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block containing k objects all different, so that there are r blocks containing a given object and lambda 
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is based on the first Module Theorem of Bose [1] for pure differences. 
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than with sets. If T1 and T2 are two such collections then T1 & T2 will denote the result of adjoining the 
elements of T1 to T2, with total multiplicities retained. We use the brackets, { }, to denote sets and square 
brackets, [ ], to denote collections of elements which may have repetitions. See [5] for results using these 
concepts. 
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A NOTE ON BffiD'S 

Dedicated to the memory of Hanna Neumann 

JENNIFER WALLIS 

(Received 21 February 1972; revised 20 March 1972) 

Communicated by G. Szekeres 

A balanced incomplete block design or BlBD is defined as an arrangement 
of v objects in b blocks, each block containing k objects all different, so that 
there are r blocks containing a given object and A blocks containing any two given 
objects. 

In this note we shall extend a method of Sprott [2, 3] to obtain several new 
families of BIB D's. The method is based on the first Module Theorem of Bose [1] 
for pure differences. 

We shall frequently be concerned with collections in which repeated elements 
are counted multiply, rather than with sets. If Tl and T2 are two such collections 
then Tl & T2 will denote the result of adjoining the elements of Tl to 1~, with 
total mUltiplicities retained. We use the brackets, { }, to denote sets and square 
brackets, [ ], to denote collections of elements which may have repetitions. 
See [5] for results using these concepts. 

1. Preliminaries 

Let v = mh + 1 = pl1., where p is a prime. Let x be a primitive element 
of GF(v) and wr.te G for the group generated by x. Define Ho a subgroup of G 
and Hi, i =/: 0, its cosets by 

i = 0,1, "', h-l, 

Now consider the collection of differences between elements of Hi 

[XhJ + I _ Xhl+ I: 1 =/: j, 1 ;£ j, 1 ;£ m - 1] 

= [Xhl+i(Xh(J-I) - 1: 1 =/: j, 1 ;£ j, I ;£ m -1] 

~=O 
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258 Jennifer Wallis [2] 

This follows because H; = {X
hl + i: 1 ~ 1 ~ m -I} is a coset and whenever it is 

multiplied by some element xr of the group we have H i +r • Now there are m(m -1) 
differences between elements of Hi so 

h-l 
L as = m-1, 

s=o 

where the as are non-negative integers. 

The differences from Hi U Hi where i "1= j are (differences from HJ & (dif
ferences from H) & (elements of Hi - H) & -(elements of Hi - H j ) 

where 

(
h-l ) 
s~o asH. 

h-l 
L 

s=O 
a = s 

(
h-l ) (h-l) (h-l ) 

& s~o hsHs/ & "~o csHs & - s~o csHs 

h-l h-l il-1 

Lhs=m-l,L Cs = m, and L ds = 2(2m -1). 
s=O s=O s=o 

Note that if we had started by considering the differences between elements 
of H i + 1 we would have 

and for H j + 1 UH j + 1 

h-l 

& asH s+l' 
s=o 

h-l 
& dsHs - l • 

5=0 

So we have, by considering, the totality of differences from the sets 

H j , H i + 1 , ••• H j + h - 1 , 

~~~ (~>s)Hi = (m-1)G, 

and for the totality of differences from the sets 

we have 

~~: (~~ ds) H;= 2(2m - l)G. 

Similarly, by considering the totality of differences from the sets 
HiJ UH i2 u··· UH,., where il = O,l, .. ·,h-l,ij = il +Sj for positive integers 
Sj, ° = SI < S2 < ... < S, < h, we will have 

t(mt - l)G. 



[3] A note on BIBD'S 259 

2. Resul.s 

It follows from the preceding observation that the blocks formed by the 
elements of the sets 

il = 0,1, "', h-I can be taken as "initial blocks" in Bose's first Module Theo
rem [1]. That is, the collection of all blocks B j 1'.' 8 E GF(v), obtamed from Bil 
byaddmg an arbitrary element 8 of GF(v) to each member of B;1' form a BIBD 
with parameters 

v = mh + I = pa, b = hv, r = tmh, k = tm, A = t(mt -1). 

So we obtain 

THEOREM 1. (Series ZI)' I} v = mh + I = pa where p is a prime, and t 
is a positive integer ~ h, then a design with parameters 

v = mh + I, b = hv, r = tmh, k = tm, A = t(mt-I) 

can be constructed via the initial blocks 

B i1 (S2, "',s,) = Hi1 V Hi2 v .. · V H." il = 0,1, "', h-I, 

where ij = i1 + Sj for fixed positive integers Sj' 

o = SI < S2 < ... < s, < h. 

If instead of consi~ering the previous sets we consider the differences from 

OVHi , VHi2 v .. · VR" il = 0,1, .. ·,h-l,t ~ h, 

then the totality of di:Terences from these sets is 

t(mt + l)G, 

and hence we have 

THEOREM 2. (Series Zz). If v = mh + I = pa where p is a prime, and t 
is a positive integer ~ h, then the design with parameters 

v = mh + I, b = hv, r = (tm + I)h, k = tm + I, A = (tm + l)t 

can be constructed via the initial blocks 

where ij = i + Sj for fixed positive jnteger~ ~;, 0 = SI < S2 < ... < Sf < h. 
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THEOREM 3. (Series Z3). If v = (2p. + 1)2h + 1 = p«, where p is a prime, 
and t is a positive integer ~ h, then the design with parameters 

v = (2p. + 1)2h + 1, b = vh, r = (2p. + l)ht, k = (2p. + l)t, A = tt[t(2p. + 1) -1] 

can be constructed via the initial blocks 

B;'cS2,···,St) = Hi! UHi2 U··· UH j , i1 = O,I,···,h-l, 

i) = i1 + s) for fixed positive integers s), 0 = Sl < S2 < ... < St < h. 

THEOREM 4. (Series Z4). If v = (2p. + 1)2h + 1 = p«, where p is a prime, 
and t is a positive integer ~ h, then the design with parameters 

v=(2p.+ 1)2h + 1, b =vh, r= h[(2p.+ l)t+ 1], k=(2p.+ l)t+ 1, A= t[(2p.+ l)t+ 1] 

can be constructed via the initial blocks 

B· (S2 ... s) = 0 U H· U H· U··· U H. i1 = 0 1 ... h-l 
'1 ' ,t '1 '2 't' '" , 

where i) = i1 + s)for fixed positive integers s), 0 = Sl < S2 < ... < St < h. 

PROOF OF THEOREM 3 AND 4. In our previous discussion we have replaced 
m by 2p. + 1 and h by 2h. Now -1 E Hh so the totality of differences from Hi 

becomes 

aoHo & a1H 1 & ... & ah- 1H h- 1 & aOHh & a 1H h+1 & ... & ah-1Hzh-1 

because if x9h+is_xrh+inEHI then xrh+ln_x9h+'sEHl+h. 

We may then proceed as before while noting the dependence of the coeffi
cients of Hi and H i +h in the collection of sums of differences. 

By observing that our series are extensions of those of Sprott we can also 
show 

THEOREM 5. (Series Zs). If v = (4p. + 1)4h + 1 = p«, where p is a prime 
and if the collection of differences from the initial block 

Bi .(S2,S3,···,St) = H2h UH2i2 U··· UH2i" i1 = O,I,.··,h-1. 

are written as 

4h-1 

& as{£+4hJ: 0 ~ j ~ 4p.} 
s=O 

where we may pair the coefficients as such that au = a2t ,+1 for all 
i = 0,1, ... , 2h(4p. + 1) - 1, then the design with parameters 

v = 4h(4p. + 1) + 1, b = hv, r = ht(4p. + 1), k = (4p. + l)t, A = !t[(4p. + l)t - 1] 
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can be constructed via these initial blocks where tt[(4p + l)t - 1] is a positive 
integer, ij = il + Sj for fixed positive integers SJ' 0 = SI < S2 < ... < s, < h. 
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