A Note on Characterization of Prime Ideals of Γ -Semigroups in terms of Fuzzy Subsets

Sujit Kumar Sardar

Department of Mathematics, Jadavpur University Kolkata-700032, India sksardarjumath@gmail.com

Samit Kumar Majumder

Department of Mathematics, Jadavpur University Kolkata-700032, India samitmathalg@yahoo.co.in

Debabrata Mandal ¹

Department of Mathematics, Jadavpur University Kolkata-700032, India debabrata.687@rediffmail.com

Abstract

In this paper the notion of fuzzy prime ideal in Γ -semigroups has been introduced and studied. Relationship between prime ideals of a Γ -semigroup and that of its operator semigroups have been obtained which are used to revisit analogous results on ideals of Γ -semigroups and its operator semigroups.

Mathematics Subject Classification[2000]: 20M12, 03F55, 08A72

Keywords: Γ-Semigroup, Fuzzy prime ideal, Left (resp. right) operator semigroup

¹The researh is funded by CSIR, INDIA

1 Introduction

Γ-semigroup was introduced by Sen and Saha[8] as a generalization of semigroup and ternary semigroup. Many results of semigroups have been extended to Γ -semigroups directly and via operator semigroups [1, 2, 3] of a Γ -semigroup. Fuzzy semigroups have been introduced by Kuroki[4] as a generalization of classical semigroups, using the concept of fuzzy set introduced by Zadeh[9]. Since then many authors have studied semigroups in terms of fuzzy sets. Motivated by Kuroki[4], Mustafa et all[5] we have initiated the study of Γ -semigroups in terms of fuzzy sets [7]. This paper is a continuation of our study of Γ -semigroups in terms of fuzzy sets. We introduce here the notion of fuzzy prime ideals in Γ -semigroups. They are found to satisfy characteristic function criterion and level subset criterion. As we did for fuzzy ideals of a Γ -semigroup in [7], in order to make operator semigroups to work, we establish here various relationships between fuzzy prime ideals of a Γ -semigroup and that of its operator semigroups. Among other results we obtain an inclusion preserving bijection between the set of all prime ideals of a Γ -semigroup (not necessarily with unities) and that of its operator semigroups. As an immediate application of this we obtain a new proof of an important result of Γ -semigroup.

2 Preliminaries

We recall the following definitions and results which will be used in the sequel.

Definition 2.1 [9] A fuzzy subset of a non-empty set X is a function $\mu: X \to [0,1]$.

Definition 2.2 [3] Let S and Γ be two non-empty sets. S is called a Γ -semigroup if there exist mappings from $S \times \Gamma \times S$ to S, written as $(a, \alpha, b) \longrightarrow a\alpha b$, and from $\Gamma \times S \times \Gamma$ to Γ , written as $(\alpha, a, \beta) \longrightarrow \alpha a\beta$ satisfying the following associative laws $(a\alpha b)\beta c = a(\alpha b\beta)c = a\alpha(b\beta c)$ and $\alpha(a\beta b)\gamma = (\alpha a\beta)b\gamma = \alpha a(\beta b\gamma)$ for all $a, b, c \in S$ and for all $\alpha, \beta, \gamma \in \Gamma$.

Definition 2.3 [7] A non-empty fuzzy subset μ of a Γ -semigroup S is called a fuzzy left ideal(right ideal) of S if $\mu(x\gamma y) \geq \mu(y)(resp.\ \mu(x\gamma y) \geq \mu(x))$ $\forall x,y \in S, \forall \gamma \in \Gamma$.

Definition 2.4 [7] A non-empty fuzzy subset μ of a Γ -semigroup S is called a fuzzy ideal of S if it is both fuzzy left ideal and fuzzy right ideal of S.

Definition 2.5 [7] Let μ be a fuzzy subset of a set S. Then for $t \in [0,1]$ the set $\mu_t = \{x \in S : \mu(x) \geq t\}$ is called t-level subset or simply level subset of μ .

Proposition 2.6 [7] Let I be a non-empty subset of a Γ -semigroup S and μ_I be the characteristic function of I, then I is a left ideal(resp. right ideal, ideal) of S if and only if μ_I is a fuzzy left ideal(resp. fuzzy right ideal, fuzzy ideal) of S.

Proposition 2.7 [7] A non-empty fuzzy subset μ in a Γ -semigroup S is a fuzzy ideal iff for any $t \in [0,1]$, the t-level subset of μ (if non-empty), is an ideal of S.

Definition 2.8 [2] Let S be a Γ -semigroup. An ideal P of S is said to be prime if, for any two ideals A and B of S, $A\Gamma B \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$.

Theorem 2.9 Let I be an ideal of a Γ -semigroup S. Then the following are equivalent.

- (i) I is prime.
- (ii) For $x, y \in S$, $x\Gamma S\Gamma y \subseteq I \Rightarrow x \in I$ or $y \in I$.
- (iii) For $x, y \in S$, $x\Gamma y \subseteq I \Rightarrow x \in I$ or $y \in I$.

Proof. By Theorem 3.4[2] $(i) \Rightarrow (ii)$.

$$(ii) \Rightarrow (iii)$$

Let us suppose that (ii) holds and $x\Gamma y \subseteq I$. Then $x\Gamma s\Gamma y \subseteq I$ as $x\Gamma s\Gamma y \subseteq x\Gamma y$ Hence by (ii), $x \in I$ or $y \in I$.

$$(iii) \Rightarrow (i)$$

Let us suppose that (iii) holds. Let for two ideals A, B of $S, A\Gamma B \subseteq I$. If possible, suppose $A \not\subseteq I$ or $B \not\subseteq I$. Then $x \in A$ and $y \in B$ such that $x \not\in I$ and $y \not\in I$. This implies that $x\Gamma y \subseteq I$ with $x \not\in I$, $y \not\in I$. This is a contradiction to (iii). Hence either $A \subseteq I$ or $B \subseteq I$. Consequently I is a prime ideal of S.

3 Fuzzy Prime Ideal

Definition 3.1 A fuzzy ideal μ of a Γ -semigroup S is called fuzzy prime ideal if $\inf_{\gamma \in \Gamma} \mu(x\gamma y) = \max\{\mu(x), \mu(y)\} \ \forall x, y \in S$.

Example: Let S be the set of all 1×2 matrices over GF_2 (the finite field with two elements) and Γ be the set of all 2×1 matrices over GF_2 . Then S is a Γ -semigroup where $a\alpha b$ and $\alpha a\beta(a,b\in S)$ and $\alpha,\beta\in\Gamma$) denote the usual matrix product. Let $\mu:S\to[0,1]$ be defined by

$$\mu(x) = \begin{cases} 0.3 & \text{if } a = (0,0) \\ 0.2 & \text{otherwise} \end{cases}$$

Then μ is a fuzzy prime ideal of S.

Theorem 3.2 Let S be a Γ -semigroup and $\emptyset \neq I \subseteq S$. Then the following are equivalent.

- (i) I is a prime ideal of S.
- (ii) The characteristic function μ_I of I is a fuzzy prime ideal of S.

Proof. $(i) \Rightarrow (ii)$

Let I be a prime ideal of S and μ_I be the characteristic function of I. Since $I \neq \phi$, μ_I is non-empty. Let $x,y \in S$. Suppose $x\Gamma y \subseteq I$. Then $\mu_I(x\gamma y) = 1$ for $\gamma \in \Gamma$. Hence $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 1$. Now I being prime, $x \in I$ or $y \in I$ (cf. Theorem 2.9). Hence $\mu_I(x) = 1$ or $\mu_I(y) = 1$ which gives $\max\{\mu_I(x), \mu_I(y)\} = 1$. Thus we see that $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = \max\{\mu_I(x), \mu_I(y)\}$. Now suppose that $x\Gamma y \nsubseteq I$. Then for $\gamma \in \Gamma$, $x\gamma y \nsubseteq I$ which means that $\mu_I(x\gamma y) = 0$. Consequently, $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 0$. Now since I is a prime ideal of S, $x \notin I$ and $y \notin I$. Hence $\mu_I(x) = 0$ and $\mu_I(y) = 0$. Consequently, $\max\{\mu_I(x), \mu_I(y)\} = 0$. Thus we see that in this case also $\inf_{\gamma \in \Gamma} \mu(x\gamma y) = \max\{\mu_I(x), \mu_I(y)\}$.

 $(ii) \Rightarrow (i)$

Let μ_I be a fuzzy prime ideal of S. Then μ_I is a fuzzy ideal of S. So by Proposition 2.6, I is an ideal of S. Let $x, y \in S$ such that $x\Gamma y \subseteq I$. Then $\mu_I(x\gamma y) = 1$. Hence $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 1$. Let $x \notin I$ and $y \notin I$. Then $\mu_I(x) = 0 = \mu_I(y)$, which means $\max\{\mu_I(x), \mu_I(y)\} = 0$. This implies that $\inf_{\gamma \in \Gamma} \mu_I(x\gamma y) = 0$. Thus we get a contradiction. Hence $x \in I$ or $y \in I$. Thus we see that I is a prime ideal of S(cf). Theorem 2.9).

Theorem 3.3 Let S be a Γ -semigroup and μ be a non-empty fuzzy subset of S. Then the following are equivalent.

- (i) μ is fuzzy prime ideal of S
- (ii) For any $t \in [0, 1]$ the t-level subset of μ (if it is non-empty) is a prime ideal of S.

Proof. $(i) \Rightarrow (ii)$

Let μ be a fuzzy prime ideal of S. Let $t \in [0,1]$ such that μ_t is non-empty. Let for $x, y \in S$, $x\Gamma y \subseteq \mu_t$. Then $\mu(x\gamma y) \ge t \ \forall \gamma \in \Gamma$. So $\inf_{\gamma \in \Gamma} \mu(x\gamma y) \ge t$. Since μ is a fuzzy prime ideal, it follows that $\max\{\mu(x), \mu(y)\} \ge t$. So $\mu(x) \ge t$ or $\mu(y) \ge t$. Hence $x \in \mu_t$ or $y \in \mu_t$. So μ_t is a prime ideal of S(cf). Theorem 2.9). $(ii) \Rightarrow (i)$

Let every non-empty level subset μ_t of μ be a prime ideal of S. Let $x, y \in S$. Let $\inf_{\gamma \in \Gamma} \mu(x\gamma y) = t$ (we note here that since $\mu(x\gamma y) \in [0,1] \ \forall \gamma \in \Gamma$, $\inf_{\gamma \in \Gamma} \mu(x\gamma y)$ exists). Then $\mu(x\gamma y) \geq t \ \forall \gamma \in \Gamma$. So $x\gamma y \in \mu_t \ \forall \gamma \in \Gamma$. So μ_t is non-empty and $x\Gamma y \subseteq \mu_t$. Since μ_t is a prime ideal of S, $x \in \mu_t$ or $y \in \mu_t(cf)$. Theorem 2.9). So $\mu(x) \geq t$ or $\mu(y) \geq t$. So $\max\{\mu(x), \mu(y)\} \geq t$, i.e., $\max\{\mu(x), \mu(y)\} \geq t$ $\inf_{\gamma \in \Gamma} \mu(x\gamma y)......(1). \text{ Again by Proposition 2.7, } \mu \text{ is a fuzzy ideal of } S. \text{ So } \forall \gamma \in \Gamma, \ \mu(x\gamma y) \geq \mu(x) \text{ and } \mu(x\gamma y) \geq \mu(y). \text{ So } \mu(x\gamma y) \geq \max\{\mu(x), \mu(y)\} \\ \forall \gamma \in \Gamma. \text{ Hence } \inf_{\gamma \in \Gamma} \mu(x\gamma y) \geq \max\{\mu(x), \mu(y)\}......(2). \text{ Combining (1) and (2), } \\ \text{thus } \inf_{\gamma \in \Gamma} \mu(x\gamma y) = \max\{\mu(x), \mu(y)\}. \text{ Hence } \mu \text{ is a fuzzy prime ideal of } S. \blacksquare$

4 Corresponding Fuzzy Prime Ideals

Unless otherwise stated, throughout this section S denotes a Γ -semigroup and L, R its left and right operator semigroups respectively.

Definition 4.1 [2] Let S be a Γ -semigroup. Let us define a relation ρ on $S \times \Gamma$ as : $(x,\alpha)\rho(y,\beta)$ if and only if $x\alpha s = y\beta s$ for all $s \in S$ and $\gamma x\alpha = \gamma y\beta$ for all $\gamma \in \Gamma$. Then ρ is an equivalence relation. Let $[x,\alpha]$ denote the equivalence class containing (x,α) . Let $L = \{[x,\alpha] : x \in S, \alpha \in \Gamma\}$. Then L is a semigroup with respect to the multiplication defined by $[x,\alpha][y,\beta] = [x\alpha y,\beta]$. This semigroup L is called the left operator semigroup of the Γ -semigroup S.

Dually the right operator semigroup R of Γ -semigroup S is defined where the multiplication is defined by $[\alpha, a][\beta, b] = [\alpha a \beta, b]$.

Definition 4.2 For a fuzzy subset μ of R we define a fuzzy subset μ^* of S by $\mu^*(a) = \inf_{\gamma \in \Gamma} \mu([\gamma, a])$, where $a \in S$. For any subset σ of S we define a fuzzy subset $\sigma^{*'}$ of R by $\sigma^{*'}([\alpha, a]) = \inf_{s \in S} \sigma(s\alpha a)$, where $[\alpha, a] \in R$. For a fuzzy subset δ of L, we define a fuzzy subset δ^+ of S by $\delta^+(a) = \inf_{\gamma \in \Gamma} \delta([a, \gamma])$ where $a \in S$. For any fuzzy subset η of S we define a fuzzy subset $\eta^{+'}$ of L by $\eta^{+'}([a, \alpha]) = \inf_{s \in S} \eta(a\alpha s)$, where $[a, \alpha] \in L$.

Lemma 4.3 [7] If μ is a fuzzy subset of R, then $(\mu_t)^* = (\mu^*)_t$ where $t \in Im(\mu)$, provided the sets are non-empty.

Lemma 4.4 [7] If σ is a fuzzy subset of S, then $(\sigma_t)^{*'} = (\sigma^{*'})_t$ where $t \in Im(\sigma)$, provided the sets are non-empty.

Proposition 4.5 Suppose μ is a fuzzy prime ideal of R. Then μ^* is a fuzzy prime ideal of S.

Proof. Since μ is a fuzzy prime ideal of R, μ_t is a prime ideal of R[6] $\forall t \in Im(\mu)$. Hence $(\mu_t)^*$ is a prime ideal of S[2]. Now $(\mu_t)^*$ and $(\mu^*)_t$ are non-empty. Hence $(\mu_t)^* = (\mu^*)_t(cf)$. Lemma 4.3). This gives $(\mu^*)_t$ is a prime ideal of S for all $t \in Im(\mu)$. Hence μ^* is a fuzzy prime ideal of S(cf). Theorem 3.3).

Proposition 4.6 Suppose σ is a fuzzy prime ideal of S. Then $\sigma^{*'}$ is a fuzzy prime ideal of R.

Proof. Since σ is a fuzzy prime ideal of S, σ_t is a prime ideal of $S \ \forall t \in Im(\sigma)(cf. \text{ Theorem 3.3})$. Hence $(\sigma_t)^{*'}$ is a prime ideal of R[2]. Also $(\sigma_t)^{*'}$ and $(\sigma^*)_t$ are non-empty. So $(\sigma_t)^{*'} = (\sigma^{*'})_t(cf. \text{ Lemma 4.4}), (\sigma^{*'})_t$ is a prime ideal of R for all $t \in Im(\mu)$. Consequently $\sigma^{*'}$ is a fuzzy prime ideal of R[6].

Remark: The left operator analogous of the above two propositions are also true.

Theorem 4.7 Let S be a Γ -semigroup and R be its right operator semigroup. Then there exist an inclusion preserving bijection $\mu \mapsto \mu^{*'}$ between the set of all fuzzy prime ideals of R and set of all fuzzy prime ideals of S, where μ is a fuzzy prime ideal of R.

Proof. Let $x \in S$. Then $(\mu^{*'})^*(x) = \inf_{\alpha \in \Gamma} \mu^{*'}[\alpha, x] = \inf_{\alpha \in \Gamma s \in S} \mu(s\alpha x) \ge \mu(x)$ (since μ is a fuzzy ideal). Again for $x \in S$, $(\mu^{*'})^*(x) = \inf_{\alpha \in \Gamma s \in S} \mu(s\alpha x) = \inf_{s \in S\alpha \in \Gamma'} \mu(s\alpha x) = \inf_{s \in S\alpha \in \Gamma'} (\max\{\mu(s), \mu(x)\})$ (since μ is a fuzzy prime ideal) $\le \max\{\mu(x), \mu(x)\} = \mu(x)$. Thus we see that $(\mu^{*'})^* = \mu$. Hence the mapping is one-one. Now for $[\alpha, x] \in R$, $(\mu^*)^{*'}[\alpha, x] = \inf_{s \in S} \mu^*(s\alpha x) = \inf_{s \in S\beta \in \Gamma} \mu([\beta, s\alpha x]) = \inf_{s \in S\beta \in \Gamma} \mu([\beta, s][\alpha, x]) \ge \mu[\alpha, x]$. Hence $\mu \subseteq (\mu^*)^{*'}$. Since μ is a fuzzy prime ideal, $\mu([\alpha, x], [\beta, s]) = \max((\mu[\alpha, x], [\beta, s])) \ \forall s \in S$ and $\forall \beta \in \Gamma$. Hence for s = x and $\beta = \alpha$, $\mu([\alpha, x], [\beta, s]) = \mu[\alpha, x]$. This together with the relation $(\mu^*)^{*'}[\alpha, x] = \inf_{s \in S\beta \in \Gamma} \mu([\alpha, x], [\beta, s])$ gives $(\mu^*)^{*'}[\alpha, x] \le \mu[\alpha, x]$ for all $[\alpha, x] \in R$. This means $(\mu^*)^{*'} \subseteq \mu$. Thus we see that $\mu = (\mu^*)^{*'}$. This proves that the mapping is onto. Now let $\mu_1, \mu_2 \in FI(S)$ be such that $\mu_1 \subseteq \mu_2$. Then for all $[\alpha, x] \in R$, $\mu_1^{*'}([\alpha, x]) = \inf_{s \in S} \mu_1(s\alpha x) \le \inf_{s \in S} \mu_2(s\alpha x) = \mu_2^{*'}([\alpha, x])$. Thus $\mu_1^{*'} \subseteq \mu_2^{*'}$. Similarly we can show that if $\mu_1 \subseteq \mu_2$ where $\mu_1, \mu_2 \in FI(R)(FLI(R))$ then $\mu_1^* \subseteq \mu_2^*$. Hence $\mu \mapsto \mu_1^{*'}$ is an inclusion preserving bijection.

Remark: Similar result holds for the Γ -semigroup S and the left operator semigroup L of S.

Now we establish the following two lemmas to deduce the inclusion preserving bijections between the set of all prime ideals of a Γ -semigroup and that of its operator semigroups with the fuzzy notions of Γ -semigroups.

Lemma 4.8 Let I be an ideal, μ a fuzzy ideal of a Γ -semigroup S and R the right operator semigroup of S. Then $(\mu_I)^{*'} = \mu_{I^{*'}}$, where μ_I is the characteristic function of I.

Proof. Let $[\beta,y] \in R$. Then $(\mu_I)^{*'}([\beta,y]) = \inf_{s \in S} \mu(s\beta y)$. Suppose $[\beta,y] \in I^{*'}$. Then $s\beta y \in I$ for all $s \in S$. Hence $\mu_I(s\beta y) = 1$ for all $s \in S$. This gives $\inf_{s \in S} \mu(s\beta y) = 1$ whence $(\mu_I)^{*'}([\beta,y]) = 1$. Also $\mu_{I^{*'}}([\beta,y]) = 1$. Hence $(\mu_I)^{*'}([\beta,y]) = \mu_{I^{*'}}([\beta,y])$. Suppose $[\beta,y] \notin I^{*'}$. Then for some $t \in S, t\beta y \notin I$. So $\mu_I(t\beta y) = 0$. This gives $\inf_{s \in S} \mu_I(s\beta y) = 0$ i.e., $(\mu_I)^{*'}([\beta,y]) = 0$. Again $\mu_{I^{*'}}([\beta,y]) = 0$. Thus in this case also $(\mu_I)^{*'}([\beta,y]) = \mu_{I^{*'}}([\beta,y])$. Hence $(\mu_I)^{*'} = \mu_{I^{*'}}$.

Similar is the proof of the following lemma.

Lemma 4.9 Let I be a (left) ideal of the right operator semigroup R of a Γ -semigroup S. Then $(\lambda_I)^* = \lambda_{I^*}$, where λ_I denotes the characteristic function of I.

Remark 4.10 Dually we can deduce for left operator semigroup L of the Γ semigroup S, $(i)(\lambda_I)^{+'} = \lambda_{I^{+'}}$, $(ii)(\lambda_I)^+ = \lambda_{I^+}$, where λ_I denotes the characteristic function of I.

Theorem 4.11 [2] Let S be a Γ -semigroup (not necessarily with unities). Then there exists an inclusion preserving bijection between the set of all prime ideals of S and that of its right operator semigroup R via the mapping $I \to I^*$.

Proof. Let us denote the mapping $I \to I^{*'}$ by ϕ . This is actually a mapping follows from dual of Lemma 3.12[2]. Now let $\phi(I_1) = \phi(I_2)$. Then $I_1^{*'} = I_2^{*'}$. This implies that $\lambda_{I_1^{*'}} = \lambda_{I_2^{*'}}$. (where λ_I is the characteristic function I.) Hence by Lemma 4.8, $(\lambda_{I_1})^{*'} = (\lambda_{I_2})^{*'}$. This together with Theorem 4.7 gives $\lambda_{I_1} = \lambda_{I_2}$ whence $I_1 = I_2$. Consequently ϕ is one-one. Let I be a prime ideal of R. Then its characteristic function λ_I is a fuzzy prime ideal of R. Hence by Theorem 4.7, $((\lambda_I)^*)^{*'} = \lambda_I$. This implies that $\lambda_{(I^*)^{*'}} = \lambda_I(cf)$. Lemmas 4.8 and 4.9). Hence $(I^*)^{*'} = I$ i.e., $\phi(I^*) = I$. Now since I^* is a prime ideal of S ([2]), it follows that ϕ is onto. Let I_1, I_2 be two prime ideals of S with $I_1 \subseteq I_2$. Then $\lambda_{I_1} \subseteq \lambda_{I_2}$. Hence by Theorem 4.7, we see that $(\lambda_{I_1})^{*'} \subseteq (\lambda_{I_2})^{*'}$ i.e., $\lambda_{I_1^{*'}} \subseteq \lambda_{I_2^{*'}}$ (cf. Lemma 4.8)which gives $I_1^{*'} \subseteq I_2^{*'}$.

Remark: The result similar to the above for the left operator semigroup L of the Γ -semigroup S can be deduced by the Remark 4.10 and Theorem 4.7.

Acknowledgement: We are grateful to Prof. Tapan Kumar Dutta, Department of Pure Mathematics, University of Calcutta, for his valuable suggestions and constant encouragement for this work.

References

- [1] N.C. Adhikari, Study of Some Problems Associated with Γ -Semigroups, Ph.D. Dissertation (University of Calcutta).
- [2] T.K. Dutta. and N.C. Adhikari, On Prime Radical of Γ-Semigroup, Bull. Cal. Math. Soc. 86 No.5(1994), 437-444.
- [3] T.K. Dutta. and N.C. Adhikari, On Γ-Semigroup with the right and left unities, *Soochow Jr. of Math.* Vol.19, No.4(1993), 461-474.
- [4] N. Kuroki, On Fuzzy Semigroups, *Information Sciences* **53**(1991), 203-236.
- [5] Uckun Mustafa, Mehmet Ali and Jun Young Bae, Intuitionistic Fuzzy Sets in Γ-Semigroups, Bull. Korean Math. Soc., 44(2007), No. 2, 359-367.
- [6] N. Kehayopulu, X.Y. Xie., M. Tsingelis, A Characterization of Prime and Semiprime Ideals of Groupoids in terms of Fuzzy Subsets, Soochow Jr. of Mathematics, Vol.27, No.2(2001), 139-144.
- [7] S.K. Sardar and S.K. Majumder, On Fuzzy Ideals in Γ -Semigroups, (to appear in International Jr. of Algebra).
- [8] M.K. Sen and N.K Saha, On Γ-Semigroups I, Bull. Calcutta Math. Soc. 78(1986), No.3, 180-186.
- [9] L.A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.

Received: March, 2009