University of Wollongong

Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

1973

A note on **BIBDS**

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Recommended Citation

Seberry, Jennifer: A note on BIBDS 1973. https://ro.uow.edu.au/infopapers/949

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A note on **BIBDS**

Abstract

A balanced incomplete block design or BIBD is defined as an arrangement of v objects in b blocks, each block containing k objects all different, so that there are r blocks containing a given object and lambda blocks containing any two given objects.

In this note we shall extend a method of Sprott [2, 3] to obtain several new families of BIBD's. The method is based on the first Module Theorem of Bose [1] for pure differences.

We shall frequently be concerned with collections in which repeated elements are counted multiply, rather than with sets. If T_1 and T_2 are two such collections then $T_1 \& T_2$ will denote the result of adjoining the elements of T_1 to T_2 , with total multiplicities retained. We use the brackets, { }, to denote sets and square brackets, [], to denote collections of elements which may have repetitions. See [5] for results using these concepts.

Disciplines

Physical Sciences and Mathematics

Publication Details

Jennifer Seberry Wallis, A note on BIBDS, Journal of Australian Mathematical Society, 16, (1973), 257-261.

A NOTE ON BIBD'S

Dedicated to the memory of Hanna Neumann

JENNIFER WALLIS

(Received 21 February 1972; revised 20 March 1972)

Communicated by G. Szekeres

A balanced incomplete block design or BIBD is defined as an arrangement of v objects in b blocks, each block containing k objects all different, so that there are r blocks containing a given object and λ blocks containing any two given objects.

In this note we shall extend a method of Sprott [2, 3] to obtain several new families of BIBD's. The method is based on the first Module Theorem of Bose [1] for pure differences.

We shall frequently be concerned with collections in which repeated elements are counted multiply, rather than with sets. If T_1 and T_2 are two such collections then $T_1 \& T_2$ will denote the result of adjoining the elements of T_1 to T_2 , with total multiplicities retained. We use the brackets, $\{ \}$, to denote sets and square brackets, [], to denote collections of elements which may have repetitions. See [5] for results using these concepts.

1. Preliminaries

Let $v = mh + 1 = p^{\alpha}$, where p is a prime. Let x be a primitive element of GF(v) and write G for the group generated by x. Define H_0 a subgroup of G and H_i , $i \neq 0$, its cosets by

$$H_i = \{x^{hj+i}: 0 \le j \le m-1\} \qquad i = 0, 1, \dots, h-1,$$

Now consider the collection of differences between elements of H_i

$$[x^{hj+i} - x^{hl+i}: l \neq j, 1 \leq j, l \leq m-1]$$

= $[x^{hl+i}(x^{h(j-1)} - 1: l \neq j, 1 \leq j, l \leq m-1]$
= $a_0H_0 \& a_1H_1 \& \cdots \& a_{k-1}H_{k-1}$
= $\bigotimes_{s=0}^{h-1} a_sH_s$.
257

Jennifer Wallis

This follows because $H_i = \{x^{hl+i}: 1 \leq l \leq m-1\}$ is a coset and whenever it is multiplied by some element x^r of the group we have H_{i+r} . Now there are m(m-1)differences between elements of H_i so

$$\sum_{s=0}^{h-1} a_s = m-1,$$

where the a_s are non-negative integers.

The differences from $H_i \cup H_j$ where $i \neq j$ are (differences from H_i) & (differences from H_i) & (elements of $H_i - H_i$) & -(elements of $H_i - H_i$)

$$= \begin{pmatrix} {}^{h-1}_{s=0} a_{s}H_{s} \end{pmatrix} \& \begin{pmatrix} {}^{h-1}_{s=0} b_{s}H_{s} \end{pmatrix} \& \begin{pmatrix} {}^{h-1}_{s=0} c_{s}H_{s} \end{pmatrix} \& - \begin{pmatrix} {}^{h-1}_{s=0} c_{s}H_{s} \end{pmatrix}$$
$$= \begin{pmatrix} {}^{h-1}_{s=0} d_{s}H_{s} \end{pmatrix}$$
$$\stackrel{h-1}{\sum} a_{s} = \sum_{s=0}^{h-1} b_{s} = m-1, \sum_{s=0}^{h-1} c_{s} = m, \text{ and } \sum_{s=0}^{h-1} d_{s} = 2(2m-1)$$

where

$$\sum_{s=0}^{h-1} a_s = \sum_{s=0}^{h-1} b_s = m-1, \sum_{s=0}^{h-1} c_s = m, \text{ and } \sum_{s=0}^{h-1} d_s = 2(2m-1).$$

Note that if we had started by considering the differences between elements of H_{i+1} we would have

$$\overset{h-1}{\underset{s=0}{\&}} a_{s}H_{s+1},$$

and for $H_{i+1} \cup H_{i+1}$

$$\overset{h-1}{\underset{s=0}{\&}} d_s H_{s-1}.$$

So we have, by considering, the totality of differences from the sets $H_i, H_{i+1}, \cdots H_{i+h-1},$

$$\overset{h-1}{\underset{s=0}{\&}} \left(\sum_{s=0}^{h-1} a_s \right) H_i = (m-1)G,$$

and for the totality of differences from the sets

$$H_{i} \cup H_{j}, H_{i+1} \cup H_{j+1}, \cdots, H_{i+h-1} \cup H_{j+h-1}$$
$$\overset{h-1}{\underset{i=0}{\&}} \left(\sum_{s=0}^{h-1} d_{s}\right) H_{i} = 2(2m-1)G.$$

we have

Similarly, by considering the totality of differences from the sets $H_{i_1} \cup H_{i_2} \cup \cdots \cup H_{i_n}$, where $i_1 = 0, 1, \cdots, h-1, i_j = i_1 + s_j$ for positive integers s_j , $0 = s_1 < s_2 < \dots < s_l < h$, we will have

$$t(mt-1)G$$
.

2. Resul.s

It follows from the preceding observation that the blocks formed by the elements of the sets

$$B_{i_1} = B_{i_1}(s_2, \dots, s_i) = H_{i_1} \cup H_{i_2} \cup \dots \cup H_i$$

= { $x^{i_1}, x^{h+i_1}, \dots, x^{(m-1)h+i_1}, x^{i_1}, x^{h+i_2}, \dots, x^{(m-1)h+i_2}, \dots, x^{i_m}, x^{h+i_m}, \dots, x^{(m-1)h+i_m}$ }

 $i_1 = 0, 1, \dots, h-1$ can be taken as "initial blocks" in Bose's first Module Theorem [1]. That is, the collection of all blocks $B_{i_1,o}$, $\theta \in GF(v)$, obtained from B_{i_1} by adding an arbitrary element θ of GF(v) to each member of B_{i_1} , form a BIBD with parameters

$$v = mh + 1 = p^{\alpha}, b = hv, r = tmh, k = tm, \lambda = t(mt-1).$$

So we obtain

THEOREM 1. (Series Z_1). If $v = mh + 1 = p^{\alpha}$ where p is a prime, and t is a positive integer $\leq h$, then a design with parameters

 $v = mh + 1, b = hv, r = tmh, k = tm, \lambda = t(mt-1)$

can be constructed via the initial blocks

$$B_{i_1}(s_2, \dots, s_t) = H_{i_1} \cup H_{i_2} \cup \dots \cup H_{i_t}, \ i_1 = 0, 1, \dots, h-1$$

where $i_j = i_1 + s_j$ for fixed positive integers s_j ,

$$0 = s_1 < s_2 < \dots < s_t < h \, .$$

If instead of considering the previous sets we consider the differences from

$$0 \cup H_{i_1} \cup H_{i_2} \cup \cdots \cup H_{i_k}, i_1 = 0, 1, \cdots, h-1, t \leq h,$$

then the totality of differences from these sets is

$$t(mt+1)G$$
,

and hence we have

THEOREM 2. (Series Z_2). If $v = mh + 1 = p^{\alpha}$ where p is a prime, and t is a positive integer $\leq h$, then the design with parameters

$$v = mh + 1$$
, $b = hv$, $r = (tm + 1)h$, $k = tm + 1$, $\lambda = (tm + 1)h$

can be constructed via the initial blocks

$$B_{i_1}(s_2, \dots, s_t) = 0 \cup H_{i_1} \cup H_{i_2} \cup \dots \cup H_{i_t}, \ i_1 = 0, 1, \dots, h-1,$$

where $i_j = i + s_j$ for fixed positive integers s_j , $0 = s_1 < s_2 < \cdots < s_t < h$.

THEOREM 3. (Series Z₃). If $v = (2\mu + 1)2h + 1 = p^{\alpha}$, where p is a prime, and t is a positive integer $\leq h$, then the design with parameters

$$v = (2\mu + 1)2h + 1, b = vh, r = (2\mu + 1)ht, k = (2\mu + 1)t, \lambda = \frac{1}{2}t[t(2\mu + 1) - 1]$$

can be constructed via the initial blocks

$$B_{i_1}(s_2, \dots, s_i) = H_{i_1} \cup H_{i_2} \cup \dots \cup H_{i_i}, i_1 = 0, 1, \dots, h-1,$$

 $i_j = i_1 + s_j$ for fixed positive integers s_j , $0 = s_1 < s_2 < \dots < s_t < h$.

THEOREM 4. (Series Z₄). If $v = (2\mu + 1)2h + 1 = p^{\alpha}$, where p is a prime, and t is a positive integer $\leq h$, then the design with parameters

 $v = (2\mu + 1)2h + 1, b = vh, r = h[(2\mu + 1)t + 1], k = (2\mu + 1)t + 1, \lambda = t[(2\mu + 1)t + 1]$

can be constructed via the initial blocks

$$B_{i_1}(s_2, \dots, s_i) = 0 \cup H_{i_1} \cup H_{i_2} \cup \dots \cup H_{i_i}, \ i_1 = 0, 1, \dots, h-1,$$

where $i_j = i_1 + s_j$ for fixed positive integers s_j , $0 = s_1 < s_2 < \cdots < s_t < h$.

PROOF OF THEOREM 3 AND 4. In our previous discussion we have replaced m by $2\mu + 1$ and h by 2h. Now $-1 \in H_h$ so the totality of differences from H_1 becomes

$$a_0H_0 \& a_1H_1 \& \cdots \& a_{h-1}H_{h-1} \& a_0H_h \& a_1H_{h+1} \& \cdots \& a_{h-1}H_{2h-1}$$

because if $x^{gh+i_s} - x^{rh+i_n} \in H_l$ then $x^{rh+i_n} - x^{gh+i_s} \in H_{l+h}$.

We may then proceed as before while noting the dependence of the coefficients of H_i and H_{i+h} in the collection of sums of differences.

By observing that our series are extensions of those of Sprott we can also show

THEOREM 5. (Series Z₅). If $v = (4\mu + 1)4h + 1 = p^{\alpha}$, where p is a prime and if the collection of differences from the initial block

$$B_{i_1}(s_2, s_3, \dots, s_t) = H_{2i_1} \cup H_{2i_2} \cup \dots \cup H_{2i_t}, \ i_1 = 0, 1, \dots, h-1.$$

are written as

$$\overset{4h-1}{\underset{s=0}{\&}} a_{s}\{x^{s+4hj}: 0 \le j \le 4\mu\}$$

where we may pair the coefficients a_s such that $a_{2i} = a_{2i+1}$ for all $i = 0, 1, \dots, 2h(4\mu + 1) - 1$, then the design with parameters

 $v = 4h(4\mu + 1) + 1$, b = hv, $r = ht(4\mu + 1)$, $k = (4\mu + 1)t$, $\lambda = \frac{1}{4}t[(4\mu + 1)t - 1]$

260

can be constructed via these initial blocks where $\frac{1}{4}t[(4\mu + 1)t - 1]$ is a positive integer, $i_j = i_1 + s_j$ for fixed positive integers s_j , $0 = s_1 < s_2 < \cdots < s_i < h$.

Acknowledgement

The author wishes to thank Professor G. Szekeres for his suggestions which have substantially improved the readability of this note.

References

- [1] R. C. Bose, 'On the construction of balanced incomplete block designs', Ann. Eugenics, 9 (1939), 353-399.
- [2] D. A. Sprott, 'A note on balanced incomplete block designs', Can. J. Math., 6 (1965), 341-346.
- [3] D. A. Sprott, 'Some series of balanced incomplete block designs', Sankhya, Ser. A, 17 (1956), 185-192.
- [4] E. Nemeth, 'A new family of BIBD'S', Ann. Math. Stat., 42 (1971), 1118-1120.
- [5] Jennifer Wallis, 'On supplementary difference sets', Aeq. Math. 8 (1972), 242-257.

Institute of Advanced Studies Australian National University Canberra, A.C.T.