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A NOTE ON DEGREE THEORY FOR GRADIENT MAPPINGS

HERBERT AMANN

ABSTRACT. In this note we give a simple proof for the essentially known fact,

that the Leray-Schauder degree of the gradient of a coercive functional on a

large ball of a Hubert space is one. As a simple application we show that the

local index of an isolated local minimum of a C1-functional on a Hubert space

equals one.

1. Let U be an open subset of some real Hubert space 77 and suppose that the

gradient V/: U —> 77 of a given function / G C1(Lr, R) is a compact vector field,

that is, V/ = id — F, where F G C(U, H) maps bounded sets into compact sets.

In this note we give a simple proof for the following useful theorem, where B(io, r)

denotes the open ball in 77, with center xo and radius r, and a bar denotes the

closure in 77.

THEOREM. Suppose that, for some ß E R, the setV : = f~x(—oo, ß) is bounded

and V C U. Moreover, suppose that there are numbers a < ß and r > 0, and a

point xo EU such that

/-1(-oo,a]CB(x0,r)CV

and

Vf(x)fiQ   VxG/_1[a,/3].

77iendeg(V/,V,0) = l.

As easy consequences of this theorem we obtain the following corollaries:

COROLLARY 1. Suppose that U = 77 and f(x) —► oo as ||x|| —► oo. Moreover,

suppose that V/(x) fi 0 for ||x|| > r0 and some ro > 0. Then there is a number

r\ > ro such that

deg(V/,B(0,r),0) = l    Vr > n.

PROOF. Observe that f(x) = (||x||2/2) — $(x), where V$ = F. Since F

is compact, $ is weakly sequentially continuous (on convex sets) by Vainberg's

theorem [10, Theorem 8.2]. Hence / maps bounded sets into bounded sets.

Thus, let a : = sup /(B(0, r0)) and ri : = sup{||x|| |x G /—*(—oo, a]}. Moreover,

given r > ri, fix /3 > sup/(B(0,r)). Then the assertion follows from the theorem

(with xo = 0) and the excision property of the degree.    D

In the following corollary we denote by i(Vf, xo) the index of V/ at an isolated

zero xq.
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COROLLARY 2. Suppose that xo EU is an isolated critical point of f at which

f has a local minimum. Then i(V f, xo) = 1.

PROOF. We can assume that x0 = 0 and /(0) = 0, and that U = B(0, r0) for

some ro such that 0 is the only critical point of /. We claim that

inf/(B(0,r2)\B(0,r1))>0

whenever 0 < ri < r2 < r0. Indeed, otherwise we find r\, r2 with 0 < ri < r2 <

ro and a sequence (xfc) in B(0, r2)\B(0, ri) such that f(xk) —► 0. We can assume

that (xk) converges weakly to some x G B(0, r2). Since 4> is weakly sequentially

continuous, / is weakly sequentially lower semicontinuous. Hence 0 < f(x) <

Hm/(xfc) = 0, which implies x = 0. On the other hand, since f(xk) > (rf/2) —

$(xfc) and $(xk) —► <P(0) = 0, we find hm/(xA;) > rf/2, a contradiction.

Thus, fix rx and r2 with 0_< ri < r2 < r0 and ß := inf /(B(0, r2)\B(0, rx)).

Then choose r > 0 such that B(0, r) C /—1(—oo,/3) and let

a : = 2-1 inf /(B(0, r2)\B(0, r)).

Now the assertion follows from the theorem (with U = B(0, r2)) since i(Vf, 0) ==

deg(V/,V,0).    D

COROLLARY 3. Let the hypotheses of the theorem be satisfied and suppose that

xi E V is a critical point of f, which is not a global minimum of f in V. Moreover,

suppose either that F is differentiable atxi and I is not an eigenvalue of the derivative

F'(ii) G L(H), or that xi is a local minimum. Then f has at least three critical

points in V.

PROOF. In the first case F'(xi) is a compact linear operator by a well-known

theorem of Krasnosel'skii. Thus, since 1 is not an eigenvalue of F'(xi), the derivative

of V/ at ii is a continuous automorphism of 77. Hence Xi is an isolated zero of

V/ and i(Vf,xi) = ¿1 by the Leray-Schauder index formula.

Since / is weakly sequentially lower semicontinuous on B(xo,r), it attains its

minimum at some x2 G B(x0,r). Our assumptions imply that X2 is a global

minimum of / in V and that ii fi x2. If xi and x2 are the only critical points of /

in V, then by the additivity of the degree, the Theorem, and Corollary 2, it follows

in either case that

1 = deg(V/, V, 0) = i(Vf, xi) + i(Vf, x2) = 0 or 2,

a contradiction.    D

It seems worthwhile to formulate the following special case of Corollary 3:

COROLLARY 4. Suppose that U = H and f(x) —»■ oo as \\x\\ ->• oo. Moreover,

suppose that ii is a critical point of f, which is not a global minimum. If either F

is differentiable at xi and 1 is not an eigenvalue of the derivative, or xi is a local

minimum, then f has at least three critical points.

PROOF. This follows by using Corollary 1 instead of the theorem in the proof

of Corollary 3.   D

The results of this paper are known, in principle. To be more precise, Krasnosel'-

skii [4, Lemma LI.6.5] has proven Corollary 1 for the case 77 — Rn and Thews [9] has

extended this result to the general case by approximating F by finite-dimensional
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potential operators and using the standard definition of the Leray-Schauder degree.

Corollary 2 has been proven by Rabinowitz [7] under the assumption that / G

C2(U, R). His proof is based on a Ljapunov-Schmidt reduction and on the finite-

dimensional version of Corollary 2, which has first been derived by Rothe [8] and

which, in [7], is deduced from the Poincaré-Hopf theorem. Thews [9], by using the

same methods as in his proof of Corollary 1, has shown that it suffices to assume

that / G Cl(U, R). Finally, the arguments based on the additivity of the degree,

which are used in the proofs of Corollaries 3 and 4, are standard in degree theory,

and more general results of this type can be obtained by Morse theory (cf. [2]).

However, the above results do not seem to be widely known. For example, Castro

and Lazer [1] prove (by rather complicated arguments) Corollary 1 for the case

77 = Rn and under the additional assumption that / G C2(Rn, R) and has only

a finite number of critical points. This result has recently been cited by Nirenberg

in his survey [6], where he writes: "Though the result seems intuitively clear, I do

not know an elementary proof of it." Moreover, Thews's proofs have never been

published in a journal. For these reasons the publication of this paper seems to

be justified, in particular since we give a short direct proof of the theorem, based

upon the ideas of Krasnosel'skii [4], but without finite-dimensional reductions. We

use only the homotopy invariance and the normalization property of the Leray-

Schauder degree and the most basic results about ordinary differential equations.

Finally, in some applications it is important to know the value of the degree and

the fact that the above results hold for C1 functional, informations which cannot

easily be obtained by other methods.

2. Proof of the theorem, (i) We can assume that U is bounded, so that F(U) is

relatively compact. Let p : = inf{||V/(x)|| |x G /—1[a,/3]} and observe that p > 0

by the compactness of F. By a standard partition of unity argument we can find

a (locally) Lipschitz continuous map G: U —► 77 such that

||F(x)-G(x)|| <p/2   VxGC/

and G(U) C co(F(¡7)), where co denotes the convex hull (e.g. [3, Lemma 1.1]).

Hence

g: = id — G: U-> H

is a Lipschitz continuous compact vector field such that

(1 - i)V/(x) + tg(x) = V/(x) - t(G(x) - F(x)) fi 0

for (t, x) E [0,1] X dV. Hence, by homotopy invariance,

(1) deg(V/,V,0) = deg(í7,V,0).

(ü) For each x G U let t —► <p*(x) be the unique solution of the initial value

problem y = —g(y), y(0) = x, defined on the maximal interval of existence

(t~(x),t+(x)) C R. Moreover, let fi := {(i,x) G R X U\t~(x) < t < t+(x)}
and ip(t, x) : = £>*(x). Then it is well known that fi is open in R X U and <p: fi —►

U is Lipschitz continuous. Furthermore, the variation of constants formula implies

^(x) = e-*x + f e-^-T^G(<pT(x))dr = e-*[x + Kt(x)],
Jo
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where

Finally,

Kt(x) /  eTG(<pT(x))dT   V(í,x)Gfi.
7o

dr
d

(2)

f(vT(x))-f(x) = Jo ^j

= -/ (Vf(<pT(x)\g(<pT(x)))dT
JO

for (t, x) E fi-

Suppose now that <pT(x) G /—1[a, ß] for 0 < r < i. Then the estimate

(V/fo)|s(y)) = l|V/(2/)||2 - (V/(y)|C?(y) - F(y))

>liy/(y)||3-j|V/(y)|fpy2>-^/(j,)HV2
>p2/2   Vi, G/->,/?]

and (2) imply

(3) a-ß< /Viz)) - /(x) < -p2í/2.

From this and the assumption that V C U we deduce by standard arguments (e.g.

[5, Proposition VI, 1.2]) that i+(x) = oo for all x G V and that

(4) Ps(x)G/-1(-oo,a]   VxGdV,

where s : = 2(ß — ct)p~2.

(iii) For (t, x) E (0, s]XV let

Mx) : = (1 - O"1!* - *>'(*)] = x - (e* - l)"1^,

and let /lo : = g.  We claim that h : [0, s] X V —► 77, (í, x) -+ /it(x) is a compact

homotopy, that is, /i is continuous and id^ — h is compact. Indeed, since G(V)

is compact, there exists a compact set C such that érG(<pT(x)) E C for (r,x) E

[0, s] X V. Thus, by approximating the integral by Riemann sums, it follows that

i/VG(^t Jo
(x)) dr E co(C)   V(i, x) G (0, s] X V.

This implies easily that idpr — h maps [0, s] X V into a compact set.

The continuity of h on (0, s] X V is obvious. Suppose then that (tk,xk) is

a sequence in [0,s] X V* such that (tk,xk) -* (0,x). To show that htk(xk) -*

ho(x), it suffices to consider the case that tk > 0 for all k E N and to show that

(etk — l)~1Ktk(xk) —* G(x). Moreover, since

,—i

(é - i)-ijft = {^)    t-iKt,

it suffices to show that tk 1Ktk(xk) -» G(x). Now M := {xk\k G N} U {x}

and, consequently, [0, s) X M and ^([0, s] X M) are compact. Since a Lipschitz

continuous function is uniformly Lipschitz continuous on compact sets, there exist

constants X and p such that

\\G(<pT(xk)) - G(x)\\ < \\\<pT(xk) - x\\ < p\\xk - x|| + X||^(x) - x||
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for all t G [0, s] and k G N. From this estimate we deduce that

~etk — 1
tkxKtk(xk) - G(x) =^1" er[G(<pT(xk)) - G(x)} dr +

tfc Jo tk

— 1 G(x) -» 0

as k —► oo. Thus h is a compact homotopy.

Since ht(x) fi 0 for all í G (0, s] by (3), the homotopy invariance of the degree

gives

(5) deg(?,V,0) = deg(/la,V,0).

(iv) For every (a, x) E [0,1] X F let

k(o,x):=(l—oe   a)   1(x — O(pa(x) — (í — o)x0)

= x — (1 — oe~ a)~ x\oe~ aKa(x) + (1 — cr)x0].

Hence k: [0,1] X V —► 77 is a compact homotopy such that fc(0, •) = id — xo and

k(l, ■) = ha. Clearly, k(o, x) = 0 iff x — xo = o(ipa(x) — xo). Since (4) implies

||y?3(x) — x0|| < r for x G dV, and since ||x — xo|| > r on dV, k(o, x) fi 0 for all

(ct, x) G [0,1] X dV, and, consequently,

(6) deg(hs, V, 0) = deg(id - x0, V, 0) = 1.

Now the assertion follows from (1), (5), and (6).    D
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