrix of the least squaresk

X Ž .xestimator for the parameter vector a in the model a f x, q . In the caseq q k
Ž . Žthat the set of models FF in 2.4 consists only of one model or equivalentlyQ

.that the support of the prior distribution m contains only one point , the
Ž .criterion 2.3 reduces to the well-known D-optimality criterion. In the usual

Ž .linear regression model, Dette 1993 proved a geometric characterization for
Ž .the D-optimal design which generalizes the famous theorem of Elfving 1952

for the c-optimality criterion. By the preceding discussion we see that the
D-optimality criterion in the common linear regression model can be seen as

Ž . Ž Ž . � 4.a special case of 2.3 i.e., supp m s q and it is therefore reasonable to0
expect a similar geometric characterization for Bayesian D-optimal designs
which will be discussed in the following.

In order to establish results of this type, we will need the following
notation and assumptions. Let L2 denote the set of all quadratic integrablem

Ž .with respect to the prior distribution m , real-valued functions and define, for
l g N,

2 l 2L l [ g : Q ª R g q s g q , . . . , g q 9, g g L , j s 1, . . . , lŽ . Ž . Ž . Ž .Ž .½ 5m 1 l j m

as the set of all R l-valued functions with quadratic integrable components.
2Ž .On L l we consider the usual inner productm

l
2² :2.5 f , g [ f q g q dm q , f , g g L l .Ž . Ž . Ž . Ž . Ž .Ýl H j j m

Qjs1

Let

J [ j S j - `, det M j , q ) 0 m-a.e.Ž . Ž .� 4Ž .k

denote the set of probability measures with nonsingular information matrix
Ž . Ž . Ž .m-a.e. for which 2.3 is finite. Then the maximum in 2.3 is obviously
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Ž . lattained in J. Let c s 0, . . . , 0, 1 9 g R , l s 1, . . . , k, and define for x g XXl
and j g J the functions

Q ª R,
«2.6 g : l s 1, . . . , k ,y1r2Ž . Xl « y1½ q ª g q [ c M j , q c ,Ž . Ž .Ž .l l l l

Q ª R l ,«2.7 h : l s 1, . . . , k ,Ž . l « y1½ q ª h q [ g q M j , q c ,Ž . Ž . Ž .l l l l

Q ª R,
j2.8 « x : l s 1, . . . , k ,Ž . Ž . jl ½ q ª « x , q [ f x , q 9h q ,Ž . Ž . Ž .l l l

and

Q ª R,
d x :Ž . y1j ½ q ª d x , q [ f x , q 9M j , q f x , q .Ž . Ž . Ž . Ž .j k k k

2 Ž . 2Ž .Finally, let « g L , l s 1, . . . , k, « s « , . . . , « 9 g L k and define a gener-l m 1 k m

alized Elfving set by

¡ « q f x , qŽ . Ž .1 1k k q 1Ž . .D 2~ .RR [ conv g g L g q s ,Ž .Q m .ž /2 � 0¢� « q f x , qŽ . Ž .k k

¦
2 ¥² :x g XX , « g L k , « , « s k ,Ž . km §0

Ž . 2Ž Ž . .where conv AA denotes the convex hull of a set AA : L k k q 1 r2 . In them

following we will assume that the set

« 2 « 2J* [ j g J sup d x , q dm q - `, g g L , h g L l , l s 1, . . . , kŽ . Ž . Ž .H j l m l m½ 5
QxgXX

is not empty. The following theorem gives a geometric characterization of the
Bayesian D-optimal design problem. The proof can be obtained by combining

Ž . Ž .the reasoning in Dette 1993 with the equivalence theorem in Lauter 1974a¨
w Ž .xapplied to the set of models FF defined in 2.4 and is omitted for the sake ofQ

brevity.

THEOREM 2.1. A design j g J* is Bayesian D-optimal if and only if there
2 Ž .exist positive functions g g L and for all x g supp j real-valued functionsl m

Ž . 2« x, ? g L , l s 1, . . . , k, such that the following four conditions are satis-l m

fied:

a g q c s « x , q f x , q dj x m-a.e. l s 1, . . . , k .Ž . Ž . Ž . Ž . Ž .Hl l l l
XX
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Ž .b The function

Q ª R k Žkq1.r2 ,
g : ½ q ª g q [ g q , 0, g q , 0, . . . , 0, g q 9Ž . Ž . Ž . Ž .Ž .1 2 k

is a boundary point of the Bayesian Elfving set RRD with ‘‘supporting hyper-Q

plane’’

1 k k q 1Ž .
2 2h s h , . . . , h 9 g L , h g L l , l s 1, . . . , k .Ž . Ž .1 k m l mž /k 2

c g q cX h q s 1 m-a.e. l s 1, . . . , k .Ž . Ž . Ž .l l l

Ž . Ž . Ž Ž . Ž .. 2Ž .d The function « x, ? s « x, ? , . . . , « x, ? 9 g L k satisfies1 k m

² :« x , ? , « x , ? s k for all x g supp j .Ž . Ž . Ž .k

Ž . Ž .Moreover the functions g , h and « are m-a.e. uniquely determined by 2.6 ,l l l
Ž . Ž .2.7 and 2.8 , respectively.

REMARK 2.2. Theorem 2.1 gives some more insight into the complicated
structure of the Bayesian D-optimal design problem. The maximization of the

Ž .function in 2.3 is equivalent to the determination of a supporting hyper-
2Ž Ž . .plane to a convex subset in L k k q 1 r2 at a specific boundary point of them

Bayesian Elfving set RRD. This is usually a very hard problem and can only beQ

done explicitly in special cases. In general, numerical methods have to be
wapplied for the determination of a Bayesian D-optimal design see, e.g.,

Ž .xChaloner and Larntz 1989, 1992 . However, Theorem 2.1 turns out to be
Žuseful for proving or disproving if a given design is Bayesian D-optimal see

.the examples in Section 4 .

Ž . w Ž .REMARK 2.3. If f x, q does not depend on q e.g., if h x, q is a lineark
x Ž . Ž . Ž . j j jmodel , it follows from 2.6 , 2.7 and 2.8 that the functions g , « and hl l l

Ž . Ž .are constant in q . It is then easy to see that conditions a through d in
Theorem 2.1 are also independent of q and Theorem 2.1 reduces to a similar

Ž .statement as given in Dette 1993 .

2Ž .3. Bayesian c-optimality. Throughout this section let c g L k denotem

Ž .a function with quadratic integrable components. A design j with c q g
Ž Ž ..range M j , q for all q g Q is called Bayesian c-optimal if j minimizes

yC j [ E c q 9M j , q c qŽ . Ž . Ž . Ž .m k

s c q 9My j , q c q dm qŽ . Ž . Ž . Ž .H k
Q

3.1Ž .

Ž . w yŽ .among all designs satisfying C j - ` here M j , q denotes an arbitraryk
Ž .x Ž .generalized inverse of M j , q . The criterion 3.1 could be used if thek

Ž .experimenter is interested in a specific real-valued function, say b q , of the
Ž . Ž .unknown parameters q g Q in the model y s h x, q . For the choice c q s
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Ž . Ž . Žrq b q a Bayesian c-optimal design minimizes an average with respect
. Ž .to m of the asymptotic variance of the maximum likelihood estimator of b q

w Ž . x Ž .see, e.g., Silvey 1980 , page 4 . This criterion was applied by Chaloner 1989
to determine optimal designs for the estimation of the turning point of a
quadratic regression. In the case of a prior distribution with finite support,
Ž .3.1 reduces to the well-known A-optimality criterion for which an Elfving

Ž .theorem was proved by Studden 1971 .
Ž . Ž Ž .. Ž .In the following define for a design j with c q g range M j , q m-a.e.k

Ž .and C j - `,
y1r2j y3.2 g s E c q 9M j , q c qŽ . Ž . Ž . Ž .� 4m k

Ž . j k j Ž .for x g supp j functions h : Q ª R , « x : Q ª R by

3.3 h j q s g j My j , q c q , q g Q ,Ž . Ž . Ž . Ž .k

3.4 « j x , q s h q 9 f x , q , q g Q ,Ž . Ž . Ž . Ž .k

and a set of designs by

j 2J** s j c q g range M j , q ; q g Q , h g L k ,Ž . Ž . Ž .Ž .½ k m

« j x g L2 ; x g supp j .Ž . Ž . 5m

For Bayesian c-optimality the Elfving set

c 2RR [ conv g g L k g q s « q f x , q , x g XX ,Ž . Ž . Ž . Ž .½Q m kž
3.5Ž .

2 ² :« g L , « , « s 11 5m /
turns out to be useful for a geometric characterization of Bayesian c-optimal
designs. The proof of the following theorem can be obtained either by a

Ž .similar reasoning as given in Studden 1971 or by an application of an
equivalence theorem for Bayesian c-optimality and is therefore omitted.

THEOREM 3.1. A design j * g J** is Bayesian c-optimal if and only if
Ž .there exists a constant g ) 0 and for all x g supp j * real-valued functions

Ž . 2 2Ž . Ž . Ž .« x, ? g L with H« x, q dm q s 1 such that the function g c ? has them

representation

3.6 g c q s f x , q « x , q dj * x m-a.e.Ž . Ž . Ž . Ž . Ž .H k
XX

c Ž .and is a boundary point of the Elfving set RR defined in 3.5 . Moreover, theQ

Ž . Ž .constant g is uniquely determined by 3.2 and the function « x, ? and the
c Ž .supporting hyperplane h at g c g  RR are uniquely determined by 3.3 andQ

Ž . Ž . Ž Ž ..3.4 at all points q g supp Q for which det M j , q ) 0.k

Ž .REMARK 3.2. If asupp m s 1, then Theorem 3.1 gives the classical
w Ž .xElfving theorem for locally optimal designs see Elfving 1952 , and a couple

of examples for the geometric construction of optimal designs can be found in
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Ž . Ž .a recent paper by Ford, Torsney and Wu 1992 . In the case asupp m s k -
Ž .`, the criterion in 3.1 gives the so-called A-optimality criterion and Theo-

rem 3.1 reduces to the geometric characterization for quadratic loss in
Ž . Ž .Studden 1971 . An interesting case appears when the function f x, q is

w Ž . x Ž .independent of q e.g., h x, q s q 9x . Here the optimality criterion 3.1 also
reduces to the A-optimality criterion where A g R k=s is any matrix satisfy-

Ž Ž . Ž . .ing AA9 s E c q c q 9 . In contrast to the first case, there are now twom

geometric characterizations available. On the one hand, we can apply Theo-
Ž . c 2Ž .rem 3.1 using m-a.e. the representation 3.6 and the set RR : L k . On theQ m

Ž .other hand, we can use Theorem 1.1 in Studden 1971 for any square root
k=s Ž Ž . Ž . . k=sA g R of the matrix E c q c q 9 and an Elfving set in R . Which ofm

these results is easier to apply will usually depend on the specific situation. It
Ž . Ž .is also worthwhile mentioning that for h x, q s q 9x, f x, q s x, Q s XX

Ž .and c q s q , Theorem 3.1 gives a new geometric characterization for the
Ž .integrated variance criterion as considered in Studden 1977 and Cook and

Ž .Nachtsheim 1982 .

REMARK 3.3. In this paper we have concentrated on the Bayesian c- and
D-optimality criteria because these criteria have an interpretation from a

wBayesian point of view in terms of a utility function see, e.g., Chaloner and
Ž .xLarntz 1989 . But it is also worth mentioning that there exist geometric

characterizations for many other optimality criteria with a similar form as
Ž . Ž . Žthe criteria defined in 2.3 and 3.1 . As a further example which also has a

.Bayesian motivation , we consider a generalization of the Bayesian c-opti-
mality criterion, namely the minimization of

y3.7 E tr A q 9M j , q A q ,Ž . Ž . Ž . Ž .Ž .m k

Ž . 2Ž .where A q g L k = s is a matrix-valued function with quadratic inte-m

Ž Ž ..grable elements. It can then be shown that a design j with range A q :
Ž Ž .. Ž . Ž .range M j , q m-a.e. minimizes 3.7 if and only if there exists a constantk

Ž . Ž . 2Ž . ² Ž .g ) 0 and for all x g supp j functions « x, ? g L s with « x, ? ,m

Ž .: Ž .« x, ? s 1 such that the function g A ? has the representations

gA q s f x , q « x , q 9 dj x m-a.e.Ž . Ž . Ž . Ž .H k

and is a boundary point of the Elfving set
A 2RR s conv g g L k = s g q s f x , q « q 9, x g XX,Ž . Ž . Ž . Ž .½Q m kž

2 ² :« g L s , « , « s 1 .Ž . s 5m /
4. Examples.

Ž . yb xEXAMPLE 4.1. Consider the exponential growth model h x, b s e ,
Ž . yb xb ) 0, f x, b s yxe , with gamma prior1

dm b a mq 1Ž .
m ya b � 44.1 s b e I b ) 0 ,Ž .

db G m q 1Ž .
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w x Ž .a ) 0, m ) 1, and design space == 0, x , where x ) ar m q 1 . Let j *0 0
Ž .denote the design which puts all mass at x* s ar m q 1 . In order to show

the Bayesian D-optimality of this design, we calculate the functions appear-
Ž . Ž . Ž .ing in Theorem 2.1 from 2.6 , 2.7 and 2.8 as follows:

a ab m q 1 ab
g b s exp y , h b s exp ,Ž . Ž .1 1ž / ž /m q 1 m q 1 a m q 1

« b ' y1.Ž .1

Ž . Ž . Ž . Ž .Condition a , c and d of Theorem 2.1 k s 1 are obviously satisfied by this
Ž 2 .choice note that h g L because m ) 1 . Finally, we have that1 m

2 ymy1
` m q 1 2 2

2f x , b h b « b dm b Fx x y q 1 F1Ž . Ž . Ž . Ž .H 1 1 ž / ž /a a m q 10

w x 2 ² : Ž .for all x g 0, x and all « g L with « , « s 1. This shows that h b10 m 1
defines a supporting hyperplane to the Elfving set

D 2 ² :RR s conv g g L g b s « b f x , b , x g XX , « , « s 1Ž . Ž . Ž . 1½ 5Q m 1ž /
at the boundary point g . By Theorem 2.1 the one-point design j * is Bayesian1
D-optimal.

EXAMPLE 4.2. Consider the exponential growth model with two parame-
Ž . yb x w xters h x, a , b s a e , a ) 0, b ) 0, XX s 0, 3 . In the notation of Section 2

Ž . yb x Ž . yb xŽ .we have k s 2, f x, b s e , f x, b s e 1, ya x 9. As a prior we use1 2
Ž .the gamma density in 4.1 with the special choice m s a s 2 and consider

U U 2the design j * which puts equal masses at the points x s 0 and x s . By0 1 3

straightforward but somewhat tedious calculations, we find the quantities
Ž . Ž . Ž .appearing in Theorem 2.1 and it is easy to see that conditions a , c and d

Ž .of this theorem are satisfied. For the supporting hyperplane in condition b ,
Ž .we have from 2.7

y1r21 y4r3bh b s 1 q e ,Ž . Ž .� 41 2

4r3ey4r3b
3 2r3bh b s e h b ?Ž . Ž .2 14 y4r3bž /1 q e

2Ž . ² :and obtain for all « g L 2 satisfying « , « s 2 that2m

22`1
« b f x , b 9h b dm bŽ . Ž . Ž . Ž .ÝH j j j2 0 js1

2`1 2F f x , b 9h b dm bŽ . Ž . Ž .Ž .ÝH j j2 0 js1

2
` 2

2 b Ž xq1. 2 y2 b Ž xq1r3. 2s 9 x y e q x e b dbH ½ 5ž /30

2 29 x1 3 x y 2Ž .
s q F 13 3½ 54 x q 1 x q 1r3Ž . Ž .Ž .
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w x Žfor all x g 0, 3 here the last inequality follows by straightforward algebra
showing that the derivative of the left-hand side has only the nonnegative

2 1. Ž Ž . Ž . .zeros x s 0 and x s . Therefore, h b , h b 9 9 defines a supporting1 23 2
D whyperplane to the Bayesian Elfving set RR note that the components of hQ 1

Ž .xand h are quadratic integrable with respect to the measure dm b and by2
U U 2Theorem 2.1 the design j * with equal masses at x s 0 and x s is0 1 3

Bayesian D-optimal.

Ž . yb x w Ž . 2 yb x xEXAMPLE 4.3. Let h x, b s xe f x, b s yx e , x G 0, b ) 0.1
Ž .Then the maximum of h is attained for x s b b s 1rb. In order to find amax

design which minimizes the asymptotic variance of the maximum likelihood
Ž . Ž . 2estimator for x , we use the criterion 3.1 with c b s 1rb and gammamax

Ž .prior in 4.1 where m ) 7, a ) 0. Consider the one-point design j * at
Ž . Ž . Ž . Ž .x* s 2ar m q 1 . Then we calculate from 3.1 , 3.2 and 3.3 the quantities

appearing in Theorem 3.1 as
y1r2y4 ymq3G m y 3 x* x*Ž .

g s 1 y 2 ,ž / ž /½ 5G m q 1 a aŽ .
y4y2 2 b x*h b s gb x* e ,Ž . Ž .
y2 b x*« x*, b s yg b x* e .Ž . Ž .

Obviously, we have
` 2
« x*, b dm b s 1,Ž . Ž .H

0

`

g c b h b dm b s 1Ž . Ž . Ž .H
0

and obtain from this
2

` ` 2
« b f x , b dm b F h b f x , b dm bŽ . Ž . Ž . Ž . Ž . Ž .Ž .H H1 1ž /0 0

mq 1
`ay82 4 my4 yb Žaq2 xy4 x*.sg x* x b e dbŽ . H

G mq1Ž . 0

my 34x a y 2 x*
s F 1ž / ž /x* a q 2 x y 4 x*

w . 2 ` 2Ž . Ž .for all x g 0, ` and « g L with H « b dm b s 1. This shows that them 0
Ž . 2 cfunction g c b s grb is a boundary point of the set RR with a representa-Q

Ž .tion 3.6 using j *. By Theorem 3.1 the design j * with mass 1 at the point
Ž .x* s 2ar m q 1 is Bayesian c-optimal for the estimation of the maximum of

Ž . yb xthe nonlinear regression function h x, b s xe .
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