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Abstract

In this paper, we consider a fairly large class of dependent Sparre Andersen risk models
where the claim sizes belong to the class of Coxian distributions. We analyze the Gerber-Shiu
discounted penalty function when the penalty function depends on the deficit at ruin. We show
that the system of equations needed to solve for this quantity is surprisingly simple. Various
applications of this result are also considered.
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1 Introduction

In this paper, we model the insurer’s surplus process {Ut, t ≥ 0} by Ut = u+ct−St where u (u ≥ 0)
is the initial surplus level, c (c > 0) is the incoming premium rate per unit time, and {St, t ≥ 0} is
a compound renewal process defined as

St =


Nt∑
i=1

Yi, Nt > 0,

0, Nt = 0.

The claim number process {Nt, t ≥ 0} is defined through the sequence of interclaim times {Vi}∞i=1
which are a collection of independent and identically distributed (iid) random variable (rv)’s with
marginal probability density function (pdf) k, cumulative distribution function (cdf) K (t) = 1 −
K (t), and Laplace transform (LT) k̃ (s) =

∫∞
0 e−stk (t) dt. Associated with these claim instants are

the claim sizes {Yi}∞i=1, also a sequence of iid rv’s with marginal pdf p, cdf P (y) = 1 − P (y), and
LT p̃ (s) =

∫∞
0 e−syp (y) dy. We shall assume throughout that {Ut, t ≥ 0} is a dependent Sparre

Andersen risk process, implying that Yi may depend on Vi, but the pairs {(Vi, Yi)}∞i=1 are iid.
We therefore denote the joint pdf of an arbitrary pair (Vi, Yi) at (t, y) by p(y|t)k(t). Recently,
various authors have examined dependency models of this nature. Interested readers are referred to
Albrecher and Teugels (2006), Badescu et al. (2009), Boudreault et al. (2006), Chadjiconstantinidis
and Vrontos (2012), Cheung et al. (2010), Cossette et al. (2008), Cheung (2011) and Willmot and
Woo (2012) to name a few.

Here we consider a fairly large class of dependent Sparre Andersen risk models by modelling the
joint pdf of (Vi, Yi) as

p(y|t)k(t) =
m∑
i=1

ni∑
j=1

gij(t)eβi,j(y), t, y ≥ 0, (1)

where eβ,j(y) is the Erlang density

eβ,j (y) =
β (βy)j−1 e−βy

(j − 1)!
, y > 0. (2)

Obviously, the marginal pdfs of Vi and Yi are respectively given by

k (t) =

m∑
i=1

ni∑
j=1

gij(t), t ≥ 0,

and

p(y) =
m∑
i=1

ni∑
j=1

ηijeβi,j(y), y ≥ 0, (3)

with ηij =
∫∞
0 gij (t) dt. We remark that the claim sizes have marginal density (3) which is a

Coxian-n pdf with n =
∑m

i=1 ni.
The class of joint pdfs (1) is very large, and the results we obtain in this paper thus hold quite

generally. A few notable special cases are first discussed. When gij(t) = g(t) for all i and j, the
resulting risk model is the ordinary Sparre Andersen model with interclaim time pdf n · g () and
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claim size pdf (3). Also, when gij is either a non-negative or non-positive function for all i and j,
the joint pdf can be rewritten as

p(y|t)k(t) =
m∑
i=1

ni∑
j=1

ηijkij(t)eβi,j(y), t, y ≥ 0, (4)

where kij (t) = gij (t) /ηij is a pdf. In this case, the joint density function of (Vi, Yi) is a combina-
tion/mixture of joint pdfs with independent components.

Note that it is not necessary for gij to be either a non-negative or non-positive function for (1)
to be a valid joint pdf. Therefore, in what follows we do not assume kij (whenever ηij 6= 0) to be a
probability density function (pdf). An example of this is the dependent renewal risk model where
the dependence between V and Y is introduced through the Farlie-Gumbel-Morgenstern (FGM)
copula (see, e.g., Nelsen (1994)). That is, we assume that

Pr (V ≤ t, Y ≤ y) = CFGM (K (t) , P (y)) ,

for t, y ≥ 0 where
CFGM (u, v) = uv + θuv (1− u) (1− v) ,

with |θ| ≤ 1. Routine calculations lead to the following joint pdf of (Vi, Yi):

p(y|t)k(t) = p (y) k (t) [1 + θ{1− 2P (y)}{1− 2K (t)}], t, y ≥ 0. (5)

When Yi is an exponential rv with mean 1/β, (5) simplifies to

p(y|t)k(t) = k (t) [1− θ{1− 2K (t)}]eβ,1 (y) + θk (t) {1− 2K (t)}e2β,1 (y) ,

which is of the form (1) with m = 2, n1 = n2 = 1, β1 = β, β2 = 2β, g11 (t) = k (t) [1−θ{1−2K (t)}],
and g21 (t) = θk(t){1−2K (t)}. Note that g21 is neither a non-negative nor a non-positive function.
More generally, it is not diffi cult to show that when

Pr (V ≤ t, Y ≤ y) = C (K (t) , P (y)) ,

where C (u, v) is a polynomial copula in v (see Nelsen (2006, Chapter 3)) and P (y) is the cdf
associated with a finite combination/mixture of Erlangs with possibly different scale parameters,
then the joint pdf of (V, Y ) belongs to the class of joint pdfs (1). Examples of polynomial copulas
(i.e. copulas with polynomial sections in one or more variables) are the FGM copula, the generalized
FGM copula (see, e.g. Cossette et al. (2008)), and the very versatile Bernstein copula (see, e.g.,
Sancetta and Satchell (2004)).

Landriault and Willmot (2008) demonstrated that, for the ordinary Sparre Andersen model with
interclaim time pdf g and claim size pdf (3), the Gerber-Shiu function corresponding to a particular
class of penalty functions is completely characterized through the solution of a linear system of
equations. In the present paper, a slightly simpler penalty function is considered which only involves
the deficit at ruin, but the more general dependent Sparre Andersen model is considered. In Section
2 it is shown that in this situation the Gerber-Shiu function is still characterized through a linear
system of equations, and this linear system is substantially simpler than that obtained by Landriault
and Willmot (2008) with the more general penalty function. In fact, the resulting linear system is
reminiscient of that involving the use of a block Vandermonde type of matrix.

In Section 3 we consider evaluation of the Gerber-Shiu function for particular choices of the
penalty function. This allows for evaluation of various ruin-related quantities, including the distri-
bution of the deficit at ruin. Finally, in Section 4 special cases of the dependence model (1) are
considered which allow for direct solution of the linear system of equations even with a general
penalty function.
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2 A simplified linear system

Let T be the time to ruin for the surplus process {Ut, t ≥ 0}, i.e. T = inf {t ≥ 0 : Ut < 0} with
T = ∞ if Ut ≥ 0 for all t ≥ 0. To characterize the joint discounted density hδ,12(x, y|u) of
the surplus prior to ruin (x) and the deficit at ruin (y), we first examine the nature of the joint
distribution of the time to ruin T , the surplus prior to ruin UT− , the deficit at ruin |UT |, and the
surplus after the second last claim before ruin RNT−1 = u +

∑NT−1
i=1 (cVi − Yi). If ruin occurs on

the first claim, Cheung et al. (2010) showed that the joint (defective) density of the surplus prior
to ruin (x) and the deficit at ruin (y) is

h1 (x, y |u) =
1

c
k

(
x− u
c

)
p

(
x+ y

∣∣∣∣x− uc
)
, (6)

and in this case the time to ruin is T = x−u
c and RNT−1 = u. If ruin occurs on claims subsequent

to the first, we denote by h2 (t, x, y, v |u) the joint (defective) density of the time to ruin (t), the
surplus prior to ruin (x), the deficit at ruin (y), and the surplus after the second last claim before
ruin (v). Using simple probabilistic arguments, we have

h2 (t, x, y, v |u) =

{∫ ∞
0

h2 (t, x, y, v |u) dy

}
h1 (x, y |v )∫∞

0 h1 (x, y |v ) dy

=

{∫ ∞
0

h2 (t, x, y, v |u) dy

} 1
ck(x−vc )p(x+ y|x−vc )∫∞

0
1
ck
(
x−u
c

)
p(x+ y

∣∣x−u
c )dy

. (7)

One can argue the validity of (7) as follows: the joint density of (T,UT− , |UT |, RNT−1) at (t, x, y, v)
is the product of the joint density of (T,UT− , RNT−1) at (t, x, v) and the (conditional) density of
the deficit at ruin of y given that ruin occurs on a last ascent of the surplus process from level v to
x (without claim in the interim) which is given by h1 (x, y |v ) /

∫∞
0 h1 (x, y |v ) dy.

From Cheung et al. (2010), the discounted density hδ,12(x, y|u) is given by

hδ,12(x, y|u) = e−δ(
x−u
c )h1 (x, y |u) +

∫ ∞
0

e−δt
∫ x

0
h2 (t, x, y, v |u) dvdt. (8)

Substituting (1) into (6), (7) and subsequently (8), one finds

hδ,12(x, y|u) =
m∑
i=1

ni∑
j=1

ηδ,ij(x|u)eβi,j(x+ y), (9)

where

ηδ,ij(x|u) =
1

c
e−

δ
c
(x−u)gij

(
x− u
c

)
+

∫ ∞
0

e−δt
∫ x

0

{∫ ∞
0

h2 (t, x, y, v |u) dy

}
gij
(
x−v
c

)
m∑
i=1

ni∑
j=1

eβi,j(x)gij
(
x−v
c

)dvdt, (10)

with eβ,j (x) =
∫∞
x eβ,j (y) dy. We can also find an alternative expression for the discounted joint

density hδ,12(x, y|u) similar to (9). From Lemma 1 in Cheung (2011), we know that the discounted
pdf h2,δ(x, y, v|u) =

∫∞
0 e−δth2(t, x, y, v|u)dt factors as

h2,δ(x, y, v|u) = τδ(u, v)h1,δ(x, y|v), x > v > 0; y > 0 (11)
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where h1,δ(x, y|u) = e−δ(
x−u
c )h1(x, y|u) and some function τδ(u, v) defined in Eq (2.7) of Cheung

(2011). Then substitution of (11) into (8) yields a similar form of (9). We remark that this τδ(0, v)
when δ = 0 is essentially same as the density of the renewal function associated with the ascending
ladder height of the current random walk as studied by Pitts and Politis (2007) (also e.g. Tang and
Wei (2010), and Zhang et al. (2011)).

Although (10) is complicated, its exact form is not relevant in what follows, as the representation
(9) for the joint discounted density is what is of interest. Nevertheless, it is interesting to note that
if gij(t) = g(t) for all i and j, then (10) simplifies to

ηδ,ij(x|u) =
hδ,1(x|u)

P (x)
,

where

hδ,1(x|u) =
1

c
e−

δ
c
(x−u)g

(
x− u
c

)
P (x) +

∫ ∞
0

e−δt
∫ x

0

∫ ∞
0

h2 (t, x, y, v |u) dydvdt,

is the discounted density of the surplus prior to ruin at x.
We remark that the Erlang density eβ,j allows the factorization

eβ,j(x+ y) =
1

β

j∑
k=1

eβ,j+1−k(x)eβ,k(y), (12)

(see, e.g., Willmot (2007, Eq. 3.26)) which implies that (9) becomes

hδ,12(x, y|u) =

m∑
i=1

ni∑
k=1

ξδ,ik(x|u)eβi,k(y), (13)

with

ξδ,ik(x|u) =
1

βi

ni∑
j=k

ηδ,ij(x|u)eβi,j+1−k(x).

Using (13), the proper discounted density of the descending ladder height is given by

bδ(y) =
1

φδ

∫ ∞
0

hδ,12(x, y|0)dx

=

m∑
i=1

ni∑
k=1

ξδ,ikeβi,k(y), (14)

where

ξδ,ik =
1

φδ

∫ ∞
0

ξδ,ik(x|0)dx,

and

φδ =

∫ ∞
0

∫ ∞
0

hδ,12(x, y|0)dxdy.

We consider evaluation of the Gerber-Shiu function

mδ(u) = E[e−δTw (|UT |) 1 (T <∞) |U0 = u],
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where the penalty function w is assumed to be a function of the deficit at ruin only (see, e.g.,
Landriault and Willmot (2008) for the analysis of a more general penalty function in a similar
context to the present one, but the analysis is significantly more complex in this case). From
Cheung et al. (2010), mδ(u) satisfies the defective renewal equation

mδ(u) = φδ

∫ u

0
mδ(u− y)bδ(y)dy + vδ (u) , (15)

with

vδ(u) = φδ

∫ ∞
0

w(y)bδ(u+ y)dy. (16)

Using (14), this may be expressed again as

vδ(u) = φδ

∫ ∞
0

w(y)

{
m∑
i=1

ni∑
k=1

ξδ,ikeβi,k(u+ y)

}
dy

= φδ

m∑
i=1

ni∑
k=1

ξδ,ik

∫ ∞
0

w(y)

 1

βi

k∑
j=1

eβi,j(u)eβi,k+1−j(y)

 dy

= φδ

m∑
i=1

ni∑
k=1

k∑
j=1

eβi,j(u)
ξδ,ik
βi

∫ ∞
0

w(y)eβi,k+1−j(y)dy

= φδ

m∑
i=1

ni∑
j=1

eβi,j(u)

ni∑
k=j

ξδ,ik
βi

E [w (Ei,k+1−j)]

where Ei,j has pdf eβi,j , and thus

E [w (Ei,j)] =

∫ ∞
0

w(y)eβi,j(y)dy. (17)

That is,

vδ(u) =
m∑
i=1

ni∑
j=1

ξ∗δ,ijeβi,j(u), (18)

where

ξ∗δ,ij = φδ

ni∑
k=j

ξδ,ik
βi

E [w (Ei,k+1−j)] . (19)

In what follows we denote the LT of an arbitrary function a by ã(s) =
∫∞
0 e−sxa (x) dx (whenever

it exists). It follows from (14) and (18) that the defective renewal equation (15) may be expressed
in Laplace transform form as

m̃δ(s) =
ṽδ(s)

1− φδ b̃δ(s)

=

m∑
i=1

ni∑
j=1

ξ∗δ,ij

(
βi
βi+s

)j
1− φδ

m∑
i=1

ni∑
j=1

ξδ,ij

(
βi
βi+s

)j .
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Thus,

m̃δ(s) =

{
m∏
k=1

(βk + s)nk
}

m∑
i=1

ni∑
j=1

ξ∗δ,ij

(
βi
βi+s

)j
{

m∏
k=1

(βk + s)nk
}{

1− φδ
m∑
i=1

ni∑
j=1

ξδ,ij

(
βi
βi+s

)j} . (20)

It is clear that the numerator in (20) is a polynomial of degree n − 1 (or less) in s. Similarly, the
denominator is a polynomial of degree n. Thus, the denominator has n roots in the complex plane,
say −R1,δ,−R2,δ, . . . ,−Rn,δ. Assuming that these n roots are distinct, it follows that (20) may be
expressed, after a partial fraction expansion, as

m̃δ(s) =
n∑
k=1

Ck,δ
s+Rk,δ

, (21)

where C1,δ, C2,δ, . . . , Cn,δ are constants. Then inversion of (21) yields

mδ(u) =
n∑
k=1

Ck,δe
−Rk,δu, u ≥ 0. (22)

In what follows, we further assume that the Rk,δ’s are also distinct from the βi’s. This is well known
to be true in special cases of the model involving mixtures (e.g. Gerber and Shiu (1998, p.69)).

The next step is to show that for the Gerber-Shiu function (22) resulting from the joint density
(1), the Rk,δ’s may be obtained as negative roots of Lundberg’s generalized equation, and the Ck,δ’s
satisfy a surprisingly simple linear system of equations. Before giving the main result, it is useful
to first make a few minor technical remarks about the Rk,δ’s and the Ck,δ’s.

First, we note that the n zeros −R1,δ,−R2,δ, . . . ,−Rn,δ of the denominator in (21) can be ar-
bitrarily ordered. Thus, if at least one of the Ck,δ’s is 0, all Ck,δ’s must be 0 and mδ (u) = 0
for all u ≥ 0. In what follows, we assume that mδ (u) 6= 0. Furthermore, as commonly as-
sumed, we consider Gerber-Shiu functions mδ (u) that vanish at infinity which implies that the
zeros −R1,δ,−R2,δ, . . . ,−Rn,δ must all have a negative real part. In Theorem 1, these zeros
−R1,δ,−R2,δ, . . . ,−Rn,δ are shown to be solutions of Lundberg’s generalized equation

E[e−δV e−s(Y−cV )] = 1. (23)

That is, Rk,δ satisfies
m∑
i=1

ni∑
j=1

(
βi

βi −Rk,δ

)j
g̃ij (δ + cRk,δ) = 1. (24)

Henceforth, we tacitly assume that |g̃ij (δ + cRk,δ)| <∞ for all i, j, k, so that Lundberg’s generalized
equation (24) is well defined. A standard Rouche-type argument is normally used to prove that
there are exactly n solutions to (23) with a negative real part. The argument typically proceeds
as follows. For δ > 0, it is clear that∣∣∣E[e−δV e−s(Y−cV )]

∣∣∣ ≤ E[e−δV ] < 1,

for Re (s) = 0. For the part of the circle (centered at 0) of radius r with a negative real part,∣∣∣E[e−δV e−s(Y−cV )]
∣∣∣ ≤ m∑

i=1

ni∑
j=1

|g̃ij(δ − cs)|
∣∣∣∣∣
(

βi
βi + s

)j∣∣∣∣∣ ,
7



where |g̃ij(δ − cs)| is finite for Re (s) < 0 if gij is absolutely integrable. Then, for a suffi ciently large
r, ∣∣∣E[e−δV e−s(Y−cV )]

∣∣∣ ≤ m∑
i=1

ni∑
j=1

|g̃ij(δ − cs)|
∣∣∣∣∣
(

βi
βi + s

)j∣∣∣∣∣ < 1,

for all {s : |s| = r and Re (s) < 0}. Given that
m∏
i=1

(βi + s)ni = 0 has n solutions with a negative real

part, this is also true for E
[
e−δV e−s(Y−cV )

]
= 1. A similar proof leads to an identical conclusion

when δ = 0 and the security loading is assumed to be positive (i.e. E [cVi − Yi] > 0).
We now state the main result of this paper.

Theorem 1 Consider the dependent Sparre Andersen risk model with joint density p(y|t)k(t) given
by (1) and a Gerber-Shiu function mδ(u) of the form (22) with β1, β2, . . . , βm and R1,δ, R2,δ, . . . , Rn,δ
all distinct. Then for k = 1, 2, . . . , n, Rk,δ satisfies Lundberg’s generalized equation (24). Further-
more, as long as g̃ini(δ + cβi) 6= 0 for i = 1, 2, ...,m, it follows that C1,δ, C2,δ, . . . , Cn,δ satisfy the
linear system of equations

n∑
k=1

Ck,δ

(
βi

βi −Rk,δ

)j
= E [w(Ei,j)] , (25)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni, with E[w(Ei,j)] given by (17).

Proof: By conditioning on the time and the amount of the first claim, we have

mδ(u) =

∫ ∞
0

e−δt
∫ ∞
u+ct

w (y − u− ct) p(y|t)k(t)dydt

+

∫ ∞
0

e−δt
∫ u+ct

0
mδ(u+ ct− y)p(y|t)k(t)dydt. (26)

Substitution of (1) and (22) into (26) yields
n∑
k=1

Ck,δe
−Rk,δu =

∫ ∞
0

e−δt
∫ ∞
u+ct

w (y − u− ct)
{

m∑
i=1

ni∑
h=1

gih(t)eβi,h(y)

}
dydt

+

∫ ∞
0

e−δt
∫ u+ct

0

{
n∑
k=1

Ck,δe
−Rk,δ(u+ct−y)

}{
m∑
i=1

ni∑
h=1

gih(t)eβi,h(y)

}
dydt

=
m∑
i=1

ni∑
h=1

∫ ∞
0

e−δt
{∫ ∞

0
w(y)eβi,h(y + u+ ct)dy

}
gih(t)dt

+

m∑
i=1

n∑
k=1

Ck,δ

ni∑
h=1

∫ ∞
0

e−δt
{∫ u+ct

0
e−Rk,δ(u+ct−y)eβi,h(y)dy

}
gih(t)dt.

We now consider the two inner integrals in this expression. First, using (12),∫ ∞
0

w(y)eβi,h(y + u+ ct)dy =
1

βi

∫ ∞
0

w(y)

{
h∑
l=1

eβi,h−l+1(y)eβi,l(u+ ct)

}
dy

=
1

βi

h∑
l=1

{∫ ∞
0

w(y)eβi,h−l+1(y)dy

}
eβi,l(u+ ct)

=
1

βi

h∑
l=1

E [w (Ei,h−l+1)] eβi,l(u+ ct).
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Second, one has easily that for R 6= βi,∫ u

0
e−R(u−y)eβi,h(y)dy =

(
βi

βi −R

)h
e−Ru − 1

βi

h∑
l=1

(
βi

βi −R

)h−l+1
eβi,l(u).

Thus,

n∑
k=1

Ck,δe
−Rk,δu =

m∑
i=1

ni∑
h=1

∫ ∞
0

e−δt

{
1

βi

h∑
l=1

E [w (Ei,h−l+1)] eβi,l(u+ ct)

}
gih(t)dt

+
m∑
i=1

n∑
k=1

Ck,δ

ni∑
h=1

∫ ∞
0

e−δt

{(
βi

βi −Rk,δ

)h
e−Rk,δ(u+ct)

}
gih(t)dt

−
m∑
i=1

n∑
k=1

Ck,δ

ni∑
h=1

∫ ∞
0

e−δt

{
1

βi

h∑
l=1

(
βi

βi −Rk,δ

)h−l+1
eβi,l(u+ ct)

}
gih(t)dt

=

m∑
i=1

ni∑
h=1

h∑
l=1

1

βi
E [w2 (Ei,h−l+1)]

∫ ∞
0

e−δteβi,l(u+ ct)gih(t)dt

+
m∑
i=1

n∑
k=1

Ck,δ

ni∑
j=1

(
βi

βi −Rk,δ

)j
e−Rk,δu

∫ ∞
0

e−(δ+cRk,δ)tgij(t)dt

−
m∑
i=1

n∑
k=1

Ck,δ

ni∑
h=1

h∑
l=1

1

βi

(
βi

βi −Rk,δ

)h−l+1 ∫ ∞
0

e−δteβi,l(u+ ct)gih(t)dt,

where the index of summation has been changed from h to j on the second last line. In turn, using
(12) again,

1

βi

∫ ∞
0

e−δteβi,l(u+ ct)gih(t)dt =
1

β2i

∫ ∞
0

e−δt


l∑

j=1

eβi,j(u)eβi,l−j+1(ct)

 gih(t)dt

=
1

β2i

l∑
j=1

eβi,j(u)

∫ ∞
0

e−δteβi,l−j+1(ct)gih(t)dt

=
l∑

j=1

eβi,j(u)M∗i,h,l−j+1(δ)

where

M∗i,h,l(δ) =
1

β2i

∫ ∞
0

e−δteβi,l(ct)gih(t)dt. (27)
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Therefore,

n∑
k=1

Ck,δ

1−
m∑
i=1

ni∑
j=1

(
βi

βi −Rk,δ

)j
g̃ij (δ + cRk,δ)

 e−Rk,δu

=
m∑
i=1

ni∑
h=1

h∑
l=1

E [w (Ei,h−l+1)]
l∑

j=1

eβi,j(u)M∗i,h,l−j+1(δ)

−
m∑
i=1

n∑
k=1

Ck,δ

ni∑
h=1

h∑
l=1

(
βi

βi −Rk,δ

)h−l+1 l∑
j=1

eβi,j(u)M∗i,h,l−j+1(δ)

=
m∑
i=1

ni∑
h=1

h∑
j=1

eβi,j(u)
h∑
l=j

E [w (Ei,h−l+1)]M
∗
i,h,l−j+1(δ)

−
m∑
i=1

n∑
k=1

Ck,δ

ni∑
h=1

h∑
j=1

eβi,j(u)

h∑
l=j

(
βi

βi −Rk,δ

)h−l+1
M∗i,h,l−j+1(δ)

=
m∑
i=1

ni∑
j=1

eβi,j(u)

ni∑
h=j

h∑
l=j

E [w2 (Ei,h−l+1)]M
∗
i,h,l−j+1(δ)

−
m∑
i=1

n∑
k=1

Ck,δ

ni∑
j=1

eβi,j(u)

ni∑
h=1

h∑
l=j

(
βi

βi −Rk,δ

)h−l+1
M∗i,h,l−j+1(δ).

Hence,

n∑
k=1

Ck,δ

1−
m∑
i=1

ni∑
j=1

(
βi

βi −Rk,δ

)j
g̃ij (δ + cRk,δ)

 e−Rk,δu

=

m∑
i=1

ni∑
j=1

eβi,j (u)


ni∑
h=j

h∑
l=j

M∗i,h,l−j+1(δ)

(
E [w (Ei,h−l+1)]−

n∑
k=1

Ck,δ

(
βi

βi −Rk,δ

)h−l+1) .

(28)

Now, (28) is true for all u ≥ 0, and thus the coeffi cients of e−Rk,δu for k = 1, 2, . . . , n and eβi,j(u)
for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni must all be zero. Therefore, equating the coeffi cient of e−Rk,δu

to zero yields (24). For eβi,j(u), it follows that

ni∑
h=j

h∑
l=j

M∗i,h,l−j+1(δ)

{
E [w (Ei,h−l+1)]−

n∑
k=1

Ck,δ

(
βi

βi −Rk,δ

)h−l+1}
= 0, (29)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni. To simplify (29), define (for notational convenience)

fi,j(δ) = E [w (Ei,j+1)]−
n∑
k=1

Ck,δ

(
βi

βi −Rk,δ

)j+1
,

10



and thus the left side of (29) becomes

ni∑
h=j

h∑
l=j

M∗i,h,l−j+1(δ)fi,h−l(δ) =

ni∑
l=j

ni∑
h=l

M∗i,h,l−j+1(δ)fi,h−l(δ)

=

ni∑
l=j

ni−l∑
h=0

M∗i,h+l,l−j+1(δ)fi,h(δ)

=

ni−j∑
h=0

fi,h(δ)

ni−h∑
l=j

M∗i,h+l,l−j+1(δ)

=

ni−j∑
h=0

fi,h(δ)

ni−(h+j)∑
l=0

M∗i,h+j+l,l+1(δ).

Thus, with

Mi,h(δ) =

ni−h∑
l=0

M∗i,h+l,l+1(δ), (30)

(29) may be re-expressed as

ni−j∑
h=0

fi,h(δ)Mi,j+h(δ) = 0, (31)

again for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni. For j = ni, (31) becomes

fi,0 (δ)Mi,ni(δ) = 0. (32)

From (27) and (30), we know that

Mi,ni(δ) = M∗i,ni,1(δ) =
g̃ini(δ + cβi)

βi
,

which is assumed to be non-zero. Therefore, fi,0 (δ) must be 0 for (32) to hold, that is

n∑
k=1

Ck,δ

(
βi

βi −Rk,δ

)
= E [w (Ei,1)] . (33)

By an inductive argument, let us now assume that

fi,j (δ) = 0, j = 0, 1, ..., k − 1, (34)

and prove that fi,k (δ) = 0. Using (31) at j = ni − k (note that (31) holds for j = 1, ..., ni which
implies that k ∈ {0, 1, ..., ni − 1}), it follows that

k∑
h=0

fi,h(δ)Mi,ni−k+h(δ) = 0. (35)

Under (34), it is clear that (35) holds if

fi,k (δ)Mi,ni(δ) = 0,

11



or equivalently
fi,k (δ) = 0.

It follows that fi,k (δ) = 0 for k = 0, 1, ..., ni − 1 which yields (25).

As noted in the context of the copula example in Section 1, it may well be the case that gij (t)
is neither a positive or a negative function of t. It is useful to note however that for mixture or
combination models with gini(t) = ηinikini(t) where kini(t) is a pdf for all i = 1, 2, ...,m, then
the integral condition in the statement of Theorem 1 (namely, g̃ini(δ + cβi) 6= 0) is automatically
satisfied. This is because ηini = 0 would then imply that ni may be replaced (without loss of
generality) by ni − 1 in the joint pdf (4) (or alternatively (1)).

3 Particular penalty functions and the deficit at ruin

In Section 2, it was shown that the Gerber-Shiu function is characterized by solutions of Lundberg’s
generalized equation together with a linear system of equations for the associated coeffi cients. In
this section, we employ a different approach to characterize the form of these coeffi cients. This
form is seen to be fairly complicated in general, but simplifies for some special cases of the penalty
function which allow for analysis of the deficit.

Considering the ladder height pdf (14), it is clear that{
m∏
i=1

(s+ βi)
ni

}
b̃δ(s) =

{
m∏
i=1

(s+ βi)
ni

}
m∑
i=1

ni∑
j=1

ξδ,ij

(
βi

βi + s

)j
is a polynomial of degree n− 1 or less. Thus,{

m∏
i=1

(s+ βi)
ni

}{
1− φδ b̃δ (s)

}
is a polynomial of degree n in s with (leading) coeffi cient of sn equal to 1, and from (20), s = −Rj,δ
is a solution of the equation 1 − φδ b̃δ (s) = 0 for j = 1, 2, ..., n. This polynomial therefore equals∏n
j=1 (s+Rj,δ), i.e.

1− φδ b̃δ (s) =

n∏
j=1

(s+Rj,δ)

m∏
i=1

(s+ βi)
ni
. (36)

As b̃δ (0) = 1, (36) implies that

φδ = 1−

n∏
j=1

Rj,δ

m∏
i=1

βnii

, (37)

and in turn

b̃δ (s) =

{
m∏
i=1

(s+ βi)
ni

}
−
{

n∏
j=1

(s+Rj,δ)

}

φδ

{
m∏
i=1

(s+ βi)
ni

} , (38)
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with φδ given by (37).
Note that from (14),

b̃δ(s) =
m∑
i=1

ni∑
j=1

ξδ,ij

(
βi

βi + s

)j
,

and so from the theory of partial fractions,

ξδ,ij =
β−ji

(ni − j)!

{
dni−j

dsni−j

[
(s+ βi)

ni b̃δ(s)
]} ∣∣∣

s=−βi
, (39)

with b̃δ(s) given by (38). Of course, (39) is straightforward in principle to evaluate but tedious in
general.

Furthermore, for k = 1, 2, ..., n, it follows from (36) that

1− φδ b̃δ (s)

s+Rk,δ
=

n∏
j=1,j 6=k

(s+Rj,δ)

m∏
i=1

(s+ βi)
ni

,

and in turn,

lim
s→−Rk,δ

1− φδ b̃δ (s)

s+Rk,δ
=

n∏
j=1,j 6=k

(Rj,δ −Rk,δ)

m∏
i=1

(βi −Rk,δ)ni
. (40)

Equations (15) and (21) together imply that

m̃δ (s) =
n∑
k=1

Ck,δ
s+Rk,δ

=
ṽδ (s)

1− φδ b̃δ (s)
,

and so using (40)

Ck,δ = lim
s→−Rk,δ

(s+Rk,δ) m̃δ (s)

= ṽδ (−Rk,δ)

m∏
i=1

(βi −Rk,δ)ni

n∏
j=1,j 6=k

(Rj,δ −Rk,δ)
. (41)

An explicit expression for ṽδ (−Rk,δ) in (41) is available using (18) and (19) by analytic contin-
uation, but (39) is awkward in general. Simplification occurs with some choices of w (y) however.
For example, if w (y) = e−zy, then from (16), vδ (u) = Tz {φδbδ (u)} where Tz is the Dickson-Hipp
operator defined as Tzf (u) =

∫∞
0 e−zyf (u+ y) dy for Re z ≥ 0 (see, e.g., Li and Garrido (2004,

Section 3)). Thus, when w (y) = e−zy,

ṽδ (s) =
φδ b̃δ (z)− φδ b̃δ (s)

s− z , (42)

and then (42) is easily evaluated with the help of (38). Similarly, when w (y) = yn where n is a
positive integer, ṽδ (s) may be expressed in terms of b̃δ (s) using ideas of Lin and Willmot (1999,
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2000), but the details are omitted. When z = 0 so that w (y) = 1 for all y, then (42) with z = 0
implies that (41) reduces to

C∗k,δ =

{
m∏
i=1

(
βi −Rk,δ

βi

)ni}
n∏

j=1,j 6=k

(
Rj,δ

Rj,δ −Rk,δ

) . (43)

Note that the Laplace transform of the time to ruin is obtained when w (y) = 1 which implies
that

Gδ(u) =
n∑
k=1

C∗k,δe
−Rk,δu, u ≥ 0, (44)

with C∗k,δ given by (43). The ruin probability ψ(u) = G0(u) is the further special case δ = 0. Also,
the compound geometric density gδ(u) = −Ḡ′δ(u) is given by

gδ(u) =

n∑
k=1

C∗k,δRk,δe
−Rk,δu, u > 0. (45)

Next, we focus on the marginal (discounted) distribution of the deficit at ruin |UT |. For the
analysis, we consider mδ(u) with w (y) = e−zy which satisfies the defective renewal equation (15).
With w (y) = e−zy, we have

mδ (u) ≡ E[e−δT−z|UT |I{T<∞}|U0 = u]

=

∫ ∞
0

e−zyhδ,2(y|u)dy, (46)

where

hδ,2(y|u) =

∫ ∞
0

hδ,12(x, y|u)dx (47)

is the marginal discounted density of the deficit at ruin. Using, e.g., Theorem 9.1.1 of Willmot and
Lin (2000), the solution to (15) may be expressed as

mδ(u) = vδ(u) +
1

1− φδ

∫ u

0
vδ(t)gδ(u− t)dt, (48)

where gδ(u) is given by (45) and

vδ(u) = φδ

∫ ∞
0

e−zybδ(u+ y)dy.

Thus, (48) becomes

mδ(u) = φδ

∫ ∞
0

e−zybδ(u+ y)dy +
φδ

1− φδ

∫ u

0

∫ ∞
0

e−zybδ(t+ y)gδ(u− t)dydt

= φδ

∫ ∞
0

e−zy
{
bδ(u+ y) +

1

1− φδ

∫ u

0
bδ(t+ y)gδ(u− t)dt

}
dy,

which yields

hδ,2(y|u) =
φδ

1− φδ

{
(1− φδ) bδ(u+ y) +

∫ u

0
bδ(t+ y)gδ(u− t)dt

}
.
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Let

hδ,2,u(y) =
hδ,2(y|u)

Gδ(u)
,

be the proper discounted density of the deficit at ruin which can be expressed as

hδ,2,u(y) =
φδ(1− φδ)bδ(u+ y) + φδ

∫ u
0 bδ(t+ y)gδ(u− t)dt

(1− φδ)Gδ(u)
. (49)

Using (14) and (12), one has

bδ(x+ y) =
m∑
i=1

ni∑
h=1

ξδ,iheβi,h(x+ y)

=

m∑
i=1

ni∑
h=1

ξδ,ih
βi

h∑
j=1

eβi,j(y)eβi,h−j+1(x)

=
m∑
i=1

ni∑
j=1

eβi,j(y)


ni∑
h=j

ξδ,ih
βi

eβi,h−j+1(x)

 .

Thus, (49) becomes

hδ,2,u(y) =
φδ

Gδ(u)

m∑
i=1

ni∑
j=1

eβi,j(y)


ni∑
h=j

ξδ,ih
βi

eβi,h−j+1(u)


+

φδ

(1− φδ)Gδ(u)

∫ u

0


m∑
i=1

ni∑
j=1

eβi,j(y)

ni∑
h=j

ξδ,ih
βi

eβi,h−j+1(t)

 gδ(u− t)dt

=
φδ

Gδ(u)

m∑
i=1

ni∑
j=1

eβi,j(y)


ni∑
h=j

ξδ,ih
βi

eβi,h−j+1(u)


+

φδ

(1− φδ)Gδ(u)

m∑
i=1

ni∑
j=1

eβi,j(y)


ni∑
h=j

ξδ,ih
βi

∫ u

0
eβi,h−j+1(t)gδ(u− t)dt

 .

That is,

hδ,2,u(y) =
m∑
i=1

ni∑
j=1

ξδ,ij(u)eβi,j(y), (50)

where

ξδ,ij(u) =
φδ

(1− φδ)Gδ(u)

ni∑
h=j

ξδ,ih
βi

{
(1− φδ)eβi,h−j+1(u) +

∫ u

0
eβi,h−j+1(t)gδ(u− t)dt

}
, (51)
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and thus hδ,2,u(y) is again of the same Coxian-n form. Also, as (44) holds and from (45),∫ u

0
eβi,h−j+1(t)gδ(u− t)dt

=

∫ u

0
eβi,h−j+1(t)

{
n∑
k=1

C∗k,δRk,δe
−Rk,δ(u−t)

}
dt

=
n∑
k=1

C∗k,δRk,δ

∫ u

0
e−Rk,δ(u−t)eβi,h−j+1(t)dt

=
n∑
k=1

C∗k,δRk,δ

{(
βi

βi −Rk,δ

)h−j+1
e−Rk,δu − 1

βi

h−j+1∑
`=1

(
βi

βi −Rk,δ

)h−j−`+2
eβi,`(u)

}
,

it follows that (51) and hence (50) are straightforward to evaluate.

4 Special cases of the model

In this section, we further examine the linear system of equations (25) in some particular special
cases of the model with a general penalty function. We start with the case where ni = 1 for all
i, implying that m = n and that the model involved is a (dependent) combination of exponential
claim sizes. In this case the linear system (25) becomes (with j = 1)

n∑
k=1

Ck,δ
βi −Rk,δ

=
E [w (Ei,1)]

βi
, i = 1, 2, . . . , n, (52)

which is of Cauchy type. To solve for Ck,δ in (52), define

Q∗(z) =


n∏
j=1

(z −Rj,δ)


n∑
k=1

Ck,δ
z −Rk,δ

=

n∑
k=1

Ck,δ


n∏

j=1,j 6=k
(z −Rj,δ)

 . (53)

For i = 1, 2, . . . , n, (52) implies that

Q∗(βi) =
E [w (Ei,1)]

βi


n∏
j=1

(βi −Rj,δ)

 = E [w (Ei,1)]
βi −Ri,δ

βi

n∏
j=1,j 6=i

(βi −Rj,δ) .

As (53) is a polynomial of degree n − 1 or less, the Lagrange interpolating polynomial argument
yields

Q∗(z) =

n∑
i=1

Q∗(βi)
n∏

j=1,j 6=i

(
βj − z
βj − βi

)
,

i.e.,

Q∗(z) =

n∑
i=1

E [w (Ei,1)]
βi −Ri,δ

βi

n∏
j=1,j 6=i

{
(βj − z) (βi −Rj,δ)

βj − βi

}
. (54)

Substitution of z = Rk,δ into (53) and (54), and solving for Ck,δ, yields

Ck,δ =

n∑
i=1

E [w (Ei,1)]
βi−Ri,δ
βi

n∏
j=1,j 6=i

{
(βj−Rk,δ)(βi−Rj,δ)

βj−βi

}
n∏

j=1,j 6=k
(Rk,δ −Rj,δ)

. (55)
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This result is consistent with Albrecher et al. (2010).

Turning now to the ladder height distribution (14) when ni = 1, one has b̃δ(s) =
n∑
i=1

ξδ,i1 {βi/ (βi + s)}.

Equating this to (38) yields

n∑
i=1

βiξδ,i1


n∏

j=1, j 6=i
(βj + s)

 =
1

φδ


n∏
j=1

(s+ βj)

−


n∏
j=1

(s+Rj,δ)


 .

Substitution of s = −βi and solving for ξδ,i1 yields, for i = 1, 2, . . . , n,

ξδ,i1 =

n∏
j=1

(βi −Rj,δ)

φδβi

{
n∏

j=1, j 6=i
(βi − βj)

} .
To conclude, we briefly consider the special case where the marginal distribution of the claim sizes

is a finite mixture of Erlangs with the same scale parameter (i.e. m = 1). Under this distributional
assumption, (25) becomes

n∑
k=1

Ck,δ

(
β1

β1 −Rk,δ

)j
= E [w(E1,j)] ,

and thus, {Ck,δ}nk=1 are the solutions of the matrix equation

AC = W,

where A = {aj,k}n×n with aj,k = (ρk)
j and ρk = β1/ (β1 −Rk,δ), C is a column vector with

{Ck,δ}k=1,...,n andW is a column vector with {E [w(E1,j)]}j=1,...,n. Note that A is a Vandermonde
matrix and its inverse A−1 = B = {bi,j}n×n has element

bi,j =

∑
1≤k1<...<kn−j≤n
k1,...,kn−j 6=i

(−1)j ρk1 ...ρkn−j

ρi
n∏

k=1,k 6=i
(ρk − ρi)

,

(e.g., Exercise 40 of Knuth (1997, Section 1.2.3)). It immediately follows that

Ck,δ =

n∑
j=1

bk,jE [w(E1,j)] ,

for k = 1, ..., n.
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