
A Note on Constant-Round
Zero-Knowledge Proofs for NP

Alon Rosen

Laboratory for Computer Science.
Massachusetts Institute of Technology.

200 Tech. Square, Cambridge, MA 02139 USA��

alon@lcs.mit.edu

Abstract. We consider the problem of constructing a constant-round
zero-knowledge proof system for all languages in NP. This problem has
been previously addressed by Goldreich and Kahan (Jour. of Cryptology,
1996). Following recent works on concurrent zero-knowledge, we propose
an alternative solution that admits a considerably simpler analysis.

Zero-knowledge (ZK) protocols require no introduction. Since their conceptual-
ization [10], they have become a widely used tool in the design and realization of
many cryptographic tasks. The notion of zero-knowledge owes much of its wide
applicability to its generality, and specifically, to the fact that every language in
NP can be proved in ZK [11].

In this paper we consider the basic task of constructing a constant-round
zero-knowledge interactive proof system for all languages in NP (with negligible
error). Recall that an interactive proof system is required to protect the honest
verifier from an all powerful prover that is trying to convince him of the validity
of a false assertion. This should be contrasted with the case of an interactive
argument system (cf. [3]), in which the soundness property is required to hold
only w.r.t. computationally bounded provers.

Our goal is to design a “natural” protocol whose zero-knowledge property is
demonstrated in as a simple as possible manner. This would be in contrast to
previous solutions, which invloved a fairly complicated analysis (cf. Goldreich,
Kahan [7]). Our solution is inspired by a new ZK protocol by Prabhakaran,
Rosen and Sahai [18], originally introduced in the context of concurrent Zero-
Knowledge. Constant-round, negligible-error, ZK proofs for NP are a funda-
mental and widely used cryptographic tool. Needless to say that a simple con-
struction/analysis of such proofs would be most desirable.

1 Constructing a Constant-Round ZK Proof for NP
We assume familiarity with the concepts of Interactive Proofs, Zero-Knowledge
and Bit Commitment (see Appendix for the actual definitions) [10,11,15,6]. The
�� Part of this work done while at the Weizmann Institute of Science, Israel.

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 191–202, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

192 A. Rosen

“typical” construction for a constant round interactive proof for any language
in NP would use a protocol of the following sort as a building-block (here we
use a protocol for the NP-complete language of Hamiltonicity [2]).1

Common Input: A directed graph G = (V, E) with n
def= |V |.

Auxiliary Input to Prover: A directed Hamiltonian Cycle, C ⊂ E, in G.
(p̂1): Pick a random permutation π of the vertices V and commit (using a

perfectly binding commitment) to the adjacency matrix of the resulting per-
muted graph. That is, send an n-by-n matrix of commitments so that the
(π(i), π(j))th entry is a commitment to 1 if (i, j) ∈ E, and is a commitment
to 0 otherwise.

(v̂1): Send a randomly chosen bit σ ∈ {0, 1}.
(p̂2): If σ = 0, send π to the verifier along with the revealing (i.e., preim-

ages) of all commitments. Otherwise, reveal only the commitments to entries
(π(i), π(j)) with (i, j) ∈ C. In both cases also supply the corresponding de-
commitments.

(v̂2): If σ = 0, check that the revealed graph is indeed isomorphic, via π, to G.
Otherwise, just check that all revealed values are 1 and that the corresponding
entries form a simple n-cycle. In both cases check that the decommitments
are proper (i.e., that they fit the corresponding commitments). Accept if and
only if the corresponding condition holds.

Fig. 1. A 3-round interactive proof system for Hamiltonicity.

It can be seen that the above protocol is both complete and sound (with
soundness error 1/2). An additional “useful” property of the protocol (which is
also satisfied by many other known protocols) is that if the prover knows the
contents of verifier’s “challenge” message σ (sent in Step (v̂1)) prior to sending its
own first message (sent in Step (p̂1)), then it is able to convince the verifier that
G contains an Hamiltonian cycle even without knowing such a cycle (actually,
it will convince the verifier even if G does not contain an Hamiltonian cycle).

Specifically, knowing in advance that σ = 0, the prover will commit to the
entries of the adjacency matrix of the permuted graph (in Step (p̂1)), thus being
able to reveal a permutation π and the preimages of all commitments in Step
(p̂2). On the other hand, knowing in advance that σ = 1, the prover will commit
to the full graph Kn, thus being able to open an arbitrary cycle in the supposedly
permuted graph.

The above “useful” property is sufficient in order to prove that the above
protocol is black-box zero-knowledge. All that the simulator has to do is to try
and “guess” the value of σ prior to determining the value of the prover’s first
message (and keep trying until it succeeds). Using the computational-hiding
property of the prover’s commitment in Step (p̂1) we would then have that no

1 The choice of the Hamiltonicity protocol (due to Blum) as a building block is arbi-
trary (and is made just for clarity of presentation). In fact, any protocol with similar
properties (such as the 3-coloring protocol of Goldreich, Micali and Wigderson [11])
could have been used.

A Note on Constant-Round Zero-Knowledge Proofs for NP 193

matter what an adversary verifier V ∗ does, the simulator is expected to guess
σ’s value in a constant number of attempts.

To obtain a useful protocol, however, one must make sure that whenever
the statement proved is false, V accepts only with small probability (rather
than 1/2). To achieve this, the protocol described above is repeated many (say, n)
times independently. V accepts if and only if it has accepted in all n repetitions.
The probability of having V accept a false statement is now reduced to 1/2n

(by the independence of the repetitions). To save on the number of rounds, the
repetitions are conducted in parallel (rather than sequentially).

Unfortunately, repeating the protocol many times in parallel brings up the
following difficulty. Whereas in the case of a single execution, the probability
that the ZK simulator “guesses” the value of σ correctly is at least 1/2, the
probability that he does so simultaneously for all n repetitions is 1/2n. For
large n, this probability will be very small and might cause the simulator to
run for too long. Thus, it is not clear that the ZK property of the protocol is
preserved. Indeed, the above protocol cannot be proved to be ZK using black-box
simulation (unless NP ⊆ BPP) [8].2

The Goldreich-Kahan Analysis [7]. To overcome the above problem, an
additional (V0) message is added at the beginning of the protocol, in which the
verifier commits to all n “challenge” bits prior to receiving (p̂1). The verifier
then decommits to all challenge bits in message (v̂1). The secrecy property of
the commitment used in (V0) should then guarantee that the soundness of the
protocol is preserved.

At this point, it seems that all that the simulator has to do after obtaining
V ∗’s commitments in message (V0) is to feed V ∗ with a “dummy” (p̂1) and then
obtain decommittment to all challenge bits in message (v̂1). Knowing the chal-
lenge bits, the simulator would then “rewind” the interaction with V ∗ and resend
a modified (p̂1) that would convince the verifier of the validity of the assertion
(this is possible due to the “useful” property of the underlying protocol).

Unfortunately, V ∗ may arbitrarily deviate from the prescribed strategy. In
particular, it may be the case that throughout its interaction with the prover
(simulator), V ∗ occasionally sends an ABORT message (that is, V ∗ may potentially
refuse to decommit to any of the previous commitments). Clearly, such an action
on behalf of the verifier is considered illegal, and the interaction stops.

Having V ∗ refuse to decommit may seem as good news (since, once this
happens, the simulator does not really need to do anything). The problem is that
V ∗ does not always refuse to decommit (but may refuse with some probability
0 ≤ p ≤ 1, which is not known in advance by the simulator). Thus, the simulator
may find himself in a situation in which the first run is answered with ABORT

2 A recent result by Barak [1] suggests that black-box lower bounds should not be
interpreted as impossibility results about ZK, but rather as limitations of the black-
box simulation as a technique for proving the ZK property of protocols. It should
be noted, however, that Barak’s protocol are only known to apply to certain kinds
of argument systems (rather than proof systems).

194 A. Rosen

whereas the second run is “properly answered”. This means that the simulator
has not managed to obtain the “challenge” bits in the first run, and it thus fails
to complete its task.

One näıve solution would be to let the simulator always output the run
in which V ∗ has refused to decommit. The problem with this solution is that
it “skews” the distribution of transcripts outputted by the simulator towards
transcripts that contain ill-formed messages.

Goldreich and Kahan [7] suggested to let the simulator always decide whether
to output an aborted run according to the outcome of the first run. Specifically,
the simulator will rewind only if “answered properly” in the first run and will
continue doing so (i.e., rewinding) until it obtains another “proper answer”. Un-
fortunately, while this simulation strategy guarantees that the simulator’s output
is correctly distributed, it also introduces technical difficulties. Loosely speaking,
these difficulties arise from the fact that probability of V ∗ refusing to decommit
might differ between the case it is fed with a “dummy” commitment (in step
(p̂1)) and the case it is fed with a “convincing” commitment. The solution to
this problem is somewhat involved and requires having the simulator obtain an
estimate on the probability of V ∗ decommits properly when fed with a “con-
vincing” commitment in step (p̂1). As we have said before, our goal is to obtain
a simpler analysis (even at the cost of analyzing a slightly different protocol).

2 The New Protocol

Consider the following protocol for Hamiltonicity (HC), which is a variant of
the cZK protocol by Prabhakaran, Rosen and Sahai [18] in which the preamble
has only one iteration (rather than a super logarithmic number of iterations as
in the PRS proocol).3

As shown in [18], the above protocol is both complete and sound (with negli-
gible error). In particular, the construction above is an interactive proof system
for HC. The following theorem states that it is also ZK.

Theorem 2.1 (Constant-round ZK proof for NP) Assume the existence
of perfectly-hiding commitment schemes. Then, the protocol described in Fig-
ure 2 is a ZK proof system for HC.

2.1 Zero-Knowledge

In order to demonstrate the ZK property of the protocol, we will show that there
exists a ”universal” black-box simulator, S, so that for every G = (V, E) ∈ HC
and adversary verifier V ∗ that runs in polynomial time (in n = |V |), S(G) runs
in expected time poly(n), and satisfies that the ensemble {viewP

V ∗(G)}G∈HC is
computationally indistinguishable from the ensemble {SV ∗

(G)}G∈HC .
3 A related approach has been previously used in order to construct constant-round

perfect ZK arguments for NP (see [5]).

A Note on Constant-Round Zero-Knowledge Proofs for NP 195

Common Input: A directed graph G = (V, E) with n
def= |V |.

Auxiliary Input to Prover: A directed Hamiltonian Cycle, C ⊂ E, in G.
Additional parameter: A super-logarithmic function k(n).
Stage 1: Commitment to challenge σ ∈ {0, 1}n (independent of common input):

(P1): Send first message for perfectly hiding commitment scheme.
(V1): Commit to random σ, {σ0

i }k
i=1, {σ1

i }k
i=1 s.t. σ0

i ⊕ σ1
i = σ for all i.

(P2): Send a random k-bit string r = r1, . . . , rk.
(V2): Decommit to σr1

1 , . . . , σ
rk
k .

Stage 2: Engage in the 3-round protocol for HC (n parallel repetitions) using
σ = σ1, . . . , σn as challenge:
(p1): Produce first prover message of HC protocol (as in (p̂1)).
(v1): Decommit to σ and to {σ1−ri

i }k
i=1.

(p2): Answer σ with second prover message of HC protocol (as in (p̂2)).
(v2): Accept if and only if all corresponding conditions hold (as in (v̂2)).

Fig. 2. A new 7-round, negligible error, ZK proof for Hamiltonicity.

The Simulator. On input G = (V, E) with n = |V |, the simulator S starts
by selecting and fixing a random tape s ∈ {0, 1}poly(n) for V ∗. It then proceeds
by exploring various prefixes of possible interactions between P and V ∗. This is
done while having only black-box access to V ∗. It then acts as follows.

Step (S1): Randomly generate (P1) and obtain (V1) = V ∗(G, (P1); s).
Step (S2): Randomly generate (P2) and obtain (V2) = V ∗(G, (P1), (P2); s).

1. If (V2) �= ABORT, proceed to Step (S3).
2. If (V2) = ABORT, output 〈(P1), (V1), ABORT〉 and stop.

Step (S3): For j = 1, 2, . . .
1. Randomly generate (P2)j and obtain (V2)j = V ∗(G, (P1), (P2)j ; s).
2. If (V2)j �= ABORT, proceed to Step (S4).
3. If (V2)j = ABORT continue.

end(for)
Step (S4): Let (P2) = r1, . . . , rk be the prover message generated in Step (S2) of

the simulation and let (P2)j = r′
1 . . . , r′

k be the last prover message generated in
Step (S3):
1. If (P2) = (P2)j , output ⊥ and stop.

2. If (P2) �= (P2)j , there exists i ∈ {1, . . . , k} so that ri �= r′
i. Let σ = σri

i ⊕σ
r′

i
i .

3. Use σ to produce an accepting transcript (p1), (v1), (p2) for G ∈ HC.
4. Output 〈(P1), (V1), (P2), (V2), (p1), (v1), (p2)〉 and stop.

Fig. 3. The black-box simulator S.

Notice that simulator always picks the (P2)j messages uniformly at random.
Since the length of the (P2)’s is super-logarithmic, the probability that any two
(P1) messages sent during the simulation are equal is negligible (see Section 2.1
for further details). We note that in previous simulators (cf. [7,19,13,14]), the

196 A. Rosen

values of the (Pj) messages depended on the values revealed by the verifier in the
corresponding (V2) answers, and were not chosen uniformly and independently
each time. This is the main reason in the complication of previous analysises of
the simulator’s output distribution.

The simulator’s running time. For any G ∈ HC, for any choice of s and
of (P1), let ζ = ζ(G, (P1), s) denote the probability that the verifier V ∗ does
not send an ABORT message in message (V2). The probability ζ is taken over
the random choices of message (P2). (Or, in other words, over the coin-tosses
used by the simulator to generate (P2) during the simulation (both in Steps (S2)
and (S3).1).)

Using this notation, the simulator proceeds to Step (S3) with probability ζ
and is then expected to reach Step (S4) after repeatedly rewinding in Step (S3).1
for 1/ζ times (since the probability of successfully rewinding in each one of the
rewinds is precisely ζ, independently of other rewinds). For i ∈ {1, 2, 3, 4}, let
pi(·) be a polynomial bound on the work required in order to perform Step (Si)
of the simulation (where in Step (S3), the value p3(·) represents the work of a
single execution of Step (S3).1). The expected running time of the simulator is
then:

p1(n) + (1 − ζ) · p2(n) + ζ ·
(

p2(n) +
1
ζ

· p3(n) + p4(n)
)

≤ p1(n) + p2(n) + p3(n) + p4(n)
= poly(n)

Since the above holds for any choice of s and (P1), then it is also true for
randomly chosen s and (P1) (and offcourse for any G ∈ HC). We thus have,

Proposition 2.2 The simulator S runs in expected polynomial-time (in |V |).

The simulator’s output distribution. We now turn to show that for every
G ∈ HC, the simulator’s output distribution is computationally indistinguish-
able from V ∗’s view of interactions with the honest prover P . Specifically,

Proposition 2.3 Suppose that the commitment used in Step (p1) is computa-
tionally hiding. Then, the ensemble {SV ∗

(G)}G∈HC is computationally indistin-
guishable from the ensemble {viewP

V ∗(G)}G∈HC .

Proof: As a hybrid experiment, consider what happens to the output distri-
bution of the simulator S if we (slightly) modify its simulation strategy in the
following way: Suppose that on input G = (V, E) ∈ HC, the simulator S obtains
a directed Hamiltonian Cycle C ⊂ E in G (as auxiliary input) and uses it in order
to produce real prover messages whenever it reaches the second stage of the pro-
tocol. Specifically, when it reaches the second stage, the hybrid simulator checks
whether the original simulator S should output ⊥ (in which case it also does). If
S does not have to output ⊥, the hybrid simulator follows the prescribed prover

A Note on Constant-Round Zero-Knowledge Proofs for NP 197

strategy and generates prover messages for the corresponding second stage (by
using the cycle it possesses rather than its prior knowledge of σ). We claim that
the ensemble consisting of the resulting output (which we denote by ŜV ∗

(G, C))
is computationally indistinguishable from {SV ∗

(G)}G∈HC . Namely,

Claim 2.4 Suppose that the commitment used in Step (p1) is computationally
hiding. Then, the ensemble {SV ∗

(G)}G∈HC is computationally indistinguishable
from the ensemble {ŜV ∗

(G, C)}G∈HC .

Proof Sketch: The claim is proved by reducing the proof to the indistinguisha-
bility of Blum’s simulator’s output (that is, if the output of Blum’s simulator [2]
is computationally indistinguishable from the view of real executions of the basic
Hamiltonicity proof system, then {SV ∗

(G)}G∈HC and {ŜV ∗
(G, C)}G∈HC are in-

distinguishable as well). The latter is proved to hold based on the computational-
hiding property of the commitment scheme that is used by the prover in Step (p̂1)
(see [2,6] for further details). Here we also use the extra property that the out-
put of Blum’s simulator is indistinguishable from true interactions even if the
distinguisher has a-priori knowledge of a Hamiltonian cycle C ⊂ E.

We next consider what happens to the output distribution of the hybrid sim-
ulator Ŝ if we assume that it does not output ⊥. It turns out that in such
a case, the resulting output distribution is identical to the distribution of
{viewP

V ∗(G)}G∈HC . Namely,

Claim 2.5 The ensemble {ŜV ∗
(G, C)}G∈HC conditioned on it not being ⊥, is

identically distributed to the ensemble {viewP

V ∗(G)}G∈HC .

Proof: Notice that the first stage messages that appear in the output of the
“original” simulator (that is, S) are identically distributed to the first stage
messages that are produced by an honest prover P (since they are uniformly and
independently chosen). Since the first stage messages that appear in the output
of the “modified” simulator (that is, Ŝ) are identical to the ones appearing in
the output of S, we infer that they are identically distributed to the first stage
messages that are produced by an honest prover P . Using the fact that the
second stage messages that appear in the output of the “modified” simulator
are (by definition) identically distributed to the second stage messages that are
produced by an honest prover P , we infer that the ensemble {ŜV ∗

(G, C)}G∈HC

is identically distributed to {viewP

V ∗(G)}G∈HC .

As we will show in Proposition 2.7 below, Ŝ outputs ⊥ only with negligi-
ble probability. In particular, the ensemble {ŜV ∗

(G, C)}G∈HC is computation-
ally indistinguishable from (and in fact statistically close to) the ensemble
{ŜV ∗

(G, C)}G∈HC , conditioned on it not being ⊥. Namely,

Claim 2.6 The ensemble {ŜV ∗
(G, C)}G∈HC is computationally indistinguish-

able from the ensemble {ŜV ∗
(G, C)}G∈HC conditioned on it not being ⊥.

198 A. Rosen

As mentioned above, Claim 2.6 follows by establishing the following claim.

Claim 2.7 For any G = (V, E) ∈ HC, the probability that ŜV ∗
(G, C) = ⊥ is

negligible (in |V |).
Proof: Let G ∈ HC with n = |V |. We will show that for any choice of s ∈
{0, 1}poly(n) and (P1) the probability of Ŝ outputting ⊥ (over random choices
of (P2) = r ∈ {0, 1}k) is precisely 1/2k. Since k is super-logarithmic it will
immediately follow that the probability that ŜV ∗

(G, C) = ⊥ is negligible. Let
Ṽ ∗ = Ṽ ∗((P1), s) denote the “residual” strategy of V ∗ when 〈(P1), s〉 are fixed
(i.e., Ṽ ∗(G, r) def= V ∗(G, (P1), r; s)), and let ζ be as in Section 2.1. We then have:

Prr

[

ŜṼ ∗
(G, C) = ⊥

]

= Prr

[

ŜṼ ∗
(G, C) = ⊥ | Ŝ reaches (S3)

]

· Prr

[

Ŝ reaches (S3)
]

(1)

= Prr

[

ŜṼ ∗
(G, C) = ⊥ | Ŝ reaches (S3)

]

· ζ

= Prr

[

(P2) = (P2)j

]

· ζ (2)

Now, since (P2) and (P2)j are uniformly and independently chosen in {0, 1}k,
and since the number of r ∈ {0, 1}k for which Ṽ ∗(G, r) is not equal to ABORT is
precisely 2k · ζ, then it holds that Pr[(P2) = (P2)j] = 1/(2k · ζ). Using Eq. 2 we
infer that:

Prr

[

ŜṼ ∗
(G) = ⊥

]

=
1

2k · ζ
· ζ =

1
2k

as required.

It can be seen that Claims 2.4, 2.5 and 2.6 imply Proposition 2.3.

Acknowledgements. I would like to thank Oded Goldreich, Yehuda Lindell
and Moni Naor for helpful conversations on the subject.

References

1. B. Barak. How to go Beyond the Black-Box Simulation Barrier. In 42nd FOCS,
pages 106–115, 2001.

2. M. Blum. How to prove a Theorem So No One Else Can Claim It. Proc. of the
International Congress of Mathematicians, Berekeley, California, USA, pages 1444-
1451, 1986.

3. G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge.
JCSS, Vol. 37, No. 2, pages 156–189, 1988.

4. I. Damgard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding
Bit Commitment Schemes and Fail-Stop Signatures. In Crypto93, Springer LNCS
773, pages 250–265, 1993.

A Note on Constant-Round Zero-Knowledge Proofs for NP 199

5. U. Feige. Ph.D. thesis, Alternative Models for Zero Knowledge Interactive Proofs.
Weizmann Institute of Science, 1990.

6. O. Goldreich. Foundations of Cryptography – Basic Tools. Cambridge University
Press, 2001.

7. O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167–189, 1996.

8. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM J. Computing, Vol. 25, No. 1, pages 169–192, 1996.

9. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. Jour. of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

10. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput., Vol. 18, No. 1, pp. 186–208, 1989.

11. O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol.
38, No. 1, pages 691–729, 1991.

12. J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom
Generator from any One-Way Function. SIAM Jour. on Computing, Vol. 28 (4),
pages 1364–1396, 1999.

13. J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-
logarithmic Rounds. In 33rd STOC, pages 560–569, 2001.

14. D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent
Zero-Knowledge. In EUROCRYPT03, Springer LNCS 2656, pages 140–159, 2003.

15. M. Naor. Bit Commitment using Pseudorandomness. Jour. of Cryptology, Vol. 4,
pages 151–158, 1991.

16. M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments
for NP can be Based on General Assumptions. Jour. of Cryptology, Vol. 11, pages
87–108, 1998.

17. M. Naor and M. Yung. Universal One-Way Hash Functions and their Cryptographic
Applications. In 21st STOC, pages 33–43, 1989.

18. M. Prabhakaran and A. Rosen and A. Sahai. Concurrent Zero Knowledge with
Logarithmic Round-Complexity. In 43rd FOCS, pages 366-375, 2002.

19. R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge
Proofs. In EuroCrypt99, Springer LNCS 1592, pages 415–431, 1999.

A Definitions

A.1 Basic Notation

We let N denote the set of all integers. For any integer k ∈ N , denote by [k]
the set {1, 2, . . . , k}. For any x ∈ {0, 1}∗, we let |x| denote the size of x (i.e., the
number of bits used in order to write it). For two machines M, A, we let MA(x)
denote the output of machine M on input x and given oracle access to A. The
term negligible is used for denoting functions that are (asymptotically) smaller
than one over any polynomial. More precisely, a function ν(·) from non-negative
integers to reals is called negligible if for every constant c > 0 and all sufficiently
large n, it holds that ν(n) < n−c.

200 A. Rosen

A.2 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing
machines) [10,6] and arguments (a.k.a computationally-sound proofs) [3]. Given
a pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x) the
random variable representing the (local) output of V when interacting with
machine P on common input x, when the random input to each machine is
uniformly and independently chosen.

Definition A.1 (Interactive Proof System) A pair of interactive machines
〈P, V 〉 is called an interactive proof system for a language L if machine V is
polynomial-time and the following two conditions hold with respect to some neg-
ligible function ν(·):

– Completeness: For every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ 1 − ν(|x|)

– Soundness: For every x 	∈ L, and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a
computationally bounded prover, 〈P, V 〉 is called an interactive argument system.

A.3 Zero-Knowledge

Loosely speaking, an interactive proof is said to be zero-knowledge (ZK) if it
yields nothing beyond the validity of the assertion being proved. This is formal-
ized by requiring that the view of every probabilistic polynomial-time adversary
V ∗ interacting with the honest prover P can be simulated by a probabilistic
polynomial-time machine SV ∗ (a.k.a. the simulator). The idea behind this defi-
nition is that whatever V ∗ might have learned from interacting with P , he could
have actually learned by himself (by running the simulator S). The transcript
of an interaction consists of the common input x, followed by the sequence of
prover and verifier messages exchanged during the interaction. We denote by
viewP

V ∗(x) a random variable describing the content of the random tape of V ∗

and the transcript of the interaction between P and V ∗ (that is, all messages
that V ∗ sends and receives during the interaction with P , on common input x).

Definition A.2 (Zero-Knowledge) Let 〈P, V 〉 be an interactive proof system
for a language L. We say that 〈P, V 〉 is zero-knowledge, if for every probabilistic
polynomial-time interactive machine V ∗ there exists a probabilistic polynomial-
time algorithm SV ∗ such that the ensembles {viewP

V ∗(x)}x∈L and {SV ∗(x)}x∈L

are computationally indistinguishable.

A Note on Constant-Round Zero-Knowledge Proofs for NP 201

To make Definition A.2 useful in the context of protocol composition, Goldre-
ich and Oren [9] suggested to augment the definition so that the corresponding
conditions hold also with respect to all z ∈ {0, 1}∗, where both V ∗ and SV ∗ are
allowed to obtain z as auxiliary input. Jumping ahead, we comment that in the
context of black-box simulation,, the original definition implies the augmented
one (i.e., any black-box ZK protocol is also ZK w.r.t. auxuliary inputs). Since in
this work we only consider the notion of black-box ZK, we may ignore the issue
of auxiliary inputs while being guaranteed that all results hold with repsect to
the augmented definition as well.

A.4 Black-Box Zero-Knowledge

Loosely speaking, the definition of black-box zero-knowledge requires that there
exists a “universal” simulator, S, so that for every x ∈ L and every proba-
bilistic polynomial-time adversary V ∗, the simulator S produces a distribution
that is indistinguishable from viewP

V ∗(x) while using V ∗ as an oracle (i.e., in
a “black-box” manner). Essentially, the definition of black-box simulation says
that the black-box simulator mimics the interaction of the prover P with any
polynomial-time verifier V ∗ relative to any random input r it might choose. The
simulator does so merely by using oracle calls to V ∗(x; r) (which specifies the
next message that V ∗ sends on input x and random input r). The simulation is
indistinguishable from the true interaction even if the distinguisher (i.e., D) is
given access to the oracle V ∗(x; r). For more details see Section 4.5.4.2 of [6].

Definition A.3 (Black-Box Zero-Knowledge) Let 〈P, V 〉 be an interactive
proof system for a language L. We say that 〈P, V 〉 is black-box zero-knowledge, if
there exists a probabilistic polynomial-time algorithm S, so that for every proba-
bilistic polynomial-time interactive machine V ∗, the ensembles {viewP

V ∗(x)}x∈L

and {SV ∗
(x)}x∈L are computationally indistinguishable.

A.5 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit
itself to a value while keeping it secret from the receiver (this property is called
hiding). Furthermore, the commitment is binding, and thus in a later stage when
the commitment is opened, it is guaranteed that the “opening” can yield only a
single value determined in the committing phase.

Perfectly-binding commitments. In a perfectly binding commitment scheme,
the binding property holds even for an all-powerful sender, while the hiding
property is only guaranteed with respect to a polynomial-time bounded receiver.

Non-interactive perfectly-binding commitment schemes can be constructed
using any 1–1 one-way function (see Section 4.4.1 of [6]). Allowing interaction
(in which the receiver first sends a single message), (almost) perfectly-binding
commitment schemes can be obtained from any one-way function [15,12].

202 A. Rosen

Perfectly-hiding commitments. In a perfectly hiding commitment scheme,
the binding property is guaranteed to hold only with respect to a probabilistic
polynomial-time sender. On the other hand, the hiding property is information-
theoretic. That is, the distributions of commitments to 0 and commitments to 1
are identical (statistically-close), and thus even an all-powerful receiver cannot
know the value committed to by the sender. (See Section 4.8.2 of [6].)

Perfectly hiding commitment schemes can be constructed from any one-way
permutation [16]. However, constant-round schemes are only known to exist
under stronger assumptions; specifically, assuming the existence of collision-
resistant hash functions [17,4] or the existence of a collection of certified clawfree
functions [7] (see also [6], Section 4.8.2.3).

	Constructing a Constant-Round $cal ZK$ Proof for ${cal NP}$
	The New Protocol
	Zero-Knowledge

	Definitions
	Basic Notation
	Interactive Proofs
	Zero-Knowledge
	Black-Box Zero-Knowledge
	Commitment Schemes

