A NOTE ON *d*-IDEALS IN SOME NEAR-ALGEBRAS

SADAYUKI YAMAMURO

(Received 26 April 1966)

Let E be a real Banach space. The set of all continuous linear mappings of E into E is a Banach algebra under the usual algebraic operations and the operator bound as norm. We denote this Banach algebra by \mathcal{L} , if E is a separate Hilbert space.

It has been proved by Calkin [1] that the set of all compact linear mappings of E into E is the only closed (2-sided) ideal of \mathcal{L} .

The purpose of this paper is to make a study of some ideals of some near-algebras and to obtain similar results as that of Calkin.

Near-algebras

A set \mathscr{A} is said to be *a near-algebra* if it satisfies all axioms for algebras except for the left distributive law: f(g+h) = fg+fh. Therefore, a near-algebra is a near-ring which has first been defined in [5]. (cf. [2])

In this paper we consider near-algebras of mappings of a Banach space E into itself. Let f and g be mappings of E into E. The linear combination $\alpha f + \beta g$ for real numbers α and β is defined by

$$(\alpha f + \beta g)(x) = \alpha f(x) + \beta g(x)$$
 for all $x \in E$,

and the product fg is defined by

$$(fg)(x) = f(g(x))$$
 for all $x \in E$.

Let us consider some examples.

1. The near-algebra I(E). A mapping f of E into E is said to be constant if there exists an element $a \in E$ such that f(x) = a for all $x \in E$. This constant mapping is denoted by c_a . It is easy to see that

$$\alpha c_a + \beta c_b = c_{\alpha a + \beta b}$$
 and $c_a c_b = c_a$.

Therefore, the set I(E) of all constant mappings of E into E is a nearalgebra. (cf. [3] and [4])

2. The near-algebra \mathscr{C} . A mapping f is said to be compact if, for any bounded set M of E, f(M) is contained in a compact set. The set of all compact and continuous mappings of E into E is denoted by \mathscr{C} . It is easy to see that \mathscr{C} is a near-algebra.

129

Sadayuki Yamamuro

3. The near-algebra \mathcal{D} . A mapping f is said to be differentiable if, for any $a \in E$, there exists $l \in L$ such that

$$f(a+x)-f(a) = l(x)+r(a, x)$$
 for every $x \in E$,

where

$$\lim_{||x||\to 0} \frac{||r(a,x)||}{||x||} = 0.$$

This linear mapping l depends on a and is denoted by f'(a). It is well-known that, if f and g are differentiable, $\alpha f + \beta g$ and fg are differentiable and

$$(\alpha f + \beta g)'(a) = \alpha f'(a) + \beta g'(a)$$

$$(fg)'(a) = f'(g(a))g'(a)$$

for every $a \in E$. Therefore, the set \mathscr{D} of all differentiable mappings of E into E is a near-algebra.

Ideals

Let \mathscr{A} be a near-algebra. A non-empty subset I of \mathscr{A} is said to be an *ideal* if it is a linear subset and $fg, gf \in I$ whenever $f \in I$ and $g \in \mathscr{A}$. If $I \neq (O)$, the ideal I is said to be *non-zero*.

When \mathscr{A} is a near-algebra whose elements are mappings of E into E, the set I(E) is the smallest non-zero ideal of \mathscr{A} whenever $I(E) \subset \mathscr{A}$. (cf. [4])

When \mathscr{A} is a near-algebra whose elements are bounded mappings of E into E, then $\mathscr{C} \cap \mathscr{A}$ is an ideal of \mathscr{A} .

Hereafter we assume that \mathscr{A} is a near-algebra such that $\mathscr{L} \subset \mathscr{A} \subset \mathscr{D}$.

d-sets

In order to introduce the notion of *d*-set we need the following definitions. We define the sets d(f), d(M) and $d^{-1}(N)$ as follows:

$$\begin{aligned} d(f) &= \{f'(x) \mid x \in E\} & \text{for } f \in \mathscr{A}, \\ d(M) &= \bigcup_{f \in \mathscr{M}} d(f) & \text{for } M \subset \mathscr{A}, \\ d^{-1}(N) &= \{f \in \mathscr{A} \mid d(f) \subset N\} & \text{for } N \subset \mathscr{L}. \end{aligned}$$

We enumerate some properties of these sets.

 $\begin{array}{lll} (1) & If \ M_1 \subset M_2, \quad d(M_1) \subset d(M_2). \\ & If \ N_1 \subset N_2, \ d^{-1}(N_1) \subset d^{-1}(N_2). \end{array}$

(2) d(f) = (0) if and only if $f \in I(E)$. Since every linear mapping $l \in \mathscr{L}$ is differentiable and

130

A note on *d*-ideals in some near-algebras

l'(x) = l for every $x \in E$,

the following proposition is evident:

[3]

(3) The following three conditions are mutually equivalent: (i) $t \in \mathcal{L}$; (ii) $f \in d(f)$; (iii) d(f) = (f). Therefore, d(N) = N for $N \subset \mathscr{L}$.

(4) $M \cap \mathscr{L} \subset d(M)$ for $M \subset \mathscr{A}$.

PROOF. By (3) we have

$$M \cap \mathscr{L} = d(M \cap \mathscr{L}) \subset d(M).$$

REMARK. The equality does not always hold. Let us consider the following set M:

$$M = \{f \in \mathscr{D} \mid \sup_{x \in E} ||f(x)|| < +\infty\}.$$

Then, it is clear that $M \cap \mathscr{L} = (0)$ and $d(M) \neq (0)$.

(5) d(d(M)) = d(M) for $M \subset \mathscr{A}$.

PROOF. This follows from (3), because $d(M) \subset \mathscr{L}$.

(6) $N \subset d^{-1}(N)$ for $N \subset \mathscr{L}$.

PROOF. If $l \in N$, since (l) = d(l) by (3), we have $d(l) \subset N$, which means that $l \in d^{-1}(N)$.

(7)
$$d(d^{-1}(N)) = N$$
 for $N \subset \mathscr{L}$.

PROOF. By (3) and (6), we have $N = d(N) \subset d(d^{-1}(N))$. Now, assume that $f \in d(d^{-1}(N))$. Then, $f \in d(g)$ for some $g \in d^{-1}(N)$, or equivalently, $f \in d(g)$ for some g such that $d(g) \subset N$. Therefore, $f \in N$.

(8) $M \subset d^{-1}(d(M))$ for $M \subset \mathscr{A}$.

PROOF. If $f \in M$, then $d(f) \subset d(M)$, which is equivalent to $f \in d^{-1}(d(M))$.

REMARK. The converse inclusion of (8) is not always true. Let E be a separable Hilbert space and (e_n) be a complete orthonormal system. Let us consider the following mapping:

$$f(x) = \sum_{n=1}^{\infty} (x, e_n)^2 e_n.$$

Since

$$f'(x)(y) = 2\sum_{n=1}^{\infty} (x, e_n)(y, e_n)e_n,$$

it is clear that $f \notin \mathscr{C} \cap \mathscr{D}$ and $f \in d^{-1}(d(\mathscr{C} \cap \mathscr{L}))$. Therefore, in the nearalgebra \mathcal{D} , for $M = \mathscr{C} \cap \mathcal{D}$, we have $M \neq d^{-1}(d(M))$.

DEFINITION. A subset M of \mathcal{A} is said to be a d-set if $d^{-1}(d(M)) = M$. The followings are important properties of d-sets.

(9) If M is a d-set, $d(M) = M \cap \mathcal{L}$.

PROOF. Since $M \cap \mathscr{L} \subset d(M)$ by (4), we have only to prove that $d(M) \subset M$. Now, since $d(M) \subset \mathscr{L}$, it follows from (6) that

 $d(M) \subset d^{-1}(d(M)) = M.$

(10) The following three conditions are mutually equivalent: (i) M is a d-set; (ii) $f \in M$ if and only if $d(f) \subset M$; (iii) $M = d^{-1}(N)$ for some $N \subset \mathcal{L}$.

PROOF. (i) \rightarrow (ii): If $f \in M$, since $d(M) \subset M$ by (9), we have $d(f) \subset d(M) \subset M$. Conversely, if $d(f) \subset M$, we have $d(f) \subset d(M)$ by (5), hence it follows that $f \in d^{-1}(d(M)) = M$.

(ii) \rightarrow (iii): For N = d(M), we have $d^{-1}(N) = d^{-1}(d(M)) \supset M$ by (8). Conversely, if $f \in d^{-1}(N)$, then, since $d(g) \subset M$ whenever $g \in M$, we have

$$d(f) \subset N = d(M) = \bigcup_{g \in M} d(g) \subset M.$$

Therefore, $f \in M$.

(iii) \rightarrow (i): It follows from (7) that

 $d^{-1}(d(M)) = d^{-1}(d(d^{-1}(N))) = d^{-1}(N) = M.$

(11) If M_1 and M_2 are d-sets and $d(M_1) = d(M_2)$, then $M_1 = M_2$.

Proof. $M_1 = d^{-1}(d(M_1)) = d^{-1}(d(M_2)) = M_2$.

d-ideals

If I is an ideal of the near-algebra \mathscr{A} , then $I \cap \mathscr{L}$ is an ideal of the Banach algebra \mathscr{L} . Conversely, we have the following proposition.

(12) If J is an ideal of the Banach algebra \mathcal{L} , then $d^{-1}(J)$ is an ideal of the near-algebra \mathcal{A} .

PROOF. To prove that $d^{-1}(J)$ is linear, we assume that $f \in d^{-1}(J)$ and $g \in d^{-1}(J)$. Then, since J is linear, we have

$$d(\alpha f + \beta g) \subset \alpha d(f) + \beta d(g) \subset J + J = J,$$

which implies that $\alpha f + \beta g \in d^{-1}(J)$. Next, assume that $f \in d^{-1}(J)$ and $g \in \mathscr{A}$. Then, since J is an ideal, we have

$$d(fg) \subset d(f)d(g) \subset Jd(g) \subset J$$

and

$$d(gf) \subset d(g)d(f) \subset d(g)J \subset J.$$

Therefore, fg and gf belong to $d^{-1}(J)$.

DEFINITION. An ideal of \mathscr{A} is said to be a *d*-ideal if it is a *d*-set. Therefore, for any ideal J of \mathscr{L} , $d^{-1}(J)$ is a *d*-ideal of \mathscr{A} .

REMARK 1. Since $I(E) = d^{-1}((O), I(E)$ is a *d*-ideal of every \mathscr{A} such that $I(E) \subset \mathscr{A}$.

REMARK 2. As we have shown in the remark after (8) of the preceeding section, the ideal $\mathscr{C} \cap \mathscr{D}$ of \mathscr{D} is not a *d*-ideal. However, it has been proved in [3] that $\mathscr{C} \cap \mathscr{A}$ is a *d*-ideal of some near-algebra \mathscr{A} such that $\mathscr{L} \subset \mathscr{A} \subset \mathscr{D}$.

(\mathcal{L}) -closed d-ideals

DEFINITION. A subset M of \mathscr{A} is said to be (\mathscr{L}) -closed if $M \cap \mathscr{L}$ is closed under the norm topology of \mathscr{L} .

The collection of all (\mathcal{L}) -closed subsets of \mathscr{A} defines a topology on \mathscr{A} , which is the strongest among the topologies under which the mapping $l \to l$ of \mathscr{L} into \mathscr{A} becomes continuous.

(13) d-ideals I(E) and $d^{-1}(\mathscr{C} \cap \mathscr{L})$ are (\mathscr{L}) -closed.

PROOF. I(E) is (\mathcal{L}) -closed, because $I(E) \cap \mathcal{L} = (0)$. Since $d^{-1}(\mathcal{C} \cap \mathcal{L})$ is a d-set, we have by (9) that

$$d^{-1}(\mathscr{C} \cap \mathscr{L}) \cap \mathscr{L} = d(d^{-1}(\mathscr{C} \cap \mathscr{L}) = \mathscr{C} \cap \mathscr{L}.$$

Since $\mathscr{C} \cap \mathscr{L}$ is closed in \mathscr{L} , $d^{-1}(\mathscr{C} \cap \mathscr{L})$ is (\mathscr{L}) -closed.

As the converse, we prove the following theorem which is the main result of this paper.

THEOREM 1. Let I be an arbitrary (L)-closed d-ideal of A. Then, we have either I = I(E) or $I \supset d^{-1}(\mathcal{C} \cap L)$.

2. When E is a separable Hilbert space and I is an (\mathcal{L}) -closed d-ideal, we have either I = I(E) or $I = d^{-1}(\mathcal{C} \cap \mathcal{L})$.

3. When E is a separable Hilbert space and f(0) = 0 for every $f \in \mathcal{A}$, then $d^{-1}(\mathcal{C} \cap \mathcal{L})$ is the only (\mathcal{L}) -closed d-ideal of \mathcal{A} .

PROOF. 1. Since *I* is (\mathscr{L}) -closed, $I \cap \mathscr{L}$ is a closed subset of \mathscr{L} . Moreover, $I \cap \mathscr{L}$ is evidently an ideal of \mathscr{L} . Therefore, since $I \cap \mathscr{L}$ is a closed ideal of the Banach algebra \mathscr{L} , we have either $I \cap \mathscr{L} = (0)$ of $I \cap \mathscr{L} \supset \mathscr{C} \cap \mathscr{L}$. From the definition of *d*-sets and (9) it follows that

$$I = d^{-1}(d(I)) = d^{-1}(I \cap \mathscr{L}) = d^{-1}((O)) = I(E)$$

or

$$I = d^{-1}(I \cap \mathscr{L}) \supset d^{-1}(\mathscr{C} \cap \mathscr{L}).$$

2. When E is a separable Hilbert space, by the Calkin's theorem [1], $\mathscr{C} \cap \mathscr{L}$ is the only non-zero closed ideal of \mathscr{L} . Therefore, we have either

 $I \cap \mathscr{L} = (0)$ or $I \cap \mathscr{L} = \mathscr{C} \cap \mathscr{L}$, hence it follows that we have either I = I(E) or $I = d^{-1}(\mathscr{C} \cap \mathscr{L})$.

3. In this case, we have $I(E) \cap \mathscr{A} = (0)$. Therefore, the case when I = I(E) does not occur.

References

- J. W. Calkin, 'Two-sided ideals and congruences in the ring of bounded operators in Hilbert space', Ann. of Math. 42 (1941), 839-873.
- [2] S. Yamamuro, 'On the spaces of mappings on Banach spaces', J. Aust. Math. Soc. 7 (1967), 160-164.
- [3] S. Yamamuro, 'On near-algebras of mappings on Banach spaces', Proc. Japan Acad. 41 (1965), 889-892.
- [4] S. Yamamuro, 'Ideals and homomorphisms in some near-algebras', Proc. Japan Acad. 42 (1966), 427-432.
- [5] H. Zassenhaus, Lehrbuch der Gruppentheorie (Berlin, 1937).

Institute of Advanced Studies The Australian National University [6]