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Abstract. The circular distance energy of a simple connected graph G is defined as the sum of the
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for circular distance energy is obtained. Also the circular distance energy and the circular distance
laplacian energy of certain graphs via circular distance energy are derived.
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1. Introduction
Let G be a connected graph of order n, with vertex set V (G) = {v1,v2,v3,vn}. Let A = [ai j]n×n

be the adjacency matrix of G. The eigen values λ1,λ2,λ3, . . . ,λn of A assumed to be in non
increasing order, are the eigen values of G. The Energy E(G) of G is defined to be the sum of
the absolute values of its eigen values of G [8,14,15].
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The distance matrix of a graph G is defined as a square matrix D = D(G)= [di j]; where di j

is the distance between the vertices vi and v j in G. The eigen values of D(G) are denoted by
µ1,µ2,µ3, . . . ,µn and are said to be the D-eigen values of G. The distance energy ED = ED(G) of
a graph G is defined as the sum of the absolute values of µi [10,11,19].

The detour distance matrix of a graph G is the n× n matrix defined by DD(G) = DDi j ,
where DDi j is the longest distance between the vertices vi and v j in G. The eigen values
γ1,γ2,γ3, . . . ,γn are said to be the DD eigen values of G. The detour distance energy EDD =
EDD(G) of a graph G is defined as

EDD = EDD(G)=
n∑

i=1
|γi| .

The circular distance matrix of a graph G is defined by

CD(G)= [d0
i j],

where d0
i j = DD(vi,v j)+d(vi,v j). Let φCD(ρ) denotes the characteristic polynomial of CD(G).

The eigen values of the circular distance matrix CD(G) are denoted by ρ1,ρ2,ρ3, . . . ,ρn are said
to be the CD eigen values of G. Since the circular distance matrix is symmetric, its eigen values
are real and it can be ordered as ρ1 ≥ ρ2 ≥ ρ3 · · · ≥ ρn. The eigen values ρ1,ρ2,ρ3, . . . ,ρn form the
CD spectrum specCD(G). The circular distance energy ECD = ECD(G) of a graph G is defined as

ECD = ECD(G)=
n∑

i=1
|ρ i| .

The circular distance laplacian matrix of a connected graph G is defined as

CDL(G)= diag(Tr)−CD,

where diag(Tr) denotes the diagonal matrix of the vertex transmissions in G. The eigen values
of CDL(G) are ρL

1 ,ρL
2ρ

L
3 , . . . ,ρL

n are the circular distance laplacian eigen values of G derived
from the circular distance eigen values. The circular distance laplacian eigen values CDL(G)
form the CDL spectrum specCDL(G). The circular distance laplacian energy is defined as the
sum of the absolute values of ρL

i [16,20].

In this paper, we give bounds for the circular distance energy. Further the circular distance
energy of some graphs and circular distance laplacian energy derived from circular distance
energy are computed.

Definition 1.1. The crown graph S0
n for an integer n ≥ 2 is the graph with vertex set

{u1,u2,u3, . . . ,un,v1,v2,v3, . . . ,vn} and edge set {uiv j : 1≤ i, j ≤ n, i 6= j}.

Definition 1.2. The cocktail party graph is denoted by Kn×2, is a graph having the vertex set

V =
n⋃

i=1
{ui,vi} and the edge set E = {uiu j,viv j, : i 6= j}∪ {uiv j,viu j, : 1≤ i < j ≤ n}.

2. Bounded for Circular Distance Energy

Theorem 2.1. Let G be a connected (n,m) graph and let ρ1,ρ2,ρ3, . . . ,ρn be its circular distance

eigen values. Then
n∑

i=1
ρ i = 0 and

n∑
i=1

(ρ i)2 = 2
n∑

1≤i≺ j≤n
(d0

i j)
2.
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Proof. For the Circular Distance Matrix CD,
n∑

i=1
ρ i =Trace(CD(G))=

n∑
i=1

(d0
i j)= 0.

For i = 1,2,3, . . . ,n, the (i, j) entry of (CD(G))2 is equal to
n∑

i=1
(d0

i j)
2.

Hence
n∑

i=1
(ρ i)2 = trace(CD(G))2 =

n∑
i=1

n∑
j=1

(d0
i j)

2

n∑
i=1

(ρ i)2 = 2
n∑

1≤i≺ j≤n
(d0

i j)
2 .

Theorem 2.2. If G is a connected (n,m) graph, then√
2

∑
1≤i≺ j≤n

(d0
i j)

2 ≤ ECD(G)≤
√

2n
∑

1≤i≺ j≤n
(d0

i j)
2 .

Proof. Consider the Cauchy-Schwartz inequality(
n∑

i=1
aibi

)2

≤
(

n∑
i=1

a2
i

)(
n∑

i=1
b2

i

)
.

Let us choose ai = 1 and bi = |ρ i|, we get(
n∑

i=1

∣∣ρ i
∣∣)2

≤ n

(
n∑

i=1

∣∣ρ2
i
∣∣)

ECD(G)2 ≤ 2n
∑

1≤i≺ j≤n
(d0

i j)
2

Let us the upper bound for ECD(G).

ECD(G)2 =
(

n∑
i=1

∣∣ρ i
∣∣)2

≥
(

n∑
i=1

∣∣ρ2
i
∣∣)

= 2
∑

1≤i≺ j≤n
(d0

i j)
2 .

This is the lower bound for ECD(G).

Theorem 2.3. If G is a connected (n,m) graph, then ECD(G)≥ n
p

n(n−1).

Proof. Since di j ≥ n for i 6= j and there are n(n−1)/2 pairs of vertices in G. From the lower
bound of Theorem 2.2,

ECD(G)≥
√

2
∑

1≤i≺ j≤n
(d0

i j)
2

≥
√

2n2 ×n(n−1)
2

≥ n
√

n(n−1) .
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3. Circular Distance Energy of kn, kn,n and Some Special Graphs

Theorem 3.1. If G is a complete graph of order n, then the circular distance energy of G is
ECD(G)= 2n(n−1).

Proof. In G, the circular distance between two adjacency vertices is n. The circular distance
matrix CD(G)= n[J− I], where J is the matrix of order n, whose entries are one.

The characteristic polynomial of CD(G) is

φCD(ρ)= (ρ−n)n−1(ρ−n(n−1)) .

Circular distance laplacian spectra is

specCD(G)=
(

n n(n−1)
n−1 1

)
.

Hence ECD(G)= 2n(n−1).

Corollary 3.2. The circular distance laplacian energy of kn,n and cn (n > 4) is same as complete
graph.

Theorem 3.3. If G is a Crown graph n ≥ 4, then the circular distance energy of G is
ECD(G)= 2n2 −2n+4.

Proof. Let V (G)=Ui ∪Vj . In S0
n, the circular distance of any two vertices in Ui and in Vj is n,

i = j = 1,2,3, . . . ,n/2 and the circular distance of any vertex to itself is 0. The circular distance
between the vertices Ui and Vj , Vj and Ui is n, for i 6= j and n+2, for i = j.

Then the circular distance matrix,

CD(G)=
[

n[J− I] (n+2)I +n[J− I]
(n+2)I +n[J− I] n[J− I]

]
where J is the matrix of order n, whose entries are one.

The characteristic polynomial of CD(G) is,

φCD(ρ)= (ρ+ (n+2))
n
2 (ρ+ (n−2))( n

2 −1)(ρ+ (n2 −n+2)).

Circular distance spectra is

specCD(G)=
( −(n+2) −(n−2) −(n2 −n+2)

n
2

n
2 −1 1

)
.

Hence ECD(G)= 2n2 −2n+4.

Theorem 3.4. If G is a Cocktail party graph, then the circular distance energy of G is
ECD(G)= 2n2 −2n+2.

Proof. Let V (G)=Ui ∪Vj . In G, the circular distance of any two vertices in Ui and in Vj is n,
i = j = 1,2,3, . . . ,n/2 and the circular distance of any vertex to itself is 0. The circular distance
between the vertices Ui and Vj , Vj and Ui is n, for i 6= j and n+1, for i = j.

Then the circular distance matrix,

CD(G)=
[

n[J− I] (n+1)I +n[J− I]
(n+1)I +n[J− I] n[J− I]

]
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where J is the matrix of order n, whose entries are one.

The characteristic polynomial of CD(G) is

φCD(ρ)= (ρ+ (n+1))
n
2 (ρ+ (n−1))( n

2 −1)(ρ+ (n2 −n+1)).

Circular distance spectra is

specCD(G)=
( −(n+1) −(n−1) −(n2 −n+1)

n
2

n
2 −1 1

)
.

Hence ECD(G)= 2n2 −2n+2.

4. Circular Laplacian Spectra

Theorem 4.1. For any connected graph G, if ρn be its largest circular distance eigen value, then
ρn −ρn,ρn −ρn−1,ρn −ρn−2, . . . ,ρn −ρ1 are the circular distance laplacian eigen values of G.

Theorem 4.2. If G is the complete graph or order n, then the circular distance laplacian energy
of G is ECDL(G)= n2(n−1).

Proof. From Theorem 3.1,

CD(G)= n[J− I].

It follows that diag(Tr)= n(n−1).

The circular distance laplacian matrix CDL(G)= n(n−1)−CD(G).

The largest circular distance eigen value of G is n(n−1) (by Theorem 3.1).

Hence the circular distance laplacian eigen values are n(n−1)−n(n−1), n(n−1)+n, (n−1)
times that is 0, n2, (n−1) times.

Circular distance laplacian spectra is

specCD(G)=
(

0 n2

1 (n−1)

)
.

Hence ECD(G)= n2(n−1).

Corollary 4.3. The circular distance laplacian energy of kn,n and cn (n > 4) is same as complete
graph.

Theorem 4.4. If G is a Crown graph S0
n, n ≥ 4, then the circular distance laplacian energy of G

is ECDL(G)= n(n2 −2n+2).

Proof. From Theorem 3.3

CD(G)=
[

n[J− I] (n+2)I +n[J− I]
(n+2)I +n[J− I] n[J− I]

]
.

It follows that diag(Tr)= (n2 −n+2)−CD(G).

The largest circular distance eigen value of G is (n2 −n+2).

Hence the circular distance laplacian eigen values are (n2−n+2)− (n2−n+2), (n2−n+2)+ (n−
2), ( n

2 −1) times, (n2 −n+2)+ (n+2), n
2 times that is 0, n2, n

2 −1 times, n2 +4, n
2 times.
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Circular distance laplacian spectra is

specCD(G)=
(

0 n2 n2 +4
1 ( n

2 −1) n
2

)
.

Hence ECD(G)= n(n2 −n+2).

Theorem 4.5. If G is a Cocktail party graph, then the circular distance laplacian energy of G is
ECD(G)= n(n2 −n+2).

Proof. From Theorem 3.4

CD(G)=
[

n[J− I] (n+1)I +n[J− I]
(n+1)I +n[J− I] n[J− I]

]
.

It follows that diag(Tr)= (n2 −n+2)−CD(G).

The largest circular distance eigen value of G is (n2 −n+1).

Hence the circular distance laplacian eigen values are (n2 −n+1)− (n2 −n+1), (n2 −n+1)+
(n−1), ( n

2 −1) times, (n2 −n+1)+ (n+1), n
2 times that is 0, n2, n

2 −1 times, n2 +2, n
2 times.

Circular distance laplacian spectra is

specCD(G)=
(

0 n2 n2 +2
1 ( n

2 −1) n
2

)
.

Hence ECD(G)= n(n2 −n+1).
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