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This article focuses on the exact solution regarding convective heat transfer of a

magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of

joule and viscous dissipation, internal heat source/sink and thermal radiation on the

heat transfer characteristics are taken in account in the presence of a transverse mag-

netic field for two types of boundary heating process namely prescribed power law

surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations

are used to reduce the governing non-linear momentum and thermal boundary layer

equations into a set of ordinary differential equations. The exact solutions of the

reduced ordinary differential equations are developed in the form of confluent hy-

pergeometric function. The influence of the pertinent parameters on the temperature

profile is examined. In addition the results for the wall temperature gradient are also

discussed in detail. C 2015 Author(s). All article content, except where otherwise

noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4935571]

INTRODUCTION

It is well known that investigation regarding boundary layer flows over continuous stretching

surfaces finds numerous important applications occurring in many engineering process. Drawing of

plastic films and wires, manufacture of foods, crystal growing, liquid films in condensation process

etc. are a few examples of practical importance. Further it has several practical applications in the

field of metallurgy and chemical engineering such as extrusion process, heat materials traveling

between a feed roll and a wind up roll. Sakiadis1,2 performed the pioneering works by studying

the flow induced by a moving surface. The closed form exponential solution for the flow by a

linear stretching is examined by Crane.3 Later on Vajravelu and Roper4 analyzed the flow and heat

transfer over a stretching sheet with prescribed surface temperature. Many researchers investigated

the stretching sheet problems by considering different effects (some studies can be cited5–9).

A considerable interest has been revealed by different researchers in studying the flow and heat

transfer of an electrically conducting and heat generating fluid due to its important applications in

the process of purification of molten metals from non-metallic inclusions. In polymer technology

and specific metallurgical operations the rate of cooling of continuous stretched strips is controlled

by applying the principles of MHD techniques. This application is well marked in case of drawing,

annealing, and thinning of copper wires. Chen10 examined the combined effects of viscous dissipa-

tion joule heating for the momentum and thermal transport of MHD Newtonian fluid. Liu11 studied

the flow and heat transfer in an electrically conducting second grade fluid with transverse magnetic

field with power law surface temperature. Parida et al.12 have examined the MHD heat and mass
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transfer in a rotating system with periodic suction. Anjli devi and Ganja13 have studied the MHD

flow over a stretching porous surface with viscous dissipation.

At high operating temperatures in engineering process radiation may play a dynamic role under

many non-isothermal situations. In polymer processing industry if the entire system involving the

polymer extrusion process is placed in a thermally controlled environment then thermal radiation

might be great important in controlling heat transfer process. Hayat et al.14 studied the radiative

flow of Jeffrey fluid in a porous medium with power law heat flux and heat source. Vyas and

Rai15 examined Radiative flow with variable thermal conductivity over a non-isothermal stretching

sheet in a porous medium. Singh16 studied the magneto convection flow of viscoelastic fluid over

stretching sheet with heat source and radiation effects. Many other researchers have studied the flow

and heat transfer of fluids by taking the radiation heat source/sink effects.17–21

Motivated by above studies we intend to investigate the flow and heat transfer of an MHD

Jeffrey fluid over a stretching sheet subject to power law temperature in the heat source/ sink

with radiation. Also we are considering two general cases of non-isothermal boundary conditions,

namely (1) the sheet with prescribed power law surface temperature (PST case) (2) and the sheet

with prescribed power law heat flux (PHF case). Using appropriate similarity transformations the

highly non-linear partial differential equations are reduced to a set of non-linear ordinary differential

equations. We derived closed form analytical solution for non-dimensional velocity and temper-

ature distribution in the form of confluent hypergeometric function (Kummer’s function).22 The

effects of non-dimensional parameters, magnetic number, Eckert number, radiation parameter, heat

source/sink parameter and Deborah number on the temperature profile are explored graphically and

discussed in details.

MATHEMATICAL FORMULATION

The constitutive equations for a Jeffrey fluid are given by23

τ = −pI + S, (1)

with S as the extra stress tensor defined by

S =
µ

1 + λ


R1 + λ1

(

∂R1

∂t
+ V.∇

)

R1


, (2)

where τ is the Cauchy stress tensor, p the pressure, µ the dynamic viscosity, λ and λ1 are the

material parameters of the Jeffrey fluid and R1 the Rivlin-Ericksen tensor defined by

R1 = (∇V ) + (∇V )t . (3)

We consider the steady two dimensional boundary layer flow of an electrically conducting Jeffrey

fluid past a stretching sheet in the presence of heat source and chemical reaction. The flow is gener-

ated due to linear stretching of the sheet caused by simultaneous application of equal and opposite

forces along the x -axis while keeping the origin fixed (Fig. 1). A uniform magnetic field of strength

Bo is imposed to the flow perpendicular to the sheet.

The boundary layer equations which govern the flow and heat transfer of a Jeffrey fluid over a

stretching surface are

∂u

∂x
+

∂v

∂ y
= 0, (4)

u
∂u

∂x
+ v

∂u

∂ y
=

υ

1 + λ


∂2u

∂ y2
+ λ1

(

u
∂3u

∂x∂ y2
+ v

∂3u

∂ y3
−

∂u

∂x

∂2u

∂ y2
+

∂u

∂ y

∂2u

∂x∂ y

)
−
σB2

o

ρ
u, (5)

ρcp

(

u
∂T

∂x
+ v

∂T

∂ y

)

= k
∂2T

∂ y2
+

µ

1 + λ


(

∂u

∂ y

)2

+ λ1

∂u

∂ y

∂

∂ y

(

u
∂u

∂x
+ v

∂u

∂ y

)
+q (T − T∞) + σB2

ou2 −
∂qr

∂ y
, (6)
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FIG. 1. Schematic diagram of flow towards a stretching sheet.

where u and v are the velocity components in the x and y direction respectively, T the fluid temper-

ature, υ the kinematic viscosity, ρ the fluid density, cp the specific heat λ indicates the ratio of

relaxation and retardation times and λ1 the relaxation time, qr the radiative heat flux and q is the

rate of volumetric heat generation/absorption. The last three terms in Eq. (6) are the work done

due to deformation, internal heat generation/absorption and the Joule heating. By using Rosseland

approximation for thermal radiation24 the radiative heat flux can be written as

qr = −
4σ1

3αR

∂T4

∂ y
, (7)

where σ1 and αr are the Stephan-Boltzmann constant and the mean absorption coefficient. We

assume that the difference in the temperature within the flow is such that T4 can be expressed as

a linear combination of the temperature. This can be accomplished by expanding T4 in the Taylor

series about T∞ and neglecting the higher order terms as

T4
� 4T3

∞T − 3T4
∞. (8)

Using Eq. (7) in Eq. (6), the energy equation becomes

u
∂T

∂x
+ v

∂T

∂ y
=

k

ρcp

∂2T

∂ y2
+

µ

ρcp(1 + λ)


(

∂u

∂ y

)2

+ λ1

∂u

∂ y

∂

∂ y

(

u
∂u

∂x
+ v

∂u

∂ y

)
+

q

ρcp
(T − T∞) +

σB2
o

ρcp
u2 +

16σ1T
3
∞

3ρcpαR

∂2T

∂ y2
. (9)

In this paper we intend to investigate the thermal transport phenomenon for two non-isothermal

conditions, namely prescribed surface temperature (PST) and prescribed surface heat flux (PHF).

Correspondingly, we consider the following boundary conditions for the flow and temperature

u = uw = cx, v = 0, at y = 0, (10)

u = 0,
∂u

∂ y
→ 0 as y → ∞ (11)

T = Tw(x) = T∞ + A1

(

x

l

)2

PST case

qw(x) = −k
∂T

∂ y
= A2

(

x

l

)2

PHF case


at y = 0 (12)

T → T∞ as y → ∞, (13)
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where A1 and A2 are the constants depending upon the properties of the fluid, l the characteristic

length, Tw and T∞ are the temperatures at the wall and far away from the wall respectively.

SOLUTION OF THE FLOW FIELD

To facilitate the analysis we introduce the following similarity transformation and dimension-

less variable

η =



c

υ
y, u = cxf ′(η), v = −

√
cυ f (η). (14)

The governing equation of motion (4) reduces to

f ′′′ + (1 + λ)
�
ff ′′ − f ′2

�
+ β

�
f ′′2 − ff iv

�
−Mf ′ = 0, (15)

where prime denotes differentiation with respect to η. Furthermore β = λ1c is the Deborah number

and M =
σB2

o

ρc
the magnetic parameter. The corresponding boundary conditions are then

f ′(η) = 1, f (η) = 0 at η = 0, (16)

f ′(η)→ 0 as η → ∞. (17)

Lawrence and Rao25 have given a general method and obtained all non-unique solution of the

reduced Eq. (14), among all these solutions of the form, we consider the realistic solution of the

form

f (η) =
1 − exp (−αη)

α
, (18)

where

α =



1 + λ + M

1 + β
. (19)

SOLUTION OF THE TEMPERATURE FIELD

Case 1: Prescribed surface temperature (PST)

In PST case we define the following dimensionless temperature variable as

T(η) = T∞ + ∆T θ(η), (20)

with ∆T = Tw − T∞. The dimensionless energy equation can be written as

(1 + N) θ ′′ + Pr f θ ′ + Pr (Q − 2 f ′) θ = −Pr Ec


M f ′2 +

1

1 + λ

�
f ′′2 + β f ′′

�
f ′ f ′′ − f f iv

��
, (21)

subject to the boundary conditions

θ(0) = 1, θ(∞) = 0, (22)

here the dimensionless parameters Pr, N , Q and Ec are the Prandtl number, radiation parameter,

internal heat generation/absorption parameter and Eckert number, respectively and are defined as

Pr =
ρcpν

k
, N =

16σ1T
3
∞

3αRk
, Q =

q

cρcp
, Ec =

c2l2

A1cp
. (23)

By introducing the new variable

ξ = −Pr∗e−αη, (24)
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where Pr∗ = Pr

α2(1+N )
is the modified Prandlt number. Making use of Eqs. (18) and (24) in Eqs. (21)

and (22) the transform problem is

ξ
d2θ

dξ2
+ (1 − Pr∗ − ξ)

dθ

dξ
+

(

2 +
Pr∗Q

ξ

)

θ = −
Ecα

2

Pr∗

(

M

α2
+

1

1 + λ
(1 + β)

)

, (25)

θ (ξ = −Pr∗) = 1, θ(ξ = 0) = 0. (26)

Eqs. (25) and (26) constitute a non- homogeneous boundary value problem. Denoting the solution

of homogenous part of Eq. (25) by θc and non-homogenous part by θp, so we can write

θ(ξ) = θc(ξ) + θp(ξ). (27)

A closed form particular solution of Eq. (24) can be written as

θp(ξ) = −
Ec Pr

(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)

(

ξ

Pr∗

)2

, (28)

Making use of the boundary condition (26) the homogenous part of the temperature can be written

in the form of confluent hypergeometric function (Kummer’s function) as

θc(ξ) = C1M (χ − 2, Z + 1, ξ) . (29)

Using the boundary conditions (26) the solution of the Eq. (25) is determined to be

θ(ξ) =
*.,1 +

Ec Pr
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)

+/-
(

ξ

−Pr∗

) χ
M (χ − 2, Z + 1, ξ)

M (χ − 2, Z + 1, −Pr∗ )
−

Ec Pr
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)

(

ξ

Pr∗

)2

, (30)

where

χ =
Pr∗ +



(Pr∗)2 − 4Pr∗Q

2
, Z =



(Pr∗)2 − 4Pr∗Q, (31)

and M(a◦, b◦, ξ) is the Kummer’s function (Abramowitz and Stegun22) and it is defined as

M(a◦, b◦, ξ) = 1 +

∞


n=1

(a◦)nξ
n

(b◦)nn!
, (32)

(a◦)n = a◦(a◦ + 1)(a◦ + 2) · · · (a◦ + n − 1),

(b◦)n = b◦(b◦ + 1)(b◦ + 2) · · · (b◦ + n − 1).

The temperature profile in term of η can be written by invoking Eq. (24) in Eq. (30),

θ(η) =
*.,1 +

Ec Pr
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)

+/- e−χαη
M (χ − 2, Z + 1, −Pr∗e−αη)

M (χ − 2, Z + 1,−Pr∗ )
−

E Pr
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)
e−2αη. (33)

Note that this solution also satisfies the boundary conditions given in Eq. (22)

The local Nusselt number is defined as

Nux =
hx

k
=

qw

Tw − T∞

x

k
. (34)

In terms of dimensionless parameters it reduces to

NuxRe
−1
2
x = −θ ′(0). (35)
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The dimensionless wall temperature gradient can be written as

θ ′(0) = α
*.,1 +

Ec Pr
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)

+/-

Pr∗

(

χ − 2

Z + 1

)

M (χ − 1, Z + 2, −Pr∗)

M (χ − 2, Z + 1,−Pr∗ )
− χ



+2α
Ec Pr

(

1 + M

α2

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)
. (36)

Case 2: Prescribed heat flux (PHF)

In PHF case we define the following dimensionless temperature variable as

Φ =
T − T∞

qwx/k
Re

1
2
x . (37)

The transformed energy equation along with the boundary conditions can be written as

(1 + N) Φ′′ + Pr fΦ′ + Pr (Q − 2 f ′) Φ = −Pr Ec


M f ′2 +

1

1 + λ

�
f ′′2 + β f ′′ ( f ′ f ′′ − f f ′′′)

�
,

(38)

Φ
′(0) = −1, Φ(∞) = 0, (39)

where the Eckert number in PHF case is defined as Ec = kc2l2
√

c/υ/A2cp while the other parame-

ters are same as defined in PST case. Making use of Eqs. (18) and (24) in Eqs. (38) and (39) we

obtained the following

ξ
d2
Φ

dξ2
+ (1 − Pr∗ − ξ)

dΦ

dξ
+

(

2 +
Pr∗Q

ξ

)

Φ = −
Eα2

Pr∗

(

M

α2
+

1

1 + λ
(1 + β)

)

, (40)

Φ (ξ = −Pr∗) = −
1

αPr∗
, Φ(ξ = 0) = 0. (41)

The analytical solution of Eq. (40) subject to the boundary condition in Eq. (41) by following the

same procedure as describe in PST case, is given by

Φ(ξ) =

*,2
Ec Pr

(

M

α2
+ 1

1+λ
(1+β)

)

(1+N ) (4−2Pr∗+Pr∗Q)
+ 1/α+-

(

ξ

−Pr∗

) χ
M (χ − 2, Z + 1, ξ)

χM (χ − 2, Z + 1, −Pr∗) − Pr∗
(

χ−2

Z+1

)

M (χ − 1, Z + 2, −Pr∗)
−

Ec Pr
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)

(

ξ

Pr∗

)2

. (42)

The temperature profile in term of η can be written by substituting Eq. (24) in Eq. (42)

Φ(η) =

*,2
Ec Pr

(

M

α2
+ 1

1+λ
(1+β)

)

(1+N ) (4−2Pr∗+Pr∗Q)
+ 1/α+- e−χαηM (χ − 2, Z + 1, −Pr∗e−αη)

χM (χ − 2, Z + 1, −Pr∗) − Pr∗
(

χ−2

Z+1

)

M (χ − 1, Z + 2, −Pr∗)
−

EcPr∗
(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)
e−2αη. (43)
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The expression for the dimensionless wall temperature is obtained as

Φ(0) =

*,2
Ec Pr

(

M

α2
+ 1

1+λ
(1+β)

)

(1+N ) (4−2Pr∗+Pr∗Q)
+ 1/α+- M (χ − 2, Z + 1, −Pr∗)

χM (χ − 2, Z + 1, −Pr∗) − Pr∗
(

χ−2

Z+1

)

M (χ − 1, Z + 2, −Pr∗)

−
Ec Pr

(

M

α2 +
1

1+λ
(1 + β)

)

(1 + N) (4 − 2Pr∗ + Pr∗Q)
. (44)

For PHF case the local Nusselt number can be expressed as

NuxRe
−1
2
x = 1/Φ(0). (45)

RESULTS AND DISCUSSION

In this article an MHD boundary layer problem for momentum and heat transfer in Jeffrey

fluid flow over a non-isothermal stretching sheet in the presence of dissipative energy, thermal

radiation and internal heat source/ sink is investigated. The highly non-linear governing partial

differential equations are reduced into a set of non-linear ordinary differential equations by applying

suitable similarity transformations and their analytic solutions are obtained in the form of confluent

hypergeometric function.

This section highlights the influence of pertinent parameters on the temperature profiles.

Figures 2(a) and 2(b) describe the effect of ratio of relaxation and retardation times parameter λ

on temperature profiles θ(η) and Φ(η) in both PST and PHF cases, respectively for the selected

values of Pr, M , Q, N , Ec and β. It is quite clear that an increase in the value of λ results in an

increase in the temperature profiles θ(η) and Φ(η) for both PST and PHF cases. Thus broadened

the thermal boundary layer thickness such that the wall temperature gradient decreases in PST case

and the surface temperature increases in PHF case. In order to see the effects of Eckert number Ec

figures 3(a) and 3(b) are displayed for both PST and PHF cases on the temperature distribution θ(η)

and Φ(η). It is evident from these figures that the thermal boundary is enhanced by increasing the

values of Eckert number Ec so the dissipative energy becomes more important with an enlargement

of temperature profile. Also the energy dissipation represents an increase in temperature gradient in

PST case and the wall temperature in PHF case. Figures 4(a) and 4(b) are plotted to see the effects

of radiation parameter N on the temperature profiles θ(η) and Φ(η) for both PST and PHF cases.

It is obvious that by increasing the radiation parameter N the temperature profiles increases in both

cases. Thus the thermal boundary layer thickness enhanced in the presence of thermal radiation

such that the wall temperature decreases in PST case and the surface temperature increases in PHF

case. This result indicates that thermal radiation is to reduce the heat transfer rate. The influence of

heat generation/absorption parameter Q on the temperature profiles θ(η) and Φ(η) is displayed in

figures 5(a) and 5(b) for both PST and PHF cases respectively. It is worth noting that for the case

of Q > 0 the energy may generates in the boundary layer, in consequences, the temperature profiles

FIG. 2. Influence of λ on the temperature profiles: (a) θ(η) for PST case and (b) Φ(η) for PHF case.
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FIG. 3. Influence of the Eckert number Ec on the temperatures profiles: (a) θ(η) for PST case and (b) Φ(η) for PHF case.

FIG. 4. Influence of N on the temperature profiles: (a) θ(η) for PST case and (b) Φ(η) for PHF case.

FIG. 5. Influence of Q on the temperature profiles: (a) θ(η) for PST case and (b) Φ(η) for PHF case.

θ(η) and Φ(η) of the fluid temperature will increase. In the other hand, for Q < 0 (heat sink) energy

absorbs in the boundary layer which causes the temperature profile θ(η) and Φ(η) to decreases in

both PST and PHF cases. The effects of the magnetic number M on temperature profile for both

PST and PHF cases are plotted in figures 6(a) and 6(b). An increase in the magnetic number M

enhances the boundary layer thickness for both cases. Which occurs due to the fact that a resistive

Lorentz force is produced by applying the transverse magnetic field to the electrically conducting

fluid. This force has a tendency to slow down the motion of the fluid in the boundary layer and

increases the temperature distribution. Figures 7(a) and 7(b) demonstrate the effects of Deborah

number β on the temperature distribution θ(η) and Φ(η) respectively. For both PST and PHF cases,

keeping different values of other parameters fixed. As we increase the value of Deborah number β

the temperature distribution θ(η) and Φ(η) decreases in both PST and PHF cases. Since the Deborah

number β depend on the retardation time λ1 , physically a large retardation time of any material

makes it less viscous, which may results an increase in its motion, which consequently reduces the

thermal boundary layer thickness and temperature distribution.

Table I displays the effect of various parameters on dimensionless temperature at the wall.

From this table we can observe that an increasing values of the magnetic parameter M, heat genera-

tion/absorption parameter Q, Eckert number Ec, relaxation times parameter λ, and radiation number
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FIG. 6. Influence of M on temperature profiles: (a) θ(η) for PST case and (b) Φ(η) for PHF case.

FIG. 7. Influence of β on temperature profiles: (a) θ(η) for PST case and (b) Φ(η) for PHF case.

TABLE I. Wall temperature gradient θ′(0) for PST case and wall temperature Φ(0) for PHF case.

M Q E β λ N Pr

−θ′(0)
PST case

Φ(0)

PHF case

0.3 0.1 0.1 0.1 0.2 0.2 1 1.04481 0.95875

0.5 1.00949 0.99104

0.7 0.97464 1.02458

0.3 -0.1 1.15458 0.87057

0.0 1.10430 0.90889

0.1 1.04481 0.95875

0.3 0.1 0.0 1.08648 0.92040

0.2 1.00314 0.99711

0.4 0.91978 1.07383

0.3 0.1 0.1 0.0 1.02542 0.97616

0.3 1.07510 0.93288

0.6 1.10750 0.90686

0.3 0.1 0.1 0.1 0.0 1.06961 0.93754

0.4 1.01989 0.98121

0.8 0.96770 1.03219

0.3 0.1 0.1 0.1 0.2 0.0 1.18053 0.85308

0.3 0.98829 1.01140

0.6 0.84836 1.17204

0.3 0.1 0.1 0.1 0.2 0.2 0.7 0.80269 1.23660

1.0 1.04481 0.95875

1.2 1.18053 0.853084
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N is to increase the wall temperature gradient θ ′(0) in PST case and the wall temperature Φ(0) in

PHF case. Also we observe that the effect of Deborah number β is to increase the wall temperature

gradient θ ′(0) in PST case and the wall temperature Φ(0) in PHF case.

The influence of Nusselt number in terms of −θ ′(0) in PST case and 1/Φ(0) in PHF case with

different values observed through Table I. A remarkable decrease is noticed in the value of Nusselt

number with an increase in the value of magnetic parameter M for both PST and PHF cases. The

effect of heat source/ sink parameter Q is noticed. The heat transfer rate increases as Q < 0 and

decreases as Q > 0. An increasing value of Eckert number Ec results a decrease in heat transfer

rate for both cases. This is due to the fact that large value of Eckert number Ec indicates more

energy dissipating in the boundary layer, consequently the fluid temperature increases and the heat

transfer rate decreases. A decreasing effect in the value of Nusselt number is observed by increasing

the value of radiation parameter N . Furthermore, by increasing the value of Prandtl number Pr the

Nusselt number increases. As the fluid with larg-e Prandtl number Pr has higher heat capacity and

hence increases the heat transfer rate. Moreover, a decrease in the heat transfer rate is seen from the

Table I with an increase in the values of ratio of relaxation and retardation times parameter λ, while

a quite opposite trend is observed in case of Deborah number β.

CONCLUDING REMARKS

An analytic investigation has been carried out on an MHD Jeffrey fluid past over a stretching

sheet with viscous dissipation as well as energy dissipation due to joule heating, internal heat gener-

ation/absorption and thermal radiation. By invoking suitable transformation highly nonlinear partial

differential equations were reduced into non-linear ordinary differential equation. The closed form

solution of the reduced heat equation is obtained in the form of Kummer’s function for two types

of thermal boundary condition that is prescribed surface temperature (PST) and prescribed heat

flux (PHF). The effects of various physical parameters such as magnetic field, thermal radiation,

heat source/sink, Eckert number, relaxation time parameter on thermal behavior are examined and

discussed graphically in details.
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