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Abstract—We establish a link between classical osculatory interpolation and modern convolution-
based interpolation and use it to show that two well-known cubic convolution schemes are formally
equivalent to two osculatory interpolation schemes proposed in the actuarial literature about a cen-
tury ago. We also discuss computational differences and give examples of other cubic interpolation
schemes not previously studied in signal and image processing.

I Introduction

Polynomial interpolation methods have been studied quite extensively in the signal and
image processing literature of the past three decades [7,8,14]. An example of such methods
is Lagrange central interpolation of given, fixed degree, which is known to yield interpolants
that are not continuously differentiable [10,11]. In order to obtain smoother interpolants,
as may be required for some applications, several alternative interpolation methods have
been proposed. Popular examples of these are the so-called cubic convolution interpolation
methods, of which the ones proposed by Keys [5] are the most well known.

It is probably less well known that methods for obtaining smooth interpolants have
been developed in other areas of applied mathematics since the second half of the nine-
teenth century. In this brief note we establish a link between classical osculatory interpo-
lation and modern convolution-based interpolation and use it to show that both of Keys’
cubic convolution schemes are formally equivalent to particular osculatory interpolation
schemes proposed around the beginning of the twentieth century. We also discuss their
computational differences and give explicit forms of the kernels that follow from other
cubic osculatory interpolation schemes.

II Convolution-Based Interpolation

Convolution-based interpolation of uniformly sampled data implies the use of an inter-
polation kernel ϕ : R → R, which determines the weights to be assigned to the samples
fk = f(kT ) of an original function f : R → R in computing the value of the interpolant
f̃ at any arbitrary x ∈ R. For ease of notation, but without loss of generality, we will
use T = 1 in the remainder of this paper. In that case, the process may be described
mathematically as

f̃(x) =
∑

k∈Z

fk ϕ(x − k). (1)

As can readily be observed from this equation, it is necessary that in order for f̃ to be
an interpolant, the kernel ϕ must satisfy the criteria ϕ(0) = 1 and ϕ(k) = 0, ∀k �= 0. A
well-known example of such a kernel is the theoretically ideal, but computationally very
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unattractive sinc function. Other examples are the computationally very attractive, but
theoretically far from ideal nearest-neighbor and linear interpolation kernel.

A considerably better trade-off between computational cost and accuracy is provided
by the family of cubic convolution kernels, an example of which was used first in 1973
by Rifman [9]. These kernels consist of piecewise third-degree polynomials and are once
continuously differentiable. Of special interest are the kernels proposed in 1981 by Keys [5],
since they generally yield more accurate results than other kernels of the family. The
first has an approximation order of L = 3, which implies that the resulting interpolant
converges to the original function as fast as the third power of the intersample distance.
It also implies that the kernel is capable of reproducing polynomials up to second degree.
This so-called third-order cubic convolution kernel—in computer graphics also known as
the Catmull-Rom spline [1]—is defined as

ϕCC3(x) =






3
2 |x|3 − 5

2 |x|2 + 1 if 0 � |x| � 1,

−1
2 |x|3 + 5

2 |x|2 − 4|x| + 2 if 1 � |x| � 2,

0 if 2 � |x|.
(2)

By extending the support of the kernel, while keeping the highest degree of the poly-
nomial pieces to n = 3, Keys [5] also obtained a cubic convolution kernel with order of
approximation L = 4. This so-called fourth-order cubic convolution kernel is defined as

ϕCC4(x) =






4
3 |x|3 − 7

3 |x|2 + 1 if 0 � |x| � 1,

− 7
12 |x|3 + 3|x|2 − 59

12 |x| + 5
2 if 1 � |x| � 2,

1
12 |x|3 − 2

3 |x|2 + 7
4 |x| − 3

2 if 2 � |x| � 3,

0 if 3 � |x|.

(3)

III Osculatory Interpolation

Osculatory interpolation has been described as that form of interpolation in which one
employs in a sequence of interpolation intervals a corresponding sequence of interpolation
curves forming a composite curve which, together with a specified number of its derivatives,
is continuous throughout the range of interpolation [2]. Such interpolation schemes have
been developed since the second half of the nineteenth century, primarily in the actuarial
literature, and an overview of many of them was given as early as 1944 by Greville [2].

A convenient form in which to express osculatory interpolation formulae is the so-
called Everett form, since it involves only the even-order central differences of the two
given samples determining the interval in which to interpolate:

f̃(x) = f̃(k + ξ) = F (ξ, δ)fk+1 + F (1 − ξ, δ)fk, (4)

with k = �x�, 0 � ξ � 1, and F (x, δ) =
∑imax

i=0 Fi(x)δ2i for some imax, where the Fi

are suitably chosen polynomial functions in x such that the resulting interpolant satisfies
prespecified criteria concerning its order of approximation and smoothness in terms of
continuous differentiability. Here, the pth-order central difference δp of any function g is
defined as δpg(x) = δp−1g(x + 1

2) − δp−1g(x − 1
2), with δg(x) = g(x + 1

2) − g(x − 1
2).

An example of an osculatory interpolation formula is the one described by Karup [4]
in 1899 and independently by King [6] in 1907, which is obtained from (4) by taking [2,13]

F (x, δ) = FKK(x, δ) = x + 1
2x2(x − 1)δ2. (5)



IV Establishing the Link PP-3

Similar to third-order cubic convolution, it yields a continuously differentiable third-degree
piecewise polynomial interpolant and is capable of reproducing polynomials up to second
degree. A second example is the formula proposed by Henderson [3] in 1906, which is
obtained from (4) by taking [2]

F (x, δ) = FH(x, δ) = x + 1
6x(x2 − 1)δ2 − 1

12x2(x − 1)δ4. (6)

Similar to fourth-order cubic convolution, this scheme yields a continuously differentiable
third-degree piecewise polynomial interpolant and is capable of reproducing polynomials
up to third degree.

IV Establishing the Link

In his 1946 landmark paper [12] on the approximation of equidistant data by analytic func-
tions, in which he introduced the special type of osculatory interpolation known as spline
interpolation, Schoenberg also studied previously given classical interpolation schemes and
pointed out that these interpolation schemes too may be written in the form (1), where
the hidden kernel h reveals itself as the response to the discrete impulse function defined
by f0 = 1 and fk = 0, ∀k �= 0. Using this approach, he obtained the Lagrange central
interpolation kernels and also the kernel involved in an osculatory interpolation scheme
due to Jenkins [2, 12].

By proceeding in a similar fashion, we may obtain a general expression for the hidden
kernels of osculatory interpolation schemes. To this end we use the expansion

δ2ifk =
2i∑

m=0

(
2i
m

)
(−1)mfk−m+i , (7)

which holds for all i � 0 integer. Substituting this expansion into (4) and using the general
expression for F (x, δ), we obtain

f̃(x) = f̃(k + ξ) =
imax∑

i=0

2i∑

m=0

(
2i
m

)
(−1)m

(
Fi(ξ)fk−m+i+1 + Fi(1 − ξ)fk−m+i

)
. (8)

Substituting ξ = x− k = β1(1− x + k) and 1− ξ = 1− x + k = β1(x− k), where β1(x) is
the linear interpolation kernel, or first-degree B-spline [8, 12,14], and using the facts that
β1(−x) = β1(x), ∀x ∈ R, β1(x) = 0, ∀|x| � 1, and Fi(0) = 0, ∀i, we find that the two
terms between square brackets in (8) may be combined to

∑
l∈Z

Fi

(
β1(x−k− l)

)
fk−m+i+l,

so that we obtain the following expression for the impulse response, i.e., the kernel:

ϕ(x) =
imax∑

i=0

2i∑

m=0

(
2i
m

)
(−1)mFi

(
β1(x − m + i)

)
. (9)

By taking imax = 1, F0(x) = x, and F1(x) = 1
2x2(x− 1), it now easily follows from (9)

that the kernel involved in the Karup-King type of osculatory interpolation is precisely (2).
Similarly, taking imax = 2, F0(x) = x, F1(x) = 1

6x(x2 − 1), and F2(x) = − 1
12x2(x − 1), we

find that the kernel involved in Henderson’s type of osculatory interpolation is precisely (3).
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V Discussion

From our analysis in the previous section it follows that Karup-King osculatory interpo-
lation is formally equivalent to Keys third-order cubic convolution interpolation. Since
the third-order cubic convolution kernel defined by Keys is a special case of an infinitely
large family of cubic interpolation kernels having the same properties in terms of approx-
imation order and regularity, this is a rather surprising result. The same can be said
about the equivalence of Henderson osculatory interpolation and Keys fourth-order cubic
convolution interpolation.

Notwithstanding their formal equivalence, however, it will be clear that the schemes
are rather different from a computational perspective. Comparison of (1) and (2) versus
(4) and (5), for example, shows that for a single interpolation, Keys’ third-order cubic
convolution scheme requires the evaluation of four cubic polynomials, compared to two
cubic and two linear polynomials in the case of Karup-King osculatory interpolation.
Working out the details, it follows that for a separable interpolation operation the former
scheme requires a minimum of 23 floating-point operations (flops) per pixel per dimension,
whereas the latter requires only 13. In the more complex case of Keys’ fourth-order cubic
convolution scheme and Henderson’s osculatory interpolation scheme it follows that the
number of flops is 37 for the former versus 30 for the latter. In the more general case of
nonseparable operations, the gain can be made even higher if the central difference values
are precomputed. This, however, requires more computer memory. It appears therefore
that the osculatory equivalents of convolution-based interpolation schemes allow for faster
though more memory demanding algorithms.

Furthermore we note that the schemes of Karup-King and Henderson are but two exam-
ples of the numerous osculatory interpolation schemes discussed by Greville [2]. Although
a full-fledged study of these schemes is outside the scope of the present correspondence, it
may be worthwhile to give explicit forms and properties of other interesting cubic inter-
polation kernels that follow from them. To the best of our knowledge, these kernels have
not been investigated before in the signal and image processing literature.

As a first example we mention the scheme—apparently also due to Henderson—given
by F0(x) = x and F1(x) = −6F2(x) = 1

6x(x2 − 1). Applying (9) we find that its kernel is

ϕ(x) =






7
9 |x|3 − 3

2 |x|2 − 5
18 |x| + 1 if 0 � |x| � 1,

−11
36 |x|3 + 7

4 |x|2 − 28
9 |x| + 5

3 if 1 � |x| � 2,
1
36 |x|3 − 1

4 |x|2 + 13
18 |x| − 2

3 if 2 � |x| � 3,

0 if 3 � |x|.

(10)

This kernel shares the property with the Keys-Henderson fourth-order kernel (3) that its
support is [−3, 3] and its order of approximation L = 4. Its regularity, however, is only
C0, similar to the cubic Lagrange central interpolation kernel [10,11].

A second scheme mentioned by Greville is given by F0(x) = x, F1(x) = x(x−1)
(
(2α+

1
2)x − α

)
, and F2(x) = 1

2αx2(x − 1). Because of its free parameter, α, it constitutes a
whole family of cubic interpolation kernels, the general form of which follows from (9) as

ϕ(x) =






(α + 3
2)|x|3 − (α + 5

2 )|x|2 + 1 if 0 � |x| � 1,
1
2(α − 1)|x|3 − (3α − 5

2 )|x|2 + (11
2 α − 4)|x| − (3α − 2) if 1 � |x| � 2,

−1
2α|x|3 + 4α|x|2 − 21

2 α|x| + 9α if 2 � |x| � 3,

0 if 3 � |x|.
(11)
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Analyzing (11) we observe that the family includes both Keys’ third-order kernel (2) and
his fourth-order kernel (3), respectively corresponding to α = 0 and α = −1

6 . For any
α ∈ R, the resulting kernel has at least regularity C1 and approximation order L = 3.

Finally we mention the even more general, two-parameter scheme given by F0(x) = x,
F1(x) = x(x − 1)

(
(2α + 1

2 )x − α
)
, F2(x) = x

(
(1
2α + 2β)x2 − (1

2α + 3β)x + β
)
, and

F3(x) = 1
2βx2(x−1). The general form of the family of kernels following from this scheme is

ϕ(x) =






(α − 5
2β + 3

2 )|x|3 − (α − 5
2β + 5

2 )|x|2 + 1 if 0 � |x| � 1,
1
2(α − β − 1)|x|3 − (3α − 9

2β − 5
2)|x|2 + (11

2 α − 10β − 4)|x| − (3α − 6β − 2) if 1 � |x| � 2,

−1
2(α − 3β)|x|3 + (4α − 25

2 β)|x|2 − (21
2 α − 34β)|x| + (9α − 30β) if 2 � |x| � 3,

−1
2β|x|3 + 11

2 β|x|2 − 20β|x| + 24β if 3 � |x| � 4,

0 if 4 � |x|.
(12)

Similar to the previously mentioned kernel, (11), which corresponds to the special case
β = 0, this kernel has at least regularity C1 and approximation order L = 3.

VI Conclusions

In this correspondence we have derived a general expression for the kernels implicitly in-
volved in classical osculatory interpolation schemes. Using this formula we have shown
that the still popular cubic convolution kernels described by Keys [5] twenty years ago
are precisely the kernels involved in the osculatory interpolation schemes proposed by
Karup and King [4, 6] and Henderson [3] around 1900. We have also discussed their
computational differences, from which we conclude that the osculatory versions are com-
putationally cheaper, but require additional memory. Finally we have given the explicit
forms and properties of other cubic convolution interpolation kernels implicitly used in
the actuarial literature for a long time now, but which to the best of our knowledge have
not been investigated before in the context of signal and image processing. Further study
will be required to reveal the suitability of these kernels and the optimal values of their
free parameters for specific applications.
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