
 Open access  Journal Article  DOI:10.1177/014662167800200415

A Note on Decision Theoretic Coefficients for Tests. — Source link 

Rand R. Wilcox

Institutions: University of California, Los Angeles

Published on: 01 Oct 1978 - Applied Psychological Measurement (SAGE Publications)

Topics: Bayes estimator, Bayes' theorem, Bayes' rule, Bayes factor and Naive Bayes classifier

Related papers:

 Coefficients for Tests from a Decision Theoretic Point of View.

 Toward an integration of theory and method for criterion-referenced tests1,2

 The Internal and External Optimality of Decisions Based on Tests.

 Statistical Theories of Mental Test Scores

 Estimating reliability from a single administration of a criterion-referenced test*

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-
rkl2cc5nke

https://typeset.io/
https://www.doi.org/10.1177/014662167800200415
https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-rkl2cc5nke
https://typeset.io/authors/rand-r-wilcox-2zbjt5mcj1
https://typeset.io/institutions/university-of-california-los-angeles-3qypghuz
https://typeset.io/journals/applied-psychological-measurement-1r6vq88g
https://typeset.io/topics/bayes-estimator-3ynefb5v
https://typeset.io/topics/bayes-theorem-1m2ns4bm
https://typeset.io/topics/bayes-rule-2rl3egta
https://typeset.io/topics/bayes-factor-isriwk5a
https://typeset.io/topics/naive-bayes-classifier-2u2eeoxz
https://typeset.io/papers/coefficients-for-tests-from-a-decision-theoretic-point-of-1o9382fp4z
https://typeset.io/papers/toward-an-integration-of-theory-and-method-for-criterion-1v65mft5r0
https://typeset.io/papers/the-internal-and-external-optimality-of-decisions-based-on-22zhdsglnj
https://typeset.io/papers/statistical-theories-of-mental-test-scores-3m5ikeyjrk
https://typeset.io/papers/estimating-reliability-from-a-single-administration-of-a-1hqtozj0fa
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-rkl2cc5nke
https://twitter.com/intent/tweet?text=A%20Note%20on%20Decision%20Theoretic%20Coefficients%20for%20Tests.&url=https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-rkl2cc5nke
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-rkl2cc5nke
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-rkl2cc5nke
https://typeset.io/papers/a-note-on-decision-theoretic-coefficients-for-tests-rkl2cc5nke


609

A Note on Decision Theoretic Coefficients for Tests

Rand R. Wilcox

University of California at Los Angeles

Recently it was suggested that the Bayes risk
might be used to characterize tests. To conform to
common practices about indexes, a rescaling of the
Bayes risk was proposed. The motivation for this
new coefficient, d, was to provide an index that has

a large value when the Bayes risk is small and that
has a value in the closed interval [0, 1]. However,
since d might have a value outside this range, a
modification of d is described which yields an index
that always has a value between zero and one.

Recently, van der Linden and Mellenbergh (1978) argued in favor of using decision theoretic

techniques for characterizing a test; they pointed out that the Bayes risk is a natural index to use from
this point of view. Van der Linden and Mellenbergh also noted that the Bayes risk has two disadvan-

tages. First, it is conventional in test theory to define indexes so that the scale has a direction opposite
to that in which the Bayes risk is represented. Second, although in test theory indexes are nearly al-

ways defined on the closed interval [0, 1], the range of the possible values of the Bayes risk can be dif-
ferent.

Let L(0(jc))0) be the loss function associated with a particular decision problem which is a func-
tion of the decision rule, 9(x); the examinee’s true score, 0; and the examinee’s observed score, x. For
a particular examinee, the risk or expected loss is R =EL(ê(x)18). The Bayes risk is RB = E.R, where Eo
means expectation with respect to the probability density of 0.

In an attempt to correct the two deficiencies described above, van der Linden and Mellenbergh
suggest the index

where R~ and R&dquo; are the Bayes risks in the situations in which the test contains, respectively, complete
and no information about the true scores. They point out, however, that the index d does not correct
the second difficulty, since d might not be in the interval [0, 1 ]. The purpose of this note is to indicate
a simple modification of d that solves this problem.
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Coefficient y

To ensure that d has a value between 0 and 1, Rn is replaced with Ru, the least upper bound on
RB; and R~ is replaced with Rt, the greatest lower bound on RB. It is assumed that the decision rule,
9(x), has been specified and that there is an arbitrary joint density for x and 0. In this case d becomes

By requiring R,, to be the least upper bound on RB, rather than just any upper bound, it is

guaranteed that y ~ 0. By also choosing R, in the manner described above, it is guaranteed that y < 1.

It is evident that 0 < y < 1, as was required. Note that if RB is defined on an open interval, 0 < y < 1.

For many practical situations R. and Rt can be evaluated. This point can be illustrated by re-examin-

ing the situations considered by van der Linden and Mellenbergh.

Point Estimation

Suppose the purpose of a test is to estimate true score, that 6(x) is a decision rule for estimating 8
based on the observed score, x, and that squared error loss is used, i.e., L = (9(x) - 0)2. If, as is usually
the case, the observed scores can have the values 0,1, ... ,n (n being the number of items on the test),
the Bayes risk is given by

where fix [ 0) is the conditional probability function of observed scores and
g(8) is the density function of true scores.
The least upper bound of RB depends on such things as the assumptions made in a particular

testing model, the statistic 9(x), and the number of items in the test. A situation in which a minimum
number of assumptions are made can be considered first. Then two specific forms for 6(x) can be
considered.

For notational convenience it is assumed that 0 < 9 < 1. Since true score is typically defined as an

expected value, it is usually possible to multiply this expected value by an appropriately chosen con-
stant so that 9 will be in this range. This rescaling has no effect on the value of y. Since 0 < 8 ~ 1, it

makes little sense to allow 9(x) < 0 or O(x) > 1; therefore, it is also assumed that 0 < 9(x) < 1.

Except for highly unusual circumstances, it will be the case that 9(x) is a monotonically increas-
ing function of x. It follows that the least upper bound of (9(x)-9)z is either (kO)-1)1 or (e(M)-O)~,
whichever is largest. Let L, denote the larger of these two quantities. Then /?B ~ L,, since LZ is an
upper bound to (o(x)-e)2. For the case LZ = (9(0)-1~, RB = I,Z when Pr(x=0, 0=1) = 1. If L2 = (9(n)-0)2,
RB = L2 when Pr(x=n, 0=0) =1. Note that this least upper bound was derived under the assumption
that any joint probability density function for 0 and x is possible. If it is assumed that E(b(x)l 0) = 0,
then in generalL2 will not be the least upper bound. Such a case is considered below.

The greatest lower bound for RB is zero. This occurs when Pr(e=6(je)) = 1 for all x and 0 (i.e., per-
fect estimation). Thus, y may be written as

As previously indicated, the derivation ofL2 was made without any restriction on the joint prob-
ability density function of x and 9 or the decision rule 9(x). In general, if it is assumed that E(ê(x) I 8) =
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9, L2 is no longer the least upper bound to RB. Accordingly, a least upper bound to RB is derived when
an unbiased estimate of 6 is used.

Consider the case in which x = 0 or 1. Without making any assumption about the form of h(x19),
it follows that

with equality holding when Pr(x=0) = Pr(x=l) =’/2 (e.g., see Skibinsky, 1977). Taking the expectation
of both sides of Equation 5,

Now suppose that for an examinee, there are n observations x, ... ,x&dquo; with x, independent of x,, i

~j, x,= 0 or 1 and that E(~,~9) = e, i =1, ... ,n. Thus,

is an unbiased estimate of 0, and

with equality holding when Pr(9(x,)=0) = Pr(9(x,)=1) = ’/2, i = 1, ... ,n. It follows that 1/4n is the least
upper bound on RB. The greatest lower bound is zero, which means that y 

= 1-4nRB. Griffin and

Krutchkoff (1971) indicate that RB = ox - oe where afl is the variance of the marginal distribution of x
and 02 is the variance of true scores. Using results given by Lord and Novick (1968), oe can be

estimated, which in turn yields an estimate of R,,, and y. 
- -

y may not increase with increasing values of n. To reflect increased accuracy for larger values of
n, R., might be replaced with the least upper bound based on a single observation. In this case, y be-
comes y =1-4RB.

For the problem of point estimation, van der Linden and Mellenbergh concentrate on Kelly’s
linear regression estimate of true scores, namely

where erx, is the reliability of the test. Since x is an unbiased estimate of the examinee’s true score and
if it is assumed that the first two moments of both A(xj6) and g(O) exist, then from Griffin and Krutch-
koff it follows that Equation 9 is optimal in the sense that it is the linear estimate minimizing the
Bayes risk. An interesting theoretical result given by van der Linden and Mellenbergh is that

when Equation 9 is used to estimate 6, which implies that d = exz . ~ ,
In practice, however, en’ is unknown. If exx is estimated with, say, ên’ and the results are sub-

stituted in Equation 9, an estimate of Kelly’s regression estimate of true score is obtained. It should
be noted, however, that in this case the Bayes risk is no longer given by Equation 10. In fact, the Bayes
risk takes on a much more complicated form which, as pointed out by Griffin and Krutchkoff, cannot
be evaluated theoretically. Thus, it is unclear how to estimate R,,,, which means that neither d or y can
be estimated.

Dichotomous Decisions

Consider the problem of determining whether an examinee’s true score, 0, is above or below a
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known constant, 60. The decision 8 ~ 80 is made if x > xo, where xo is a specified passing score. This
problem has been considered by several authors in the context of a mastery test (Harris, 1974; Novick
& Lewis, 1974; Huynh, 1976; Wilcox, 1977). Let 110 be the loss incurred when x > xo and 0 < 80. Let
loi be the loss when x < xo and 8 ~ 0.. If a correct decision is made, it is assumed that the loss is zero.
For a randomly selected examinee, the probabilities p,~ (i=0, 1; j=0, 1) associated with the four

possible outcomes are shown in Table 1.

Table 1 1
Probabilities Associated With The

Four Possible Outcomes I

Thus, pio is the probability of 8 ~ 80 and x < xo. The Bayes risk is

As before, the least upper bound of RB is highly dependent upon the situation at hand. Several cases
can be considered.

First, note that it is always possible to guarantee that the probability of a correct decision for a

given examinee is at least 1/z, simply by making the decision 0 > 90 or 9 < 9o at random. When this de-

cision rule is used, the least upper bound of RB is Ru = 1/21--, where I-- 
= ~ojc[~ to, lo~]. The greatest

lower bound is .~&dquo;,tn = */2~’M[~o,~ot] and so

Next suppose that,f(x~9) is stochastically increasing. This means that 0 < 9’ implies that F(xlO) >,
F(xI8’) for all x where F(x18) is the cumulative distribution corresponding tofixI8). The binomial and
Poisson distributions are two examples where this is true. Observe that RB may be written as

Thus, RB is a weighted average of

and

and its value lies in the interval bounded by these two points.
Since F(x[0) is stochastically increasing, the minimum of Equation 14 occurs at e = 1, the

minimum of Equation 15 occurs at 0 = 0, and the maximum of both occurs at 0 = 80. It follows that
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and

As a final example, following Fhan6r (1974) and Wilcox (in press), the problem of deciding
whether 0 is below 81 or above 82, 8i < 62 can be considered. If 9, < e < 82, either decision is said to be

correct. The open interval (81, (2) is called the indifference zone. In this case R~ is given by Equation
17 and
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