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Abstract. The paper investigates the famous Searlean distinction between
“brute” and “institutional” concepts from a logical point of view. We show
how the partitioning of the non-logical alphabet—e.g., into “brute” and
“institutional” atoms—gives rise to interesting modal properties. A modal
logic, called UpTo-logic, is introduced and investigated which formalizes
the notion of (propositional) logical equivalence up to a given signature.

1 Introduction

In the last decade the logical analysis of constitutive rules, initiated by [9], has
focused on a number of aspects: defeasibility [3, 4], contextual and classifica-
tory aspects [7, 8], mental aspects [12]. The prominent view has been to study
constitutive rules, or “counts-as statements”, as logical conditionals of the form
ϕ1 ⇒ ϕ2 where the logic of⇒ was, from case to case, capturing the aforemen-
tioned aspects. One aspect, though, that has up to now been neglected concerns
the different linguistic nature of the antecedent ϕ1 and the consequent ϕ2 of
such conditionals.

According to Searle [14, 15] a characteristic aspect of constitutive rules is to
link brute facts to institutional ones. Antecedent and consequent belong, some-
how, to two different sets of concepts into which the language of institutions
can be split. Institutional facts are constituted on the top of brute ones, giving
to brute ones some sort of ‘priority’ upon the institutional ones.

The present paper explores, using modal logic, this linguistic aspect of con-
stitutive rules. It develops ideas already introduced and partially investigated
in [5,6]. It is structured as follows. Section 2 introduces the notion of equivalence
up to a given propositional signature. Such notion is then semantically and ax-
iomatically studied in a multi-modal language in Section 3. Section 4 discusses
some related work and draws some conclusions.

2 Formal aspects of the brute vs. institutional distinction

In this section Searle’s thesis concerning the distinction of brute and institutional
facts is related to a specific notion of logical equivalence.
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2.1 Counts-as conditionals, brute, and institutional facts

Let us start off with one of Searle’s paradigmatic examples of a constitutive rule,
the one concerning the institution of promising:

Under certain conditions C anyone who utters the words (sentence) “I
hereby promise to pay you, Smith, five dollars” promises to pay Smith
five dollars [13, p. 44].

So, in context C the brute fact of uttering “I hereby promise” is a sufficient
condition for the institutional fact of promising to occur. Following [7, 8] by
interpreting contextual statements as forms of localized propositional validity,
this can be semantically rendered as:

(1) WC |= utter→ promise

where WC is the set of states modeling context C.1 Now, utter belongs to the
set BR of “brute” atoms, while promise to the set IN of “institutional ones”. In
the Spirit of Searle, sets BR and INS should obviously be taken to be disjoint,
and to cover the set P of atoms of the language.

So where does the priority of BR in constituting the elements of IN arise?
The thesis of this paper—already partially put forth in [6]—is that the priority
of BR over IN consists in implications such as utter → promise in Formula 1
to cease to be valid once only the “brute” sublanguage, i.e., the atoms in BR, is
considered. With respect to Formula 1, this means that counts-as conditionals
imply the existence of a state w in context WC and a state w′ such that w and
w′ are indistinguishable from the point of view of BR (i.e., they satisfy the very
same brute facts), and such that WC ∪ {w′} 6|= utter → promise. If such a w′

exists, then we can properly say that the truth of promise in WC is constituted
by the truth of utter since “all brute facts being equal” the implication possibly
fails. The paper presents a logic to systematically handle this idea within a
modal language.

2.2 Propositional equivalence up to a signature

The signature of a propositional language is its non-logial alphabet, that is, its
set of propositional atoms. Let P = {p, q, r . . .} be a countable set of propositional
atoms, and let L(P) be the propositional language built on P and the usual
Boolean connectives. We say that P is the signature of L(P).

Consider now the set 2P of all possible sub-signatures of L(P). Elements of
such set will be denoted P,Q,R, . . . etc. Notice that the set of all sub-signatures
of L(P) naturally yields a set algebra

〈
2P,∪,−,P, ∅

〉
. Two propositional models

w and w′ of L(P) are propositionally equivalent if they satisfy the same atoms
in P. As a consequence, for any formula ϕ of L(P): w |= ϕ iff w′ |= ϕ. If w and
w′ are equivalent (w ∼ w′) then there is no set Φ of formulae of L(P) whose

1 This is the semantics of what, in [7, 8], is called classificatory counts-as.
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models contain w but not w′, or vice versa. That is to say, the two models are
indistinguishable for L(P).

However, two models which are not equivalent for P may be equivalent for
some sub-signature P ∈ 2P. In this case, the two models cannot be distinguished
by only looking at the atoms in P. The following definition makes such notion
formal.

Definition 1. (Equivalence up to a signature) Two models w and w′ for a propositional
language L are equivalent up to signature P ∈ 2P, or P-equivalent, if and only if for
any p ∈ P,w |= p iff w′ |= p. If w and w′ are P-equivalent we write w ∼P w′.

Obviously, if w ∼P w′ then for all ϕ ∈ L(P): w |= ϕ iff w′ |= ϕ. The definition
makes precise the idea of two propositional models agreeing up to what is
expressible on a given signature.

Theorem 1. (Properties of ∼P) Let W be a set of models for the propositional language
L(P). The following holds:

(i) For every signature P ∈ 2P, the relation ∼P is an equivalence relation on W;
(ii) For all signatures P,Q ∈ 2P, if P ⊆ Q then ∼Q ⊆ ∼P;

(iii) For each atom p ∈ P, the relation ∼{p} yields a bipartition of W;
(iv) ∼P = ∼;
(v) ∼∅ = W2.

Proof. (i) The following holds: identity is a subrelation of ∼P for any sub-
signature P; and that ∼P ◦ ∼P and ∼−1

P are subrelations of ∼P for any signature P.
(ii) If m ∼Q m′ then for all atoms p ∈ Q: w |= p iff w′ |= p. Therefore, since P ⊆ Q,
w ∼P w′. (iii) Suppose, per absurdum, that there exist three disjoint equiva-
lence classes: |w′|∼{p} , |w

′′
|∼{p} and |w′′′|∼{p} . For bivalence, we have either w′ |= p

or w′ 6|= p. Suppose, without loss of generality, that w′ |= p. By Definition 1 it
follows that w′′ 6|= p and w′′′ 6|= p. Hence |w′′|∼{p} = |w′′′|∼{p} , which is impossible.
(iv) The set P is the signature of the propositional languageL(P), hence ∼P is the
propositional equivalence relation for L(P). (v) Suppose, per absurdum, there
exists w,w′ ∈ W such that not w ∼∅ w′. For Definition 1, there exists p ∈ ∅ such
that w |= p and w′ 6|= p (or viceversa), which is impossible.

Besides showing that signature-based equivalence is an equivalence relation (i),
Theorem 1 shows also that: (ii) the bigger the signature, the more fine-grained
is the equivalence relation; (iii) equivalences based on singleton signatured
partition the set of states in two classes; (iv) if the propositional language under
consideration isL(P) then relation∼P is standard propositional equivalence; (iv)
∼∅ is the universal relation on W. Notice also that from (ii) and (iii) follows that
for every signature P it is the case that ∼ ⊆ ∼P, that is, propositional equivalence
implies signature-based equivalence.

3 A modal logic of propositional equivalence up to a signature

The present section presents a modal logic—which we call UpTo—characterizing
the notion of propositional equivalence up to a given signature.
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3.1 Syntax of UpTo.

Let P = {p, q, r . . .} be a countable set of propositional atoms. The language
LUpTo(P)2 of logic UpTo on P is defined by the following BNF:

LUpTo : ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [P]ϕ

where p ranges over P and P over 2P. The Boolean connectives >,∨,→,↔ and
the dual operators 〈P〉 are defined as usual.

3.2 Semantics of UpTo.

Let us first define frames and models built on the notion of equivalente up to a
given signature, in short, UpTo-frames and UpTo-models.

Definition 2. (UpTo-frames) An UpTo-frameF = 〈W, {∼P}P∈2P〉 for the propositional
language L(P) is a tuple such that:

– W is a non-empty set of states;
– Each ∼P is an equivalence relation based on signature P ∈ 2P.

Intuitively, an UpTo-frame fixes a particular arrangement of the equivalence
classes available given a propositional language L(P). To make a simple exam-
ple, suppose W = {w′,w′′}, P = {p} and ∼{p}= {(w′,w′), (w”,w”)}. Such frame for
L({p}) states that w′ and w” are equivalent up to signature {p} only to themselves.
The valuation function will then say whether it is w′ that satisfies p while w”
does not, or vice versa. This brings us to the notion of UpTo-model.

Definition 3. (UpTo-models) An UpTo-model M = 〈F ,I〉 for the modal language
LUpTo(P) is a tuple such that:

– F is an UpTo-frame for the propositional language L(P);
– I : P −→ 2W is an interpretation function.

It may be instructive to notice that for each UpTo-frame there are exactly 2P

different UpTo-models since Definition 1 requires that, for any atom p in P, each
element in the bipartition yielded by p coincides either with the truth-set of p or
with the truth-set of ¬p.

The satisfaction relation is defined as follows.

Definition 4. (Satisfaction for UpTo-models) LetM be an UpTo-model forLUpTo(P),
w ∈W and ϕ,ψ ∈ LUpTo(P).

M,w |= p iff w ∈ I(p);
M,w |= ¬ϕ iff M,w 6|= ϕ;

M,w |= ϕ ∧ ψ iff M,w |= ϕ &M,w |= ψ;
M,w |= [P]ϕ iff ∀w′ ∈W,w ∼P w′ :M,w′ |= ϕ

2 In what follws we will often drop the reference to P and denote the language of UpTo
simply by LUpTo.
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Formula ϕ is valid in M, noted M |= ϕ, if and only if for all w in W, M,w |= ϕ.
Formula ϕ is valid in F , noted F |= ϕ, if and only if it is valid in all models built on F .
Finally, ϕ is UpTo-valid, noted |=UpTo ϕ, iff it is valid in all UpTo-frames. The logical
consequence of formula ϕ from a set of formulae, noted Φ |=UpTo ϕ, can be defined as
usual.

Intuitively, the up to operator [P] means that ϕ holds in all states that are equiv-
alent to the state of evaluation up to signature P.

3.3 Axiomatics of UpTo.

Logic UpTo is axiomatized by the following schemata.

(P) all tautologies of propositional calculus
(K) [P](ϕ→ ψ)→ ([P]ϕ→ [P]ψ)
(T) [P]ϕ→ ϕ

(4) [P]ϕ→ [P][P]ϕ
(5) 〈P〉ϕ→ [P]〈P〉ϕ

(PO) [P]ϕ→ [Q]ϕ if P ⊆ Q
(Bipart) [{p}]p ∨ [{p}]¬p

(Dual) 〈P〉ϕ↔ ¬[P]¬ϕ
(MP) if ` ϕ1 and ` ϕ1 → ϕ2 then ` ϕ2

(N) if ` ϕ then ` [P]ϕ

where P,Q range over 2P, ϕ,ψ over LUpTo(P) and p over P. The up to operators
are S5 operators with the addition of axioms PO (partial order) and Bipart
(bipartition). Axiom PO orders the strength of the operators according to the
relation of set-inclusion on the set of signatures. Notice that it consists of a
transposition, in modal logic, of property (ii) in Theorem 1. Axiom Bipart

states that if the signature considered consists of only atom p then it is either
necessarily the case that p, or it is necessarily the case that ¬p. In other words,
the equivalence up to p determines a bipartition of the set of states where the
one cluster coincides with the set of p-states and the other with the set of ¬p
states. This axiom rephrases property (iii) of Theorem 1. Notice that from PO,
Bipart and P follows that [P]p ∨ [P]¬p if p ∈ P. 3

Provability of a formula ϕ, noted `UpTo ϕ, and derivability of a formula ϕ
from a set of formulae Φ, noted Φ `UpTo ϕ can be defined as usual. Appendix
A offers a proof of the soundness and strong completeness of the proposed
axiomatics with respect to the class of models built on UpTo-frames.

3 A slightly different version of such schema has been used as an axiom in [5], where
it is called NoCross. Notice that it forces the accessibility relation not to cross the
bipartitions of the domain W yielded by each atom p, when p does belong to signature
in the modal operator.
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3.4 Embedding UpTo into S5

Take the standard modal language L�(P) with one modal operator � defined
on the set of atoms P. If we allow only up to operators [P] where P is finite, it is
possible to define an EXPtime truth-preserving reduction f : LUpTo(P) −→ L�(P)
as follows:

f (p) = p
f (¬ϕ) = ¬ f (ϕ)

f (ϕ ∧ ψ) = f (ϕ) ∧ f (ψ)
f ([∅]ϕ) = � f (ϕ)

f ([P]ϕ) =
∧
πi∈2P

((∧
π+

i ∧
∧

π−i
)
→ �

((∧
π+

i ∧
∧

π−i
)
→ f (ϕ)

))
where π+

i = πi and π−i = {¬p | p ∈ P & p < πi}. Intuitively, the up to operators
are translated by taking care of all the possible truth-value combinations of the
atoms in the signature P. If a given combination, e.g.,

∧
π+

i ∧
∧
π−i , is true at

the given state, then in all accessible states, if that combination is true, than ϕ is
also true. In addition, this should be the case for any combination drawn from
a non-empty P, which explains

∧
πi∈2P−∅. If P is empty, than [P] is taken to be �.

As a consequence, � has to be interpreted as a universal modality (Theorem 1).

Theorem 2. ( f preserves satisfiability) LetM = 〈W, {∼P}P∈2P ,I〉 be an UpTo-model
for language LUpTo(P) andM′ = 〈W′,R′,I′〉 be an S5 model for L�(P) such that:

– W′ = W;
– R′ = ∼∅;
– I′ = I.

For any w ∈W and ϕ ∈ LUpTo(P),M,w |= ϕ iffM′,w |= f (ϕ).

Proof. The Boolean clauses and the clause for [∅] are obvious. As to the the
last clause, by induction hypothesis (IH): M,w |= ϕ iff M′,w |= f (ϕ). By IH,
the semantics of [P] and �, and Definition 1, the following expressions are all
equivalent toM,w |= [P]ϕ:

∀w′ ∈W,w ∼P w′ :M,w′ |= ϕ

∀w′ ∈W,w ∼P w′ :M′,w′ |= f (ϕ)

∀w′ ∈W,∀πi ∈ 2P ifM′,w |=
∧

π+
i ∧

∧
π−i thenM

′,w′ |=
(∧

π+
i ∧

∧
π−i

)
→ f (ϕ)

∀πi ∈ 2P ifM′,w |=
∧

π+
i ∧

∧
π−i thenM

′,w′ |= �
((∧

π+
i ∧

∧
π−i

)
→ f (ϕ)

)
M
′,w′ |=

∧
πi∈2P−∅

((∧
π+

i ∧
∧

π−i
)
→ �

((∧
π+

i ∧
∧

π−i
)
→ f (ϕ)

))
This completes the proof.

As a consequence, we also obtain the following result.
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Corollary 1. (Decidability) The satisfiability problem for UpTo is decidable.

Proof. The satisfiability problem for S5 is decidable [2]. The result follows from
Theorem 2.

Translation f makes explicit how the up to operators enable a compact rep-
resentation of rather rich logical information. What can be expressed by UpTo
can as well be expressed in S5, but not as easily.

4 Related work and conclusions

In these last two sections we relate the results presented in this paper to existing
work in modal logic, and we finally draw some conclusions pointing at future
research directions.

4.1 Related work: up to, release and ceteris paribus logics

The logic presented in Section 3 is a strict relative of the so-called release log-
ics, first introduced and studied in [10, 11] in order to provide a modal logic
characterization of a general notion of irrelevancy. Modal operators in release
logics are S5 operators indexed by an abstract set denoting the issues that are
taken to be irrelevant while evaluating the formula in the scope of the operator.
In [5] a special release logic is studied where the potentially irrelevant issues are
precisely the propositional atoms of the language. This allows for the character-
ization of a notion of equivalence modulo a given signature. Instead of studying
formulae [P]ϕ, whose intuitive meaning is “ϕ is the case” up to signature P, that
logic studies formulae [P]ϕ whose intuitive meaning is “ϕ is the case” modulo
signature P, that is, if we abstract from the atoms in P. Therefore, in order to
obtain a truth-preserving translation f of this logic to UpTo we just need to
require: f ([P]ϕ) = [−P] f (ϕ), where − is the set-theoretic complement. The UpTo
logic can therefore be considered to belong to the family of release logics.4

Another work coming very close to the spirit of the present paper is [1].
In that paper a logic is presented for ceteris paribus preferences, that is to say,
for preferences under the“all other things being equal” condition. Leaving the
preferential component of such logic aside, its ceteris paribus fragment concerns
sentences of the form 〈Γ〉ϕwhose intuitive meaning is “there exists a state which
is equivalent to the evaluation state with respect to all the formulae in the (finite)
set Γ and which satisfies ϕ”, where the formulae in Γ are drawn from the full
language. At this point it is easy to see that logic UpTo is, in fact, the fragment of
the ceteris paribus logic where Γ is allowed to consist only of a set of atoms. It is,
we could say, the logic of “everything else being equal which you can express on
this signature”. From the semantic point of view, this means that UpTo-models
contain considerably less equivalence classes than ceteris paribus models.

4 See [5] for more details.
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4.2 Conclusions

The paper has introduced and studied modal logic UpTo characterizing the
notion of equivalence up to a given propositional signature. Soundness and
completeness of the axiomatics, as well as the decidability of the satisfaction
problem has been proven.

To conclude, let us go back to the beginning of Section 2 and show how
Formula 1 can be appropriately extended in order to capture the “brute vs.
institutional” distinction:

(2) WC |= utter→ promise and WC 6|= [BR](utter→ promise)

Using the syntax of the modal context logic Cxt developed in [7, 8], Formula 2
could be expressed in the object-language as follows:

(3) [C](utter→ promise) ∧ ¬[C][BR](utter→ promise)

where [C] denotes the context operator. A systematic study of the interaction of
logics Cxt and UpTo is left for future work.
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A Soundness and completeness of UpTo

Soundness is easily proven.

Theorem 3. (Soundness of UpTo) For any ϕ ∈ LUpTo, if `UpTo ϕ then |=UpTo ϕ.

Proof. It is well-known that inference rules MP and N preserve validity on any
class of frames, and that axioms T, 4 and 5 are valid on models built on equiva-
lence relations5. The validity of PO and of Bipart follows from Theorem 1.

As to completeness, we make use of the standard canonical model technique.

Lemma 1. Logic UpTo is strongly complete w.r.t. the class of UpTo-frames iff every
UpTo-consistent setΦ of formulae is satisfiable on some model built on an UpTo-frame.

Proof. From right to left we argue by contraposition. If UpTo is not strongly
complete w.r.t. the class then there exists a set of formulaeΦ∪ {ϕ} s.t.Φ |=UpTo ϕ
and Φ 0UpTo ϕ. It follows that Φ ∪ {¬ϕ} is UpTo-consistent but not satisfiable on
any UpTo-model. From left to right we argue per absurdum. Let us assume that
Φ ∪ {¬ϕ} is UpTo-consistent but not satisfiable in any sublanguage equivalent
model built on a frame in class UpTo. It follows that Φ |=UpTo ϕ and hence
Φ ∪ {¬ϕ} is not UpTo-consistent, which is impossible.

Now letMUpTo be the canonical model of logic UpTo in language LUpTo(P).
ModelMUpTo is the structure

〈
WUpTo, {RUpTo

P }P∈P,IUpTo
〉

where:

1. The set WUpTo is the set of all maximal UpTo-consistent sets.
2. The canonical relations {RUpTo

P }P∈P are defined as follows: for all w,w′ ∈
WUpTo, if for all formulae ϕ, ϕ ∈ w′ implies 〈P〉ϕ ∈ w, then wRUpTo

P w′.
3. The canonical interpretation IUpTo is defined by IUpTo(p) = {w ∈ WUpTo

| p ∈
w}.

5 See [2].
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We have now to prove the Existence and Truth Lemmata for logic UpTo.

Lemma 2. (Existence lemma) For all states in WUpTo, if 〈P〉ϕ ∈ w then there exists a
state w′ ∈WUpTo s.t. RUpTo

P (w,w′) and ϕ ∈ w′.

Proof. The claim is proven by construction. Assume 〈P〉ϕ ∈ w and let w′0 =
{ϕ} ∪ {ψ | [P]ψ ∈ w}. The set w′0 must be UpTo-consistent since otherwise there
would exist ψ1, . . . , ψm ∈ w′0 such that `UpTo (ψ1 ∧ . . . ∧ ψm) → ¬ϕ, from which
we obtain `UpTo ([P]ψ1 ∧ . . . ∧ [P]ψm) → [P]¬ϕ. Since [P]ψ1, . . . , [P]ψm ∈ w
we have that ¬〈P〉ϕ ∈ w, which contradicts our assumption. Therefore, w′0 is
UpTo-consistent and can be extended to a maximal UpTo-consistent set (for
Lindenbaum’s Lemma6). By construction, w′ contains ϕ and is such that for all
ψ, if [P]ψ ∈ w then w′ contains ψ. From this it follows RUpTo

P (w,w′) since, if this
was not the case, then there would exist a formula ψ′ s.t. ψ′ ∈ w′ and 〈P〉ψ′ < w.
Since w is maximal UpTo-consistent, [P]¬ψ′ ∈ w and hence ¬ψ′ ∈ w′, which
contradicts the UpTo-consistency of w′.

Lemma 3. (Truth lemma) For any formulaϕ ∈ LUpTo(P) and w ∈WUpTo:MUpTo,w |=
ϕ iff ϕ ∈ w.

Proof. The claim is proven by induction on the complexity of ϕ. The Boolean
case follows by the properties of maximal UpTo-consistent sets. As to the modal
case, it follows from the definition of the canonical relations RUpTo

P and Lemma
2.

Everything is now put into place to prove the strong completeness of UpTo.

Theorem 4. (Strong completeness of UpTo) For any formula ϕ ∈ LUpTo(P) and set of
formulae Φ, if Φ `UpTo ϕ then Φ |=UpTo ϕ.

Proof. By Proposition 1, given an UpTo-consistent setΦ of formulae, it suffices to
find a model state pair (M,w) such that: (a)M,w |= Φ, (b)M is an UpTo-model.
Let MUpTo =

〈
WUpTo, {RUpTo

P }P∈2P ,IUpTo
〉

be the canonical model of UpTo, and
let Φ+ be any maximal UpTo-consistent set in WUpTo extending Φ. By Lemma
3 it follows thatMUpTo, Φ+

|= Φ, which proves (a). To prove (b), we show that
M

UpTo is s.t.: (b.1) the frame on whichM is based is an UpTo-frame; and (b.2)
for all p ∈ P, RUpTo

{p} (w,w′) iff it is the case that p ∈ w iff p ∈ w′. As to (b.1), it is

well-known that axioms T, 4 and 5 force the relations RUpTo
P to be equivalence

relations. It remains to be shown that if P ⊆ Q then RUpTo
Q ⊆ RUpTo

P . Assume

RUpTo
Q (w,w′). It follows that for all ϕ, if ϕ ∈ w′ then 〈Q〉ϕ ∈ w and hence, by the

contrapositive of axiom PO, 〈P〉ϕ ∈ w. Therefore, RUpTo
P (w,w′). As to (b.2), form

left to right. Assume RUpTo
{p} (w,w′). For axioms T and Bipart, p ∈ w iff p ∈ w′.

From right to left, we assume p ∈ w iff p ∈ w′. If p ∈ w′, by axioms T and Bipart,
〈{p}〉p ∈ w and therefore RUpTo

{p} (w,w′). This completes the proof.

6 See [2].
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