A Note on Bisexual Galton-Watson Branching Processes with Immigration*

M. González, M. Molina, M. Mota
Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
e-mail: mvelasco@unex.es, mmolina@unex.es, mota@unex.es

(Research paper)

1. Introduction

Recently, from the branching model introduced in [1], new bisexual GaltonWatson branching processes allowing immigration have been developed in [2] and some probabilistical analysis about them has been obtained. In particular, for the bisexual Galton-Watson process allowing the immigration of females and males, it has been proved (see [3]) that, under certain conditions, the sequence representing the number of mating units per generation converges in distribution to a positive, finite and non-degenerate random variable. The aim of this paper is to provide, through a different methodology, an alternative proof of this limit result. In this new, and more technical proof, we make use of the underlying probability generating functions. In Section 2, a brief description of the probability model is considered and some basic definitions and results are given. Section 3 is devoted to prove the asymptotic result previously indicated.

2. The Probability Model

The bisexual Galton-Watson process with immigration of females and males (BGWPI) denoted by $\left\{\left(F_{n}^{*}, M_{n}^{*}\right), n=1,2, \ldots\right\}$ is defined, see [2], in the form:

[^0]\[

$$
\begin{gather*}
Z_{0}^{*}=N, \quad\left(F_{n+1}^{*}, M_{n+1}^{*}\right)=\sum_{i=1}^{Z_{n}^{*}}\left(f_{n i}, m_{n i}\right)+\left(F_{n+1}^{I}, M_{n+1}^{I}\right), \tag{1}\\
Z_{n+1}^{*}=L\left(F_{n+1}^{*}, M_{n+1}^{*}\right), \quad n=0,1, \ldots
\end{gather*}
$$
\]

where N is a positive integer and the empty sum is considered to be $(0,0)$. $\left\{\left(f_{n i}, m_{n i}\right)\right\}$ and $\left\{\left(F_{n}^{I}, M_{n}^{I}\right)\right\}$ are independent sequences of i.i.d. non-negative integer-valued random variables with mean vectors $\mu=\left(\mu_{1}, \mu_{2}\right)$ and $\mu^{I}=$ $\left(\mu_{1}^{I}, \mu_{2}^{I}\right)$, respectively. Intuitively $f_{n i}\left(m_{n i}\right)$ represents the number of females (males) produced by the i th mating unit in the nth generation and $F_{n}^{I}\left(M_{n}^{I}\right)$ may be viewed as the number of immigrating females (males) in the nth generation. The mating function $L: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is non-decreasing in each argument, integer-valued for integer-valued arguments and such that $L(x, y) \leq x y$. Consequently, from an intuitive outlook, $F_{n}^{*}\left(M_{n}^{*}\right)$ will be the number of females (males) in the nth generation, which form $Z_{n}^{*}=L\left(F_{n}^{*}, M_{n}^{*}\right)$ mating units. These mating units reproduce independently through the same offspring distribution for each generation.

It can be shown that $\left\{Z_{n}^{*}\right\}$ and $\left\{\left(F_{n}^{*}, M_{n}^{*}\right)\right\}$ are Markov chains with stationary transition probabilities. We denote by $p_{k l}=P\left[\left(f_{01}, m_{01}\right)=(k, l)\right]$, $k, l=0,1, \ldots$ and assume that μ and μ^{I} are finite.

Definition 2.1. A BGWPI is said to be superadditive if the mating function L is superadditive, i.e. satisfies, for every positive integer n, that

$$
L\left(\sum_{i=1}^{n}\left(x_{i}, y_{i}\right)\right) \geq \sum_{i=1}^{n} L\left(x_{i}, y_{i}\right), \quad x_{i}, y_{i} \in \mathbb{R}^{+}, \quad i=1, \ldots, n .
$$

Definition 2.2. For a BGWPI and each positive integer k, we define the average reproduction rate per mating unit, denoted by r_{k}^{*}, as:

$$
r_{k}^{*}=k^{-1} E\left[Z_{n+1}^{*} \mid Z_{n}^{*}=k\right], \quad k=1,2, \ldots
$$

For a superadditive BGWPI with finite mean vector μ and mating function verifying that $L(x, y) \leq x+y$ it is derived (see [3]) that $\lim _{k \rightarrow \infty} r_{k}^{*}=r$ being r the named asymptotic growth rate (or growth rate).

Definition 2.3. A superadditive BGWPI is said to be subcritical, critical or supercritical if r is $<,=$ or >1, respectively.

3. A limit result for the sequence $\left\{Z_{n}^{*}\right\}$

In this section we consider a subcritical and superadditive BGWPI defined by (1) and, considering as a tool the underlying probability generating functions, we provide an alternative proof to theorem 3.2 in [3]. Previously it will be necessary to introduce the following lemma:

Lemma 3.1. Let ψ a positive, non decreasing and continuous function on $[0,1]$ such that $\psi(1)=1$ and $\psi^{\prime}\left(1^{-}\right) \in(0, \infty)$. Then for $\delta \in(0,1)$ it is verified that

$$
\sum_{k=1}^{\infty}\left(1-\psi\left(1-\delta^{k}\right)\right)<\infty
$$

Proof. Consider $h(x)=1-\psi\left(1-\delta^{x}\right), x \in \mathbb{R}^{+}$. It is clear that h is a positive, non increasing and continuous function. Moreover, it follows that $\lim _{x \rightarrow \infty} h(x)=$ 0 . Then, from the integral criteria for convergence of series, it will be sufficient to prove that $\int_{1}^{\infty} h(x) d x<\infty$. Making use of the transformation $s=1-\delta^{x}$ we get that $\int_{1}^{\infty} h(x) d x$ is proportional to $\int_{0}^{1}(1-s)^{-1}(1-\psi(s)) d s$ which is convergent taking into account that $\psi^{\prime}\left(1^{-}\right)<\infty$ and $(1-s)^{-1}(1-\psi(s))$ is bounded on $[0,1]$.

Theorem 3.1. If $E\left[L\left(f_{01}, m_{01}\right)\right]>0, E\left[L\left(F_{1}^{I}, M_{1}^{I}\right)\right]>0, p_{00}>0$ and there exists $\alpha>0$ and $N_{0} \geq 1$ such that for $k>N_{0}, r_{k}^{*} \leq r+k^{-1} \alpha$ then $\left\{Z_{n}^{*}\right\}$ converges in distribution to a positive and finite random variable Z^{*} as $n \rightarrow \infty$.

Proof. Under the considered assumptions, it can be proved in [2] that $\left\{Z_{n}^{*}\right\}$ is an irreducible Markov chain. If $k_{0}=\inf \left\{k: P\left[L\left(F_{1}^{I}, M_{1}^{I}\right)=k\right]>0\right\}$ then, using that L is non decreasing in each argument, it is derived that $P\left[Z_{n}^{*} \geq k_{0}\right]=1, n=1,2, \ldots$, and therefore if k^{*} is an essential state it is obtained that $k^{*} \geq k_{0}$.

Thus, if f_{n}^{*} and h_{k}^{*} denote the probability generating functions associated with Z_{n}^{*} and with the k th row of the transition matrix of $\left\{Z_{n}^{*}\right\}$, respectively, i.e. $f_{n}^{*}(s)=E\left[s^{Z_{n}^{*}}\right]$ and $h_{k}^{*}(s)=E\left[s^{Z_{n+1}^{*}} \mid Z_{n}^{*}=k\right], s \in[0,1]$, then it is followed that:

$$
f_{n}^{*}(s)=\sum_{j=k_{0}}^{\infty} s^{j} P\left[Z_{n}^{*}=j\right] \quad \text { and } \quad h_{k}^{*}(s)=\sum_{j=k_{0}}^{\infty} s^{j} P\left[Z_{n+1}^{*}=j \mid Z_{n}^{*}=k\right] .
$$

From Jensen's inequality we obtain:

$$
\begin{equation*}
\left(h_{k}^{*}(s)\right)^{1 / k} \geq \varphi_{k}(s), \quad s \in[0,1], \tag{2}
\end{equation*}
$$

where

$$
\varphi_{k}(s)=E\left[s^{k^{-1} L\left(\sum_{i=1}^{k}\left(f_{n i}, m_{n i}\right)+\left(F_{n+1}^{I}, M_{n+1}^{I}\right)\right)}\right] .
$$

Since, for some $\xi \in(s, 1)$:

$$
\varphi_{k}(s)=1-r_{k}^{*}(1-s)+\frac{\varphi_{k}^{\prime \prime}(\xi)}{2}(1-s)^{2}
$$

we have for $k>N_{0}$, that

$$
\begin{equation*}
\varphi_{k}(s) \geq a(s)\left(1-\frac{(1-s) \alpha}{k a(s)}\right) \tag{3}
\end{equation*}
$$

being $a(s)=1-r(1-s)$. Now

$$
0 \leq \frac{(1-s) \alpha}{k a(s)} \leq(1-r)^{-1} \alpha, \quad s \in[0,1] .
$$

Therefore for $k>N_{1}>\max \left\{N_{0},(1-r)^{-1} \alpha\right\}$, taking into account (2) and (3), it is deduced that:

$$
h_{k}^{*}(s) \leq(a(s))^{k}\left(1-\frac{(1-s) \alpha}{k a(s)}\right)^{k} \leq(a(s))^{k} A(s), \quad s \in[0,1]
$$

where $A(s)=\left(1-\frac{(1-s) \alpha}{N_{1} a(s)}\right)^{N_{1}}$.
It is clear that A is a positive, non decreasing and continuous function on \mathbb{R}^{+}verifying that $A(1)=1$ and $A^{\prime}(1)=\alpha$. Let $u(s)$ be an arbitrary probability generating function such that $u^{\prime}(1)<\alpha$ (for example the probability generating function of a Poisson distribution with mean $\lambda<\alpha$) and for $s \in[0,1]$ we define the function:

$$
\widehat{h}_{k}(s)= \begin{cases}(a(s))^{k} u(s) & \text { if } k=1, \ldots, N_{1} \\ h_{k}^{*}(s) & \text { if } k>N_{1}+1\end{cases}
$$

If $\psi(s)=\min \{u(s), A(s)\}$, it follows that

$$
\widehat{h}_{k}(s) \geq(a(s))^{k} \psi(s), \quad s \in[0,1], \quad k=1,2, \ldots
$$

and from the comparison theorem for Markov chains (see [4], p.45) it will be sufficient to prove that k_{0} is a positive recurrent state for the Markov chain with transition matrix rows associated to $\widehat{h}_{k}(s)$. If we denote this Markov chain by $\left\{\widehat{Z}_{n}\right\}$ then, without loss of generality, it may be assumed that $k_{0}=0$.

Let

$$
\widehat{f}_{m}(s)=E\left[s^{\widehat{Z}_{n+m}} \mid \widehat{Z}_{n}=0\right], \quad m=0,1, \ldots
$$

It is not difficult to verify that:

$$
\begin{equation*}
\widehat{f}_{m}(s) \geq \prod_{j=0}^{m-1} \psi\left(a_{j}(s)\right), \quad s \in[0,1] \tag{4}
\end{equation*}
$$

where a_{j} denotes the j times composition of the function a and $a_{0}(s)=s$. Consequently, if $p_{00}^{(m)}$ represents the m step transition probability from 0 to 0 , taking into account (4) we deduced that

$$
\lim _{m \rightarrow \infty} p_{00}^{(m)}=\lim _{m \rightarrow \infty} \widehat{f}_{m}(0) \geq \prod_{j=0}^{\infty} \psi\left(1-r^{j}\right)
$$

and therefore 0 will be a positive recurrent state if the limit above is positive or, equivalently, if $\sum_{j=0}^{\infty}\left(1-\psi\left(1-r^{j}\right)\right)<\infty$ which holds as a consequence of Lemma 1. From Markov chains theory we deduce that $\left\{Z_{n}^{*}\right\}$ converges in distribution to a positive and finite random variable Z^{*} whose probability distribution will be the corresponding stationary distribution.

References

[1] Daley, D., Extinction condition for bisexual Galton-Watson branching processes, Z. Wahrscheinlichtkeitsth 9 (1968), 315-322.
[2] González, M., Molina, M., Mota, M., Bisexual branching models with immigration, Journal of the Inter-American Statistical Institute 51 (1999), 81-107.
[3] GonzÁlez, M., Molina, M., Mota, M., Limit behaviour for a subcritical bisexual Galton-Watson branching process with immigration, Statistics and Probability Letters 49 (2000), 19-24.
[4] Klebaner, F., On population-size-dependent branching processes, Advances in Applied Probability 16 (1984), 30-55.

[^0]: *Research supported by the Consejería de Educación y Juventud de la Junta de Extremadura and the Fondo Social Europeo grant IPR00A056.

