http://www.rgnpublications.com

Proceedings of the Conference
Current Scenario in Pure and Applied Mathematics
December 22-23, 2016
Kongunadu Arts and Science College (Autonomous)
Coimbatore, Tamil Nadu, India

Research Article

A Note on Circular Distance Energy and Circular Distance Laplacian Energy

V. Kaladevi* and R. Bhuvaneshwari
Department of Mathematics, Bishop Heber College, Trichy 17, Tamilnadu, India
*Corresponding author: bhuvi950066@gmail.com

Abstract

The circular distance energy of a simple connected graph G is defined as the sum of the absolute values of its eigen values of the circular distance matrix of G. In this paper, the bounds for circular distance energy is obtained. Also the circular distance energy and the circular distance laplacian energy of certain graphs via circular distance energy are derived.

Keywords. Circular distance matrix; Circular distance energy; Circular distance laplacian energy MSC. 35J05

Received: January 8, 2017
Accepted: March 17, 2017
Copyright © 2017 V. Kaladevi and R. Bhuvaneshwari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let G be a connected graph of order n, with vertex set $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{n}\right\}$. Let $A=\left[a_{i j}\right]_{n \times n}$ be the adjacency matrix of G. The eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}$ of A assumed to be in non increasing order, are the eigen values of G. The Energy $E(G)$ of G is defined to be the sum of the absolute values of its eigen values of G [8, 14, 15].

The distance matrix of a graph G is defined as a square matrix $D=D(G)=\left[d_{i j}\right]$; where $d_{i j}$ is the distance between the vertices v_{i} and v_{j} in G. The eigen values of $D(G)$ are denoted by $\mu_{1}, \mu_{2}, \mu_{3}, \ldots, \mu_{n}$ and are said to be the D-eigen values of G. The distance energy $E_{D}=E_{D}(G)$ of a graph G is defined as the sum of the absolute values of $\mu_{i}[10,11,19]$.

The detour distance matrix of a graph G is the $n \times n$ matrix defined by $D D(G)=D D_{i j}$, where $D D_{i j}$ is the longest distance between the vertices v_{i} and v_{j} in G. The eigen values $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{n}$ are said to be the $D D$ eigen values of G. The detour distance energy $E_{D D}=$ $E_{D D}(G)$ of a graph G is defined as

$$
E_{D D}=E_{D D}(G)=\sum_{i=1}^{n}\left|\gamma_{i}\right| .
$$

The circular distance matrix of a graph G is defined by

$$
C D(G)=\left[d_{i j}^{0}\right],
$$

where $d_{i j}^{0}=D D\left(v_{i}, v_{j}\right)+d\left(v_{i}, v_{j}\right)$. Let $\phi_{C D}(\rho)$ denotes the characteristic polynomial of $C D(G)$. The eigen values of the circular distance matrix $C D(G)$ are denoted by $\rho_{1}, \rho_{2}, \rho_{3}, \ldots, \rho_{n}$ are said to be the $C D$ eigen values of G. Since the circular distance matrix is symmetric, its eigen values are real and it can be ordered as $\rho_{1} \geq \rho_{2} \geq \rho_{3} \cdots \geq \rho_{n}$. The eigen values $\rho_{1}, \rho_{2}, \rho_{3}, \ldots, \rho_{n}$ form the $C D$ spectrum spec $_{C D}(G)$. The circular distance energy $E_{C D}=E_{C D}(G)$ of a graph G is defined as

$$
E_{C D}=E_{C D}(G)=\sum_{i=1}^{n}\left|\rho_{i}\right| .
$$

The circular distance laplacian matrix of a connected graph G is defined as

$$
C D L(G)=\operatorname{diag}\left(T_{r}\right)-C D,
$$

where $\operatorname{diag}\left(T_{r}\right)$ denotes the diagonal matrix of the vertex transmissions in G. The eigen values of $C D L(G)$ are $\rho_{1}^{L}, \rho_{2}^{L} \rho_{3}^{L}, \ldots, \rho_{n}^{L}$ are the circular distance laplacian eigen values of G derived from the circular distance eigen values. The circular distance laplacian eigen values $C D L(G)$ form the $C D L$ spectrum $\operatorname{spec}_{C D L}(G)$. The circular distance laplacian energy is defined as the sum of the absolute values of $\rho_{i}^{L} \quad$ [16, 20].

In this paper, we give bounds for the circular distance energy. Further the circular distance energy of some graphs and circular distance laplacian energy derived from circular distance energy are computed.

Definition 1.1. The crown graph S_{n}^{0} for an integer $n \geq 2$ is the graph with vertex set $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}, v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ and edge set $\left\{u_{i} v_{j}: 1 \leq i, j \leq n, i \neq j\right\}$.

Definition 1.2. The cocktail party graph is denoted by $K_{n \times 2}$, is a graph having the vertex set $V=\bigcup_{i=1}^{n}\left\{u_{i}, v_{i}\right\}$ and the edge set $E=\left\{u_{i} u_{j}, v_{i} v_{j},: i \neq j\right\} \cup\left\{u_{i} v_{j}, v_{i} u_{j},: 1 \leq i<j \leq n\right\}$.

2. Bounded for Circular Distance Energy

Theorem 2.1. Let G be a connected (n, m) graph and let $\rho_{1}, \rho_{2}, \rho_{3}, \ldots, \rho_{n}$ be its circular distance eigen values. Then $\sum_{i=1}^{n} \rho_{i}=0$ and $\sum_{i=1}^{n}\left(\rho_{i}\right)^{2}=2 \sum_{1 \leq i<j \leq n}^{n}\left(d_{i j}^{0}\right)^{2}$.

Proof. For the Circular Distance Matrix $C D$,

$$
\sum_{i=1}^{n} \rho_{i}=\operatorname{Trace}(C D(G))=\sum_{i=1}^{n}\left(d_{i j}^{0}\right)=0 .
$$

For $i=1,2,3, \ldots, n$, the (i, j) entry of $(C D(G))^{2}$ is equal to $\sum_{i=1}^{n}\left(d_{i j}^{0}\right)^{2}$.
Hence

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\rho_{i}\right)^{2}=\operatorname{trace}(C D(G))^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(d_{i j}^{0}\right)^{2} \\
& \sum_{i=1}^{n}\left(\rho_{i}\right)^{2}=2 \sum_{1 \leq i<j \leq n}^{n}\left(d_{i j}^{0}\right)^{2} .
\end{aligned}
$$

Theorem 2.2. If G is a connected (n, m) graph, then

$$
\sqrt{2 \sum_{1 \leq i<j \leq n}\left(d_{i j}^{0}\right)^{2}} \leq E_{\mathrm{CD}}(G) \leq \sqrt{2 n \sum_{1 \leq i<j \leq n}\left(d_{i j}^{0}\right)^{2}} .
$$

Proof. Consider the Cauchy-Schwartz inequality

$$
\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right) .
$$

Let us choose $a_{i}=1$ and $b_{i}=\left|\rho_{i}\right|$, we get

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|\rho_{i}\right|\right)^{2} \leq n\left(\sum_{i=1}^{n}\left|\rho_{i}^{2}\right|\right) \\
& E_{C D}(G)^{2} \leq 2 n \sum_{1 \leq i<j \leq n}\left(d_{i j}^{0}\right)^{2}
\end{aligned}
$$

Let us the upper bound for $E_{C D}(G)$.

$$
\begin{aligned}
E_{C D}(G)^{2} & =\left(\sum_{i=1}^{n}\left|\rho_{i}\right|\right)^{2} \geq\left(\sum_{i=1}^{n}\left|\rho_{i}^{2}\right|\right) \\
& =2 \sum_{1 \leq i<j \leq n}\left(d_{i j}^{0}\right)^{2} .
\end{aligned}
$$

This is the lower bound for $E_{C D}(G)$.
Theorem 2.3. If G is a connected (n, m) graph, then $E_{\mathrm{CD}}(G) \geq n \sqrt{n(n-1)}$.

Proof. Since $d_{i j} \geq n$ for $i \neq j$ and there are $n(n-1) / 2$ pairs of vertices in G. From the lower bound of Theorem 2.2.

$$
\begin{aligned}
E_{C D}(G) & \geq \sqrt{2 \sum_{1 \leq i<j \leq n}\left(d_{i j}^{0}\right)^{2}} \\
& \geq \sqrt{\frac{2 n^{2} \times n(n-1)}{2}} \\
& \geq n \sqrt{n(n-1)} .
\end{aligned}
$$

3. Circular Distance Energy of $\boldsymbol{k}_{\boldsymbol{n}}, \boldsymbol{k}_{\boldsymbol{n}, \boldsymbol{n}}$ and Some Special Graphs

Theorem 3.1. If G is a complete graph of order n, then the circular distance energy of G is $E_{\mathrm{CD}}(G)=2 n(n-1)$.

Proof. In G, the circular distance between two adjacency vertices is n. The circular distance matrix $C D(G)=n[J-I]$, where J is the matrix of order n, whose entries are one.

The characteristic polynomial of $C D(G)$ is

$$
\phi_{C D}(\rho)=(\rho-n)^{n-1}(\rho-n(n-1)) .
$$

Circular distance laplacian spectra is

$$
\operatorname{spec}_{C D}(G)=\left(\begin{array}{cc}
n & n(n-1) \\
n-1 & 1
\end{array}\right) .
$$

Hence $E_{C D}(G)=2 n(n-1)$.
Corollary 3.2. The circular distance laplacian energy of $k_{n, n}$ and $c_{n}(n>4)$ is same as complete graph.

Theorem 3.3. If G is a Crown graph $n \geq 4$, then the circular distance energy of G is $E_{\mathrm{CD}}(G)=2 n^{2}-2 n+4$.

Proof. Let $V(G)=U_{i} \cup V_{j}$. In S_{n}^{0}, the circular distance of any two vertices in U_{i} and in V_{j} is n, $i=j=1,2,3, \ldots, n / 2$ and the circular distance of any vertex to itself is 0 . The circular distance between the vertices U_{i} and V_{j}, V_{j} and U_{i} is n, for $i \neq j$ and $n+2$, for $i=j$.

Then the circular distance matrix,

$$
C D(G)=\left[\begin{array}{cc}
n[J-I] & (n+2) I+n[J-I] \\
(n+2) I+n[J-I] & n[J-I]
\end{array}\right]
$$

where J is the matrix of order n, whose entries are one.
The characteristic polynomial of $C D(G)$ is,

$$
\phi_{C D}(\rho)=(\rho+(n+2))^{\frac{n}{2}}(\rho+(n-2))^{\left(\frac{n}{2}-1\right)}\left(\rho+\left(n^{2}-n+2\right)\right) .
$$

Circular distance spectra is

$$
\operatorname{spec}_{C D}(G)=\left(\begin{array}{ccc}
-(n+2) & -(n-2) & -\left(n^{2}-n+2\right) \\
\frac{n}{2} & \frac{n}{2}-1 & 1
\end{array}\right) .
$$

Hence $E_{C D}(G)=2 n^{2}-2 n+4$.
Theorem 3.4. If G is a Cocktail party graph, then the circular distance energy of G is $E_{\mathrm{CD}}(G)=2 n^{2}-2 n+2$.

Proof. Let $V(G)=U_{i} \cup V_{j}$. In G, the circular distance of any two vertices in U_{i} and in V_{j} is n, $i=j=1,2,3, \ldots, n / 2$ and the circular distance of any vertex to itself is 0 . The circular distance between the vertices U_{i} and V_{j}, V_{j} and U_{i} is n, for $i \neq j$ and $n+1$, for $i=j$.

Then the circular distance matrix,

$$
C D(G)=\left[\begin{array}{cc}
n[J-I] & (n+1) I+n[J-I] \\
(n+1) I+n[J-I] & n[J-I]
\end{array}\right]
$$

where J is the matrix of order n, whose entries are one.
The characteristic polynomial of $C D(G)$ is

$$
\phi_{C D}(\rho)=(\rho+(n+1))^{\frac{n}{2}}(\rho+(n-1))^{\left(\frac{n}{2}-1\right)}\left(\rho+\left(n^{2}-n+1\right)\right) .
$$

Circular distance spectra is

$$
\operatorname{spec}_{C D}(G)=\left(\begin{array}{ccc}
-(n+1) & -(n-1) & -\left(n^{2}-n+1\right) \\
\frac{n}{2} & \frac{n}{2}-1 & 1
\end{array}\right) .
$$

Hence $E_{C D}(G)=2 n^{2}-2 n+2$.

4. Circular Laplacian Spectra

Theorem 4.1. For any connected graph G, if ρ_{n} be its largest circular distance eigen value, then $\rho_{n}-\rho_{n}, \rho_{n}-\rho_{n-1}, \rho_{n}-\rho_{n-2}, \ldots, \rho_{n}-\rho_{1}$ are the circular distance laplacian eigen values of G.

Theorem 4.2. If G is the complete graph or order n, then the circular distance laplacian energy of G is $E_{\mathrm{CDL}}(G)=n^{2}(n-1)$.

Proof. From Theorem 3.1,

$$
C D(G)=n[J-I] .
$$

It follows that $\operatorname{diag}\left(T_{r}\right)=n(n-1)$.
The circular distance laplacian matrix $C D L(G)=n(n-1)-C D(G)$.
The largest circular distance eigen value of G is $n(n-1)$ (by Theorem 3.1).
Hence the circular distance laplacian eigen values are $n(n-1)-n(n-1), n(n-1)+n,(n-1)$ times that is $0, n^{2},(n-1)$ times.

Circular distance laplacian spectra is

$$
\operatorname{spec}_{C D}(G)=\left(\begin{array}{cc}
0 & n^{2} \\
1 & (n-1)
\end{array}\right) .
$$

Hence $E_{C D}(G)=n^{2}(n-1)$.
Corollary 4.3. The circular distance laplacian energy of $k_{n, n}$ and $c_{n}(n>4)$ is same as complete graph.

Theorem 4.4. If G is a Crown graph $S_{n}^{0}, n \geq 4$, then the circular distance laplacian energy of G is $E_{\mathrm{CDL}}(G)=n\left(n^{2}-2 n+2\right)$.

Proof. From Theorem 3.3

$$
C D(G)=\left[\begin{array}{cc}
n[J-I] & (n+2) I+n[J-I] \\
(n+2) I+n[J-I] & n[J-I]
\end{array}\right] .
$$

It follows that $\operatorname{diag}\left(T_{r}\right)=\left(n^{2}-n+2\right)-C D(G)$.
The largest circular distance eigen value of G is $\left(n^{2}-n+2\right)$.
Hence the circular distance laplacian eigen values are $\left(n^{2}-n+2\right)-\left(n^{2}-n+2\right),\left(n^{2}-n+2\right)+(n-$ 2), $\left(\frac{n}{2}-1\right)$ times, $\left(n^{2}-n+2\right)+(n+2), \frac{n}{2}$ times that is $0, n^{2}, \frac{n}{2}-1$ times, $n^{2}+4, \frac{n}{2}$ times.

Circular distance laplacian spectra is

$$
\operatorname{spec}_{C D}(G)=\left(\begin{array}{ccc}
0 & n^{2} & n^{2}+4 \\
1 & \left(\frac{n}{2}-1\right) & \frac{n}{2}
\end{array}\right) .
$$

Hence $E_{C D}(G)=n\left(n^{2}-n+2\right)$.
Theorem 4.5. If G is a Cocktail party graph, then the circular distance laplacian energy of G is $E_{\mathrm{CD}}(G)=n\left(n^{2}-n+2\right)$.

Proof. From Theorem 3.4

$$
C D(G)=\left[\begin{array}{cc}
n[J-I] & (n+1) I+n[J-I] \\
(n+1) I+n[J-I] & n[J-I]
\end{array}\right] .
$$

It follows that $\operatorname{diag}\left(T_{r}\right)=\left(n^{2}-n+2\right)-C D(G)$.
The largest circular distance eigen value of G is $\left(n^{2}-n+1\right)$.
Hence the circular distance laplacian eigen values are $\left(n^{2}-n+1\right)-\left(n^{2}-n+1\right),\left(n^{2}-n+1\right)+$ $(n-1),\left(\frac{n}{2}-1\right)$ times, $\left(n^{2}-n+1\right)+(n+1), \frac{n}{2}$ times that is $0, n^{2}, \frac{n}{2}-1$ times, $n^{2}+2, \frac{n}{2}$ times.

Circular distance laplacian spectra is

$$
\operatorname{spec}_{C D}(G)=\left(\begin{array}{ccc}
0 & n^{2} & n^{2}+2 \\
1 & \left(\frac{n}{2}-1\right) & \frac{n}{2}
\end{array}\right) .
$$

Hence $E_{C D}(G)=n\left(n^{2}-n+1\right)$.

Acknowledgment

The authors are grateful to the referees of this paper for their comments and suggestions which have improved the paper.

Competing Interests

The authorS declare that They have no competing interests.

Authors' Contributions

The authors wrote, read and approved the final manuscript.

References

[1] C. Adiga, A. Bayad, I. Gutman and S.A Srinivas, The minimum covering energy of a graph, Kragujevac J. Sci. 34(2012), $39-56$.
[2] C. Adiga and M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sciences 4 (8) (2009), $385-396$.
[3] V. Kaladevi and P. Selvarani, Detour sum and wiener sum of chain diamond silicate network, Bulletin of Pure and Applied Sciences 31E (Math \& Stat.) (1) (2012), 67 - 72.
[4] K.M. Kathiresan, C. Parameswaran, G. Marimuthu and S. Arockiaraj, Detour Wiener Indices of Graphs, Bulletin of the ICA 62 (2011), $33-47$.
[5] V. Kaladevi and P. Selvarani, Three polynomials in one matrix, Mathematical Sciences International Research Journal 1 (2), 100-108.
[6] M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 (2013), 21 - 33.
[7] S.K. Ayyasamy and S. Balachandran, On detour spectra of some graphs, World Academy of Science, Engineering and Technology 4 (2010), 07 - 21.
[8] Bala krishnan, The energy of a graph, Lin. Algebra Appl. 387 (2004), 287 - 295.
[9] Bozohu and Xiaochum Cai, On detour index, MATCH commun. Math. Comput. Chem. 63 (2010), $199-210$.
[10] S.B. Bozkunt, A.D. Gungor and B. Zhou, Note on the distance energy of graphs, MATCH Commun. Math Comput. Chem. (2010), 64129-134.
[11] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood (1990).
[12] M. Edelberg, M.R. Garey and R.L. Graham, On the distance matrix of a tree, Discr. Math. 14 (1976), 23-29.
[13] A.D. Gunger and S.B. Bozkurt, On the distance spectral radius and distance energy of graphs, Lin. Multilin. Algebra 59(2011), $365-370$.
[14] I. Gutman, The energy of a graph, Ber. Math. Statist.Sekt. for Schungsz. Ghaz. 103 (1978), 1 - 22.
[15] I. Gutman, The Energy of a Graph, Old and New Results (eds.: A. Betten, A. Kobnert, R. Lave and A. Wassermann, Algebraic Combinatorics and Applications, Springer, Berlin, 196 - 211 (2001).
[16] R.L. Graham and L. Lovasz, Distance matrix polynomials of trees, Adv. Math. 29 (1978), $60-88$.
[17] H. Hua, On minimal energy of unicycle graphs with prescribed girth and pendent vertices, MATCH Commun. Math. Comput. Chem. 57 (2007), 351 - 361.
[18] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Lin. Algebra Appl. 430 (2009), 106 - 113.
[19] G. Indulal, I. Gutman and A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60 (2008), $461-472$.
[20] J. Yang, L. You and I. Gutman, Bounds on the distance laplacian energy of graphs, Kragujevac journal of Mathematics 37 (2) (2013), 245 - 255.
[21] J.H. Koolen and V. Moulton, Maximal Energy Graphs, Adv.Appl. Math. 26 (2001), 47 - 52.
[22] I. Lukovits, The detour index, Croat. Chem. Acta 69 (1996), 873 - 882.
[23] I. Lukovits and M. Razinger, On calculation of the detour index, J. Chem. Inf. Comput. Sci. 37 (1997), $283-286$.
[24] H.S. Ramane, D.S. Revankar, I. Gutman, S.B. Rao, B.D. Acharya and H.B. Walikar, Bounds for the distance energy of a graph, Kragujevac J. Math. 31 (2008), 59-68.
[25] N. Trinajstic, S. Nikolic, B. Lucic, D. Amic and Z. Mihalic, The detour matrix in chemistry, J. Chem. Inf. Comput. Sci. 37 (1997), $631-638$.

