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A note on Burer’s copositive representation

of mixed-binary QPs

Immanuel M. Bomze∗

Florian Jarre△

∗ University of Vienna, Austria

△ University of Düsseldorf, Germany

Abstract

In an important paper, Burer [2] recently showed how to refor-
mulate general mixed-binary quadratic optimization problems (QPs)
into copositive programs where a linear functional is minimized over
a linearly constrained subset of the cone of completely positive ma-
trices. In this note we interpret the implication from a topological
point of view, showing that the Minkowski sum of the lifted feasi-
ble set and the lifted recession cone gives exactly the closure of the
former. We also discuss why feasibility of the copositive program
implies feasibility of the original mixed-binary QP, which can be
derived from the arguments in [2] without any further condition.



1 Introduction and preliminaries

In an important paper, Burer [2] recently showed how to reformulate general
mixed-binary quadratic optimization problems (QPs) into copositive programs
where a linear functional is minimized over a linearly constrained subset of the
cone of completely positive matrices. By this method, the complexity of a possi-
bly non-convex objective in the QP is shifted entirely to the feasibility question
whether or not a symmetric matrix Y is completely positive, i.e., whether it ad-
mits a factorization Y = FF⊤ where F is a possibly rectangular matrix with no
negative entries. In order to establish full equivalence of the programs instead of
having just another conic relaxation, [2] employs the following assumption: if we
relax the binarity condition on a variable xj in the usual linear relaxation way,
namely 0 ≤ xj ≤ 1, then these conditions are already implied by the (other)
linear constraints on x.

Let a symmetric matrix Q ∈ R
n×n, a vector c ∈ R

n, a matrix

A =







a⊤
1

...
a⊤

m






∈ R

m×n,

a vector b ∈ R
m, and a subset B ⊆ {1, . . . , n} be given.

We consider mixed binary quadratic programs of the form

(P) min
{

f(x) := x⊤Qx + 2c⊤x : Ax = b , x ∈ R
n
+ , xB ∈ {0, 1}|B|

}

.

Note that the polyhedron
{

x ∈ R
n
+ : Ax = b

}

almost coincides with the linearly
relaxed feasible set of (P); only the constraints xj ≤ 1 for j ∈ B are missing.
Burer [2] defines a key condition, requiring the following implication:

Ax = b , x ≥ o =⇒ xj ≤ 1 for all j ∈ B . (1)

In other words, the constraints xj ≤ 1 are redundant for the linear relaxation.
In [2] it is also pointed out that the key condition can easily be satisfied by
introducing |B| additional slack variables sj , j ∈ B.

Let C∗ denote the cone of completely positive symmetric (n + 1) × (n + 1)
matrices, see e.g. [1]. The completely positive relaxation of (P) is then given by
(C)

min{Q • X + 2c⊤x : (x, X) ∈ R
n × R

n×n ,

[

1 x⊤

x X

]

∈ C∗ ,

a⊤
i x = bi , a⊤

i Xai = b2
i (1 ≤ i ≤ m) , xj = Xjj (j ∈ B)} .

We denote the feasible sets of (P) and (C) by feas(P) and feas(C), and

feas
+(P) := conv

({[

1 x⊤

x xx⊤

]

: x ∈ feas(P)

})

,

feas
+(C) :=

{[

1 x⊤

x X

]

: (x, X) ∈ feas(C)

}

.

While feas
+(C) is just a linear reparametrization of feas(C), the relation between

the sets feas
+(P) and feas(P) is a bit more involved. Anyhow, it is evident by

convexity that
feas

+(P) ⊆ feas
+(C) . (2)
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In [2] it is beforehand assumed that (P) is feasible. Obviously this implies
feasibility of (C). Somehow less explicit, the proofs in [2] also establish the
converse, so that full equivalence of the two programs (P) and (C) is established.
Since it may be not immediate that the arguments in [2] do not need any of the
conditions (1) or (4) below, we provide an alternative, probably more explicit
argument:

Suppose (x̂, X̂) ∈ feas(C). Then x̂ ∈ M =
{

x ∈ R
n
+ : Ax = b

}

, so M 6= ∅.
If B = ∅, we are done. Else, for j ∈ B and (x, X) ∈ feas(C) the determinant

of

[

1 xj

xj Xjj

]

is not negative since

[

1 x⊤

x X

]

is positive-semidefinite. Thus

xj = Xjj ≥ x2
j , and xj ≥ 0 implies xj ≤ 1 for j ∈ B. Therefore we may and

do add the constraints xj ≤ 1 for j ∈ B to both (P) and (C), without changing
the feasibility question as obviously also

M ′ := {x ∈ M : xj ≤ 1 for all j ∈ B} ⊆ feas(P) .

Next denote by ej the j-th column of the n × n identity matrix and define
SB := −

∑

j∈B eje
⊤
j as well as eB := 1

2

∑

j∈B ej ∈ R
n. Then

fB(x) := x⊤SBx + 2e⊤Bx =
∑

j∈B

xj(1 − xj) ≥ 0 for all x ∈ M ′

with equality if and only if xj ∈ {0, 1} for all j ∈ B. So the QP (without binary
variables) γB := min {fB(x) : x ∈ M ′} satisfies (1) since this condition is void,
and Burer’s result [2, Theorem 2.6] shows that γB equals the minimal value of
the respective copositive program

γB = min
{

2e⊤Bx + SB • X : (x, X) ∈ feas
+(C) , xj ≤ 1 (j ∈ B)

}

.

However, as established above, (x̂, X̂) is feasible also to this copositive program,
hence γB ≤

∑

j∈B x̂j −
∑

j∈B X̂jj = 0. On the other hand, we know γB =
min {fB(x) : x ∈ M ′} ≥ 0 by construction. So γB = 0 = fB(x̄) for some x̄ ∈
M ′, and therefore x̄ ∈ feas(P).

In the sequel, the study of the recession cone

L∞ := {d ∈ R
n
+ : Ad = o} , and L+

∞ := conv

({[

0 o⊤

o dd⊤

]

: d ∈ L∞

})

will be important. Burer shows in [2] that the key condition (1) implies

feas
+(C) = feas

+(P) + L+
∞ . (3)

To complement this result we define a weak key condition:

Ax = b , x ≥ o =⇒ xj are bounded for all j ∈ B . (4)

and show that under the weak key condition the set on the right-hand side in (3)

equals the closure feas
+(P) of feas

+(P):

feas
+(P) = feas

+(P) + L+
∞ . (5)

By the same arguments that led to [2, Property (2)], we observe that

under assumption (4), we have dj = 0 for all j ∈ B and d ∈ L∞ . (6)
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Indeed, choose any x ∈ feas(P) 6= ∅ and any d ∈ L∞. Then A(x + γd) = b and
x + γd ∈ R

n
+ for all γ > 0, so the weak key condition (4) implies for j ∈ B that

xj + γdj ≤ K for some K > 0. Since this holds for arbitrarily large γ > 0, we
obtain dj = 0.

The differences between (1) and (4) may become more apparent when real-
izing that the latter can be enforced by adding a single slack variable s ≥ 0 and
a single linear constraint of the form

∑

j∈B

xj + s = |B| ,

rather than introducing |B| slack variables to enforce (1). Already for medium-
sized conic optimization problems, the number of variables and constraints be-
come a crucial problem characteristic from the view of performance of interior-
point algorithms, so that results like (4) =⇒ (5) may be of interest.

2 The results

Proposition 2.1 If (P) is feasible, the weak key condition (4) implies

feas
+(P) = feas

+(P) + L+
∞ .

Proof. Recall from [3] that a convex polyhedron not containing a straight line
can be written as the convex combination of its extreme points and its extreme
rays. Now the extreme rays of feas(P) are contained in L∞ independently of
the choice of xj ∈ {0, 1} for j ∈ B. For a fixed choice of v ∈ {0, 1}|B| the set
feas(P) ∩ {x ∈ R

n : xB = v} is a polyhedron, the extreme points of which are
bounded. Thus, the union of the extreme points of the finitely many polyhedra
obtained for all possible selections of xB ∈ {0, 1}|B| is also bounded: there is a
constant M > 0 such that ‖z‖ ≤ M for all such extreme points z. Hence, any
x ∈ feas(P) can be written as z+αd where ‖z‖ ≤ M and d ∈ L∞ with ‖d‖ = 1
and α ≥ 0. Next assume that

Ȳ :=

[

1 x̄⊤

x̄ X̄

]

∈ feas
+(P) .

Then, there exists a sequence

Yk :=

[

1 x⊤
k

xk Xk

]

⊆ feas
+(P) , k ∈ N ,

with Yk → Ȳ . By Caratheodory’s theorem, each Yk can be written as a convex
combination of at most n2 (in fact even fewer) rank-one-matrices

Yk =

n2

∑

r=1

λk,r

[

1
xk,r

] [

1
xk,r

]⊤

with λk,r ≥ 0,
∑

r λk,r = 1, and xk,r ∈ feas(P). By the preceeding considera-
tions, each xk,r can be written as

xk,r = zk,r + αk,rdk,r
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with ‖zk,r‖ ≤ M , dk,r ∈ L∞, ‖dk,r‖ = 1, and αk,r ≥ 0. The sequence
[

zk,1; zk,2; . . . ; zk,n2 ;dk,1;dk,2; . . . ;dk,n2

]

k∈N

in R
2n3

is bounded, and thus, it has accumulation points. By extracting a
suitable subsequence, we may and do assume without loss of generality that

zk,r → z̄r, dk,r → d̄r for 1 ≤ r ≤ n2.

Note that

Yk =

n2

∑

r=1

λk,r

[

1
zk,r + αk,rdk,r

] [

1
zk,r + αk,rdk,r

]⊤

=

n2

∑

r=1

λk,r

[

1
zk,r

] [

1
zk,r

]⊤

+ λk,rα
2
k,r

[

0
dk,r

] [

0
dk,r

]⊤

+ λk,rαk,r

(

[

1
zk,r

] [

0
dk,r

]⊤

+

[

0
dk,r

] [

1
zk,r

]⊤
)

.

From ‖dk,r‖ = 1, nonnegativity of dk,r, zk,r, and boundedness of Yk we deduce
that the products λk,rα

2
k,r are bounded for 1 ≤ r ≤ n2. By considering a

subsequence again, if necessary, we may therefore assume that also

λk,r → λ̄r and λk,rα
2
k,r → βr for 1 ≤ r ≤ n2.

This also implies

λk,rαk,r =
√

λk,r(λk,rα
2
k,r) →

√

λ̄rβr for 1 ≤ r ≤ n2 .

Note that λ̄r ≥ 0, and
∑

r λ̄r = 1. Taking the limit in the above decomposition
of Yk we obtain

Yk →
n2

∑

r=1

λ̄r

[

1
z̄r

] [

1
z̄r

]⊤

+ βr

[

0
d̄r

] [

0
d̄r

]⊤

+

√

λ̄rβr

(

[

1
z̄r

] [

0
d̄r

]⊤

+

[

0
d̄r

] [

1
z̄r

]⊤
)

=
∑

r: λ̄r>0

λ̄r

[

1

z̄r +
√

βr

λ̄r

d̄r

][

1

z̄r +
√

βr

λ̄r

d̄r

]⊤

+
∑

r: λ̄r=0

βr

[

0
d̄r

] [

0
d̄r

]⊤

∈ feas
+(P) + L+

∞ .

Thus, feas
+(P) ⊆ feas

+(P) + L+
∞. Now assume there was an element Ȳ ∈

(feas+(P) + L+
∞)\feas+(P). As feas

+(P) is closed, Ȳ has a positive distance

ε > 0 from feas
+(P). By definition, and using Caratheodory’s theorem again,

Ȳ is a convex combination of the form

Ȳ =

n2

∑

r=1

λr

(

[

1
zr

] [

1
zr

]⊤

+

[

0
dr

] [

0
dr

]⊤
)
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where zr ∈ feas(P) and dr ∈ L∞, and λ ≥ o with
∑

λr = 1. Note that we

may use the same scalar λr for

[

1
zr

] [

1
zr

]⊤

and for

[

0
dr

] [

0
dr

]⊤

in the

above representation because L∞ is a cone. Since feas
+(P) is convex we may in

fact assume that Ȳ has the form

Ȳ =

[

1
z̄

] [

1
z̄

]⊤

+

[

0
d̄

] [

0
d̄

]⊤

where z̄ ∈ feas(P) and d̄ ∈ L∞. Note that d̄j = 0 for all j ∈ B by property (6).
Thus, z̄ + αd̄ ∈ feas(P) for all α ≥ 0, and therefore

Vα :=

[

1
z̄

] [

1
z̄

]⊤

+ αW + α2

[

0
d̄

] [

0
d̄

]⊤

=

[

1
z̄ + αd̄

] [

1
z̄ + αd̄

]⊤

∈ feas
+(P) ,

where W =

[

1
z̄

] [

0
d̄

]⊤

+

[

0
d̄

] [

1
z̄

]⊤

. Next observe for α ≥ 1 that

Ȳ (α) := Ȳ +
1

α
W =

[

(1 −
1

α2
)V0 +

1

α2
Vα

]

∈ feas
+(P) .

The limit limα→∞ Ȳ (α) = Ȳ is in conflict with dist(feas+(P), Ȳ ) ≥ ε. ✷

While the preceding observation sheds some light on the geometric struc-
ture of problem (P), we still need to relate the sets feas

+(P) and feas
+(C), to

construct an optimal solution of program (P) from a solution of program (C).
To this end, we establish the recession result parallel to [2, Lemma 2.7] which
holds also under the weaker condition (4):

Proposition 2.2 If (P) is feasible and bounded, the weak key condition (4)
implies that Q is L∞-copositive, i.e.,

d⊤Qd ≥ 0 for all d ∈ L∞ . (7)

To be more precise, denote by {w1, . . . ,ws} the extremal points of feas(P) 6= ∅
as in the preceding proof; then boundedness of (P) is equivalent to

{

1

2
∇f(wr) = c + Qwr ∈ [KQ]

∗
for all r ∈ {1, . . . , s} ; and

Q is L∞-copositive,

where KQ =
{

d ∈ L∞ : d⊤Qd = 0
}

contains the recession directions of zero
curvature.

Proof. Choose any x = z + δd ∈ feas(P) with z ∈ conv(w1, . . . ,ws), δ ≥ 0
and d ∈ L∞. Then (6) implies dj = 0 for all j ∈ B so that zj = xj ∈ {0, 1}
for all j ∈ B. Hence also y = z + γd ∈ feas(P) for all (arbitrarily large) γ > 0.
Hence the relation

(z + γd)⊤Q(z+ γd) + 2c⊤(z + γd) = γ2d⊤Qd+ 2γd⊤(c+ Qz) + z⊤Qz+ 2c⊤z
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implies the result. ✷

We close by rewriting [2, Theorem 2.6] in terms of closure, to supply a
topological condition by which the main result may be more transparent.

Theorem 2.1 Under the key condition (1), we have

feas
+(P) = feas

+(C) . (8)

By consequence, (P) and (C) are equivalent: the optimal values of both programs
coincide, and an optimal solution (x∗, X∗) to (C) encodes an optimal solution
to (P) in the sense that x∗ is in the convex hull of optimal solutions to (P).

Proof. Obviously we only have to deal with the feasible case. Since feas(C)
is closed and convex, its linear image feas

+(C) is closed. Hence, by (2) we have

always feas
+(P) ⊆ feas

+(C) and it suffices to show

feas
+(P) ⊇ feas

+(C) (9)

in order to establish (8). If (9) were wrong, then there were a point in feas
+(C)

that could be separated by a hyperplane from feas
+(P). Now the infimum of any

linear function over feas
+(C) coincides with the infimum over feas

+(P). Indeed,
it is clear that the latter is never smaller than the former. On the other hand,
if the latter is finite, then (7) applies (to the separation functional rather than
to the given objective, of course), and the arguments in [2, Theorem 2.6]1apply:
they show equality of the two infima, in contradiction to the properties of a
separating hyperplane. ✷

Note that boundedness of (P) is not an issue here: of course, if (P) is com-
pact, then feas

+(P) is also compact, as the convex hull of the continuous image
of a compact set [3]. However, despite of Proposition 2.2, the weak key con-
dition (4) does still not suffice to prove (8) or (9). In fact, there are cases

where strict inclusion feas
+(P) ⊂ feas

+(C) can hold even if feas(P) is finite, so
that feas

+(P) is a polytope and therefore compact. We owe this observation
to an anonymous referee of an earlier version pointing out an example that
satisfies (4), but for which the optimal objective values of (P) and (C) differ.
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