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Synopsis

A process X is observed continuously in time; it behaves like Brownian motion with drift,
which changes from zero to a known constant ϑ > 0 at some time τ that is not directly
observable. It is important to detect this change when it happens, and we attempt to do
so by selecting a stopping rule T∗ that minimizes the “expected miss” E |T − τ | over all
stopping rules T . Assuming that τ has an exponential distribution with known parameter
λ > 0 and is independent of the driving Brownian motion, we show that the optimal rule
T∗ is to declare that the change has occurred, at the first time t for which

λ

∫ t

0

e
ϑ(Xt−Xs)+

(
λ−ϑ2

2

)
(t−s)

ds ≥ p∗
1− p∗

.

Here, with Λ = 2λ/ϑ2 , the constant p∗ is uniquely determined in
(

1
2 , 1
)

by the equation∫ 1/2

0

(1− 2π) e−Λ/π(
1− π

)2+Λ
π2−Λ

dπ =
∫ p∗

1/2

(2π − 1) e−Λ/π(
1− π

)2+Λ
π2−Λ

dπ .
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1. Introduction: Consider a Brownian Motion X = {Xt , 0 ≤ t < ∞} which has
zero drift during a time-interval [0, τ) , and drift ϑ > 0 during the interval [τ,∞). The
change-point τ that demarcates the two régimes is neither known in advance nor directly
observable; in contrast, the value of the drift ϑ ∈ (0,∞) is assumed to be known in
advance. In each of the two régimes [0, τ) and [τ,∞) we employ a specific strategy
(e.g., medical treatment, manufacturing procedure, advertising or investment methodology,
military strategy, harvesting policy, etcetera), and the strategies corresponding to the two
régimes are distinctly different. We seek a stopping rule T that detects the instant τ of
“régime change” as accurately as possible.

To qualify this phrase, imagine that we are being penalized during an interval of “false
alarm” at the same rate as during an interval of “delay in sounding the alarm”. The lengths
of these intervals are (τ − T )+ and (T − τ)+, respectively. Thus, our loss is measured by
the sum

(τ − T )+ + (T − τ)+ = |T − τ |

of those lengths, namely, the amount by which the stopping rule T misses the change-point
τ . We shall describe explicitly a stopping rule T∗ that minimizes the expected miss

R(T ) := E |T − τ | (1.1)

over all stopping rules T , when the change-point τ is assumed to have an exponential
distribution P[τ > t] = (1 − p) e−λt , t ≥ 0 with known coëfficients 0 ≤ p < 1 , λ > 0 .
This is achieved by reducing the above problem to a question of optimal stopping for
a Markov process on the unit interval I = (0, 1) , namely, the conditional probability
P [ τ ≤ t | Ft ] that the régime change has occurred by time t , given the observations
available up to that time.

With only minor modifications, the solution method presented here can also handle
criteria that put different weights on delay vs. false alarm, of the type

R(T ) = E
[
(τ − T )+ + c · (T − τ)+

]
, for some c ∈ (0,∞) . (1.2)

It is a much harder question of simultaneous detection and estimation, and one that we are
actively pursuing as of this writing, to allow for uncertainty in the drift ϑ of the model
and perhaps in the coëfficients λ and p as well.

Problems of a similar nature have been studied in the literature for many years.
Most notably, Shiryaev (1969) considers the minimization of expected delay E (T − τ)+ ,
subject to the constraint P [T < τ ] ≤ α on the probability of false alarm, for some given
α ∈ (0, 1) ; he also considers the minimization of P [T < τ ] + c · E (T − τ)+ , for some
constant c ∈ (0,∞) . Let us also mention the work of Beibel (1996), (2000) who considers
quite similar models and problems.
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Criteria of the type (1.1) or (1.2), though rather natural for several applications,
appear to be studied in this Note for the first time. The optimal stopping rules for all these
problems involve first-passage times for the a posteriori probability process P [ τ ≤ t | Ft ] ,
0 ≤ t < ∞ : you declare that régime change has occurred when this probability first reaches
or exceeds a suitable threshold.

2. The Problem: On a probability space (Ω,F ,P), consider a standard Brownian
motion process W = {Wt , 0 ≤ t < ∞} and an independent random variable τ : Ω →
[0,∞) with distribution

P[τ > t] = (1− p) e−λt , ∀ 0 ≤ t < ∞ (2.1)

for some known constants 0 ≤ p < 1 and 0 < λ < ∞. In particular, P[τ = 0] = p. Neither
the random variable τ nor the Brownian motion W are directly observable; instead, one
observes the process

Xt = Wt + ϑ

∫ t

0

1{τ≤s} ds , 0 ≤ t < ∞ . (2.2)

This is a Brownian motion with drift zero in the interval [0, τ), and with known drift
ϑ > 0 in the interval [τ,∞). In other words, the observations that we have at our disposal
at time t are modelled by the σ−algebra

Ft := σ( Xs , 0 ≤ s ≤ t ) , for each t ∈ [0,∞) , (2.3)

and we set F∞ := σ (∪0≤t<∞Ft) . Our objective is to detect the change-point τ as

accurately as possible. For this, we look at the collection S of stopping rules T : Ω →
[0,∞] of the filtration F = {Ft}0≤t<∞ (that is, with {T ≤ t} ∈ Ft for all 0 ≤ t < ∞),
and seek to

minimize the expected miss R(T ) = E |T − τ | over all stopping rules T ∈ S (2.4)

in the notation of (1.1). In fact, it is enough to consider stopping rules with E(T ) < ∞;
for otherwise we get E |T − τ | = ∞, from T ≤ τ + |T − τ | and R(0) = E(τ) = 1−p

λ < ∞.
We shall denote by Sf the collection of stopping rules T ∈ S with E(T ) < ∞.

In order to make headway with this question (2.4), let us observe that we can write
the expected miss of (1.1) as

R(T ) = E
[
(T − τ)+ + (τ − T )+

]
= E (T − τ)+ + E(τ) − E (T ∧ τ) ,
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or equivalently as

R(T ) − E(τ) = E

(∫ T

0

1{τ≤t} dt −
∫ T

0

1{τ>t} dt

)

= E
∫ ∞

0

(
2 1{τ≤t} − 1

)
1{T>t} dt = 2 ·E

∫ T

0

(
Πt −

1
2

)
dt ,

for any stopping time T ∈ Sf and with the notation

Πt := P [ τ ≤ t | Ft ] , 0 ≤ t < ∞ . (2.5)

Thus, we have shown that the minimum risk (expected miss) function for this problem, is
of the form

R(p) := inf
T∈S

R(T ) =
1− p

λ
+ 2V (p) , where V (p) := inf

T∈Sf

E
∫ T

0

(
Πt −

1
2

)
dt .

(2.6)

3. The “a posteriori probability” process: The detection problem with the
minimum expected miss criterion of (1.1) has been thus reduced to solving the optimal
stopping problem of (2.6). This latter problem is formulated in terms of the process
Π = {Πt , 0 ≤ t < ∞}, where the quantity Πt of (2.5) is the conditional (a posteriori)
probability that the régime change has already occurred by time t, given the observations
available up to that time. This a posteriori probability is thus a sufficient statistic for our
detection problem. It can be computed explicitly in terms of the exponential likelihood-
ratio process

Lt := exp
(

ϑXt −
ϑ2

2
t

)
, (3.1)

in the form

Πt =
pLt + (1− p)

∫ t

0
λe−λs

(
Lt/Ls) ds

pLt + (1− p)
∫ t

0
λe−λs

(
Lt/Ls) ds + (1− p) e−λt

. (3.2)

Clearly, Π0 = p as well as P[0 < Πt < 1 , ∀ t ∈ (0,∞)] = 1. It turns out that we have

P
[

lim
t→∞

Πt = 1
]

= 1 , and P
[

inf
0≤t<∞

Πt > 0
]

= 1 if p > 0 . (3.3)

One can also show that the a posteriori probability process Π satisfies the stochastic
differential equation

d Πt = λ(1−Πt) dt + ϑ Πt (1−Πt) dBt , Π0 = p , (3.4)
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where

Bt := Xt − ϑ

∫ t

0

Πs ds , 0 ≤ t < ∞ (3.5)

is the innovations process of filtering theory: a standard, F−adapted Brownian motion
(note that W is not adapted to F). It follows from (3.4) that Π is a diffusion process
on the unit interval I = (0, 1) , with drift b(π) = λ(1 − π) and diffusion coëfficient
σ2(π) = ϑ2π2

(
1− π

)2 . Its scale function S(·) and speed measure m(dπ) are given by

S(π) =
∫ π

1/2

S′(u) du , where S′(π) = exp

[
−2
∫ π

1/2

b(u) du

σ2(u)

]
= e−2Λ

(
1− π

π

)Λ

eΛ/π

(3.6)
and

m(dπ) =
2 dπ

S′(π) σ2(π)
= Ce2Λ · e−Λ/π dπ

π2−Λ
(
1− π

)2+Λ
, (3.7)

respectively; we have set C := 2/ϑ2 and Λ := λ C . The scale function S(·) satisfies the
differential equation

b(π) S′(π) +
1
2

σ2(π) S′′(π) = 0 , π ∈ (0, 1) . (3.8)

It is straightforward to check from (3.6) that S(0+) = −∞ and S(1) ≡ S(1−) < ∞ .
Then, the properties of (3.3) follow from the standard theory of one-dimensional diffu-
sion processes (see, for instance, Proposition 5.22, p. 345 in Karatzas & Shreve (1991)).
Justifications for the claims (3.2) and (3.4) are provided in the Appendix.

Remark 1: It follows from (3.8), (3.4) and Itô’s rule, that the process

S(1) − S(Πt) = S(1) − S(p) −
∫ t

0

S′(Πu) σ(Πu) dBu , 0 ≤ t < ∞

is a positive local martingale, hence also a supermartingale (with respect to the filtration
F ). From Theorem 2 in Elworthy et al. (1997) we know that this process is not a
martingale (its expectation is strictly decreasing), so S(Π) provides a concrete example
of what these authors call “strictly local martingales”.

Remark 2: From the definition (2.5), it is clear that 1−Πt = P [ τ > t | Ft ] , 0 ≤ t < ∞
is a non-negative supermartingale; its expectation t 7→ E

(
1 − Πt

)
= P [ τ > t ] , given

by (2.1), is continuous and decreases to zero as t → ∞ . Such a supermartingale is
called a potential, and it is well-known (e.g. Karatzas & Shreve (1991), page 18) that
Π∞ = limt→∞ Πt exists a.s., that {1−Πt , 0 ≤ t ≤ ∞} is a supermartingale (with a last
element), and that in fact Π∞ = 1 , a.s. This establishes direcely the first claim in (3.3).
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4. A Variational Inequality: Suppose that we can find a function Q : [0, 1] → (−∞, 0]
of class C1

(
[0, 1]

)
∩ C2

(
(0, 1] \ {p∗}

)
for some p∗ ∈

(
1
2 , 1
)
, that satisfies the following

properties:

λ(1− π) Q′(π) +
ϑ2

2
π2 (1− π)2 Q′′(π) =

1
2
− π ; for 0 < π < p∗ (4.1)

λ(1− π) Q′(π) +
ϑ2

2
π2 (1− π)2 Q′′(π) >

1
2
− π ; for p∗ < π < 1 (4.2)

Q(π) < 0 ; for 0 ≤ π < p∗ (4.3)

Q(π) = 0 ; for p∗ ≤ π ≤ 1 . (4.4)

In particular, Q′(·) is supposed to be continuous, thus also bounded, on the entire interval
[0, 1] , including the point π = p∗ . In other words, we are postulating as an Ansatz the
“principle of smooth-fit”:

Q′(p∗−) = Q′(p∗+) = 0 . (4.5)

If we can find such a function Q(·) , with the properties of (4.1)−(4.4), then for any
stopping rule T ∈ S with P [T < ∞] = 1 we obtain

Q(ΠT ) = Q(p) +
∫ T

0

[
λ(1−Πt) Q′(Πt) +

ϑ2

2
Π2

t (1−Πt)2 Q′′(Πt)
]
dt

+ ϑ

∫ T

0

Πt (1−Πt) Q′(Πt) dBt

from Itô’s rule applied to the process Π of (3.4), and from (4.1), (4.2):

Q(ΠT ) ≥ Q(p) +
∫ T

0

(
1
2
−Πt

)
dt + ϑ

∫ T

0

Πt (1−Πt) Q′(Πt) dBt , a.s. (4.6)

If in addition T ∈ Sf , the expectation of the stochastic integral in (4.6) is equal to zero,
because then

E
∫ T

0

(
Πt (1−Πt)

)2 (
Q′(Πt)

)2
dt ≤ 1

4

(
max

0≤π≤1
|Q′(π)|

)2

·E(T ) < ∞ .

This way we obtain from (4.6), in conjunction with (4.3) and (4.4):

E
∫ T

0

(
Πt −

1
2

)
dt ≥ Q(p) − E [Q(ΠT ) ] ≥ Q(p) , ∀ T ∈ Sf . (4.7)

Is there a stopping rule T ∗ ∈ Sf for which

E
∫ T∗

0

(
Πt −

1
2

)
dt = Q(p) (4.8)

6



holds ? A look at (4.1)−(4.4) suggests that we can achieve this by taking

T∗ := inf{ t ≥ 0 | Πt ≥ p∗ } , (4.9)

because for this choice all the inequalities in (4.6), (4.7) become equalities, provided we

can show E (T∗) < ∞ .

Now it is clear from (3.3) that the stopping rule T∗ of (4.9) is a.s. finite. The stronger
property E (T∗) < ∞ follows again from the general theory of one-dimensional diffusion
processes. Indeed, it is well known that the expectation of a first-passage time of the form
(4.9) is given by

E (T∗) =
1− S(p)

S(0+)

1− S(p∗)
S(0+)

·
∫ p∗

0

[
S(p∗)− S(π)

]
m(dπ)

−
∫ p

0

[
S(p)− S(π)

]
m(dπ) , for 0 ≤ p < p∗

(cf. Karatzas & Shreve (1991), pp. 343, 344); for p∗ ≤ p ≤ 1 we have T∗ = 0 a.s., trivially
from (4.9). The above expression involves the scale function S(·) and the speed-measure
m from (3.6), (3.7); but in our case S(0+) = −∞ as we have pointed out, so

E (T∗) =
[
S(p∗)− S(p)

]
·m
(
(0, p]

)
+
∫ p∗

p

[
S(p∗)− S(π)

]
m(dπ) . (4.10)

It is checked from (3.7) that m
(
(0, p]

)
< ∞ holds for any 0 < p < 1 , and that the integral

on the right-hand side of (4.10) is finite, leading to E (T∗) < ∞ .

Remark 3: It can be seen from this analysis that
∫ 1

0

[
S(1) − S(π)

]
m(dπ) < ∞, so the

origin p = 0 is an entrance boundary for the diffusion process Π . In particular, if Π0 = 0 ,
the process becomes positive immediately after time t = 0 and never again visits the
origin. This is corroborated, of course, by the the explicit expression of (3.2).

5. Computing the Optimal Stopping Risk: From the discussion of the previous
section we know that if we can find a function Q(·) that satisfies the tenets of the Varia-
tional Inequality (4.1)−(4.4), then Q(·) coincides with the value function V (·) of (2.6) (in
particular, the Variational Inequality has a unique solution), and the minimal risk function
in (2.6) is

R(p) = inf
T∈S

E |T − τ | =
1− p

λ
+ 2Q(p) = E |T∗ − τ | . (5.1)

In other words, the stopping rule T∗ ∈ Sf of (4.9) is then optimal for the sequential
detection problem of minimizing the expected miss of (1.1) over all stopping rules T ∈ S .
All this follows readily from (4.7), (4.8) and (2.6).
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How then do we find the function Q(·) with all the desired properties? We proceed
as follows.

Analysis: If Q(·) solves the Variational Inequality of (4.1)−(4.4), then

d

dπ

[
Q′(π)
S′(π)

]
= h(π) :=

C
(

1
2 − π

)
π2(1− π)2 · S′(π)

=
(

1
2
− π

)
m(dπ)

dπ
, 0 < π < p∗ (5.2)

from (4.1), (3.8) and (3.7), thus

Q′(p)
S′(p)

= −
∫ p∗

p

h(u) du , 0 ≤ p ≤ p∗ (5.3)

in conjunction with Q′(p∗) = 0 of (4.5). Integrating once again, this time using Q(p∗) = 0
from (4.4), we obtain

Q(π) =
∫ p∗

π

(∫ p∗

p

h(u) du

)
S′(p) dp =

∫ p∗

π

[S(u)−S(π)]h(u) du , 0 ≤ π ≤ p∗ . (5.4)

We need another condition on Q(·) , to determine the still unknown constant p∗ . It turns
out that the right condition is

Q′(0+) =
1
2λ

, (5.5)

as we shall justify shortly in (5.8) below. The condition (5.5) follows formally by letting
π ↓ 0 in the equation (4.1), assuming that limπ↓0

(
π2Q′′(π)

)
= 0 ; it also corresponds to

the intuitive notion that we should have R′(0+) = 0 for the slope at the origin of the
minimum risk function R(·) in (2.6), (5.1).

Synthesis: For an arbitrary but fixed p∗ ∈ ( 1
2 , 1) , define the function

Q(π) :=
{∫ p∗

π
[S(u)− S(π)]h(u) du ; 0 ≤ π ≤ p∗

0 ; p∗ ≤ π ≤ 1

}
, (5.6)

in accordance with (5.4) and (4.4). This function is of class C1
(
(0, 1]

)
∩ C2

(
(0, 1] \ {p∗}

)
because we have assured the smooth-fit condition (4.5); it satisfies conditions (4.1), (4.4)
by construction, and (4.2) because p∗ > 1

2 . It remains to select p∗ so that (4.3) is also
satisfied.

We claim that for this it is enough to ensure
(

Q′

S′

)
(0+) = 0 – equivalently, from

(5.3), to select p∗ ∈
(

1
2 , 1
)

so that we have
∫ p∗
0

h(u) du = 0 , or more suggestively:

∫ 1/2

0

h(u) du =
∫ p∗

1/2

(
−h(u)

)
du . (5.7)
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This last condition determines the desired p∗ uniquely. Indeed, the function

D(p) :=
∫ p

1/2

(
−h(u)

)
du = Ce2Λ

∫ p

1/2

e−Λ/π
(
π − 1

2

)(
1− π

)2+Λ
π2−Λ

dπ ,
1
2

< p < 1

suggested by the right-hand side of (5.7), is strictly increasing with D
(

1
2+
)

= 0 and
D(1−) = ∞ . Thus there exists a unique p∗ ∈

(
1
2 , 1
)

such that D(p∗) = G , where

G :=
∫ 1/2

0

h(u) du = Ce2Λ

∫ 1/2

0

(
1
2 − π

)
e−Λ/π

π2−Λ
(
1− π

)2+Λ
dπ =

∫ 1/2

0

(
1
2
− π

)
m(dπ) ∈ (0,∞)

is the left-hand side of (5.6).

In fact, with p∗ thus determined, we have from (5.3) and the rule of L’Hôpital:

Q′(0+) := lim
π↓0

Q′(π) = lim
π↓0

∫ p∗
π

h(u) du( −1
S′(π)

) = lim
π↓0

h(π)
(
S′(π)

)2(
−S′′(π)

) =
1
2λ

(5.8)

thanks to (3.8) and (3.6), (5.2). This way, Q′(·) and also Q(·) can be extended continuously
all the way down to π = 0 , and Q(·) is then of class C1

(
[0, 1]

)
∩ C2

(
(0, 1] \ {p∗}

)
;

furthermore, limπ↓0
(
π2Q′′(π)

)
= 1

ϑ2 [1− 2λ ·Q′(0+)] = 0 from (5.8), (5.2).

With p∗ thus selected, let us look at the function F (·) := Q′(·)/S′(·) . We have by
construction F (0+) = 0 , F (p∗−) = 0 , and from (5.2):

F ′(π) = h(π) is positive for 0 < π <
1
2

, negative for
1
2

< π < p∗ .

In other words, F (·) = Q′(·)/S′(·) is strictly increasing on (0, 1
2 ) and strictly decreasing

on ( 1
2 , p∗) . In particular, F (·) – thus also Q′(·) – is strictly positive on (0, p∗) ; and since

Q(p∗) = 0 , we obtain (4.3).

Remark: With p∗ determined by (5.7), and with the help of (3.2), the optimal stopping
rule T∗ of (4.9) can be written in the (probably more suggestive) form

T∗ = inf
{

t ≥ 0
∣∣∣ p

1− p
+ λ

∫ t

0

e
−ϑXs+

(
ϑ2
2 −λ

)
s
ds ≥ p∗

1− p∗
e
−ϑXt+

(
ϑ2
2 −λ

)
t

}
(5.9)

reported in the Synopsis of this Note (for p = 0 ).
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Appendix: The computation (3.2) is standard, and due to A.N. Shiryaev (1969). A
derivation is included here for the sole purpose of making this Note as self-contained as
possible.

In order to compute the a posteriori probability Πt of (2.5), let us start with a
probability space (Ω,F ,P0) that can support both a standard Brownian motion X as
well as an independent random variable τ : Ω → [0,∞) with distribution P0[τ > t] =
(1−p) e−λt for 0 ≤ t < ∞ . We denote by F = {Ft}0≤t<∞ the filtration generated by the
process X , as in (2.3), and by G = {Gt}0≤t<∞ the larger filtration Gt := σ

(
τ,Xs ; 0 ≤

s ≤ t
)
. According to the Girsanov theorem (e.g. Karatzas & Shreve (1991), Section 3.5),

the process

Wt = Xt −
∫ t

0

ϑ 1{τ≤s} ds , 0 ≤ t < ∞

is a G−Brownian motion under a new probability measure P characterized by

dP
dP0

∣∣∣
Gt

= exp
[ ∫ t

0

ϑ 1{τ≤s} dXs −
ϑ2

2
·
∫ t

0

1{τ≤s} ds

]
= exp

[
ϑ
(
Xt −Xτ

)
· 1{τ≤t} −

ϑ2

2
(t− τ)+

]
=

Lt

Lτ
· 1{τ≤t} + 1{τ>t} =: Zt

for each 0 ≤ t < ∞ , in terms of the likelihood ratio process L of (3.1). The random
variable τ is G0−measurable; thus, τ is independent under P of the G−Brownian
motion W , and we have P[ τ > t ] = E0

[
Z0 1{τ>t} ] = P0[ τ > t ] = (1 − p) e−λt ,

as posited in (2.1). In other words, on the probability space (Ω,F ,P) we have exactly
the model posited in Section 2, in particular (2.1)-(2.3).

On the other hand, the Bayes rule gives

Πt = P
[
τ ≤ t | Ft

]
=

E0

[
Zt 1{τ≤t} | Ft

]
E0

[
Zt | Ft

] , (A.1)

and the independence of X , τ under P0 implies that we have

E0

[
Zt | Ft

]
= E0

[
Lt · 1{τ=0} +

Lt

Lτ
· 1{0<τ≤t} + 1{τ>t}

∣∣∣Ft

]
= p · Lt + (1− p) ·

∫ t

0

Lt

Ls
λe−λs ds + (1− p) · e−λt

as well as

E0

[
Zt 1{τ≤t} | Ft

]
= p · Lt + (1− p) ·

∫ t

0

Lt

Ls
λe−λs ds .
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Substituting these expressions back into (A.1), we arrive at the expression of (3.2). Fur-
themore, the process

Bt = Xt − θ

∫ t

0

Πs ds = Wt − θ

∫ t

0

(
1{τ≤s} −E

[
1{τ≤s} | Fs

])
ds

of (3.5) is an (F,P)−martingale with 〈B〉t = 〈W 〉t = t , thus an (F,P)−Brownian
motion.

Going back to (3.2), we see that

Φt :=
Πt

1−Πt
= Ut + Vt , where Ut :=

p eλt

1− p
Lt , Vt :=

∫ t

0

(
Lt

Ls

)
λ eλ(t−s) ds .

In conjunction with the stochastic differential equation dLt = ϑ Lt dXt , L0 = 1 obeyed
by the likelihood-ratio process L of (3.1), we see that these processes U and V satisfy
the linear stochastic equations

dUt = λ Ut dt + ϑ Ut dXt , U0 =
p

1− p

dVt = λ (1 + Vt) dt + ϑ Vt dXt , U0 = 0 ,

respectively, whence

dΦt = λ (1 + Φt) dt + ϑ Φt dXt , Φ0 =
p

1− p
. (A.2)

Applying Itô’s rule to the process Π = Φ
1+Φ in conjunction with (A.2) and (3.5), we arrive

at the stochastic differential equation (3.4).
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