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A NOTE ON DRAZIN INVERSES

CHEN F. KING

D is the Drazin inverse of T if TD = DT, D = TD2, and
Tk = Tk+λD for some k.

In recent years, there has been a great deal of interest in generalized
inverses of matrices ([2], [4], [5]) and many of the concepts can be
formulated in Banach space. In particular, if X is a Banach space and
B(X) denotes the algebra of bounded operators on X, then we make the
following definitions:

DEFINITION 1. An operator S in B(X) is called a generalized
inverse of T if TST = T and STS = S.

DEFINITION 2. An operator T in B(X) is called generalized
Fredholm if both the range R(T) and the null space N(T) are closed
complemented subspaces of X.

Let an operator D in B(X) be the Drazin inverse of T. Then
Tk = Tk+λD for some nonnegative integer fc.

DEFINITION 3. The smallest k for which the latter is valid is called
the index of T.

In fact, if an operator T in B(X) has a Drazin inverse then it has
only one ([2], Theorem 1).

REMARKS. (1) It is well known and easy to prove that T is a
generalized Fredholm operator if and only if it has a generalized
inverse. Some properties of the operator thus defined are obtained in
[1] but generally there remain unsatisfactory features. For example, in
Banach space there is no obvious way of defining a unique generalized
inverse and there is no useful relation between the spectrum of an
operator and of any of its generalized inverse.

(2) The Drazin inverse was introduced in [2] in a very general
context and avoids the two defects mentioned above. Note also that if
the index is equal to 1, then D is a generalized inverse of T.

We will now proceed to obtain some properties of operators with a
Drazin inverse including an exact characterization of such operators. In
order to simplify the proof of Theorem 1, we prove the following lemma:

383



384 CHEN F. KING

LEMMA 1. Let T be an operator in B(X). Then T has a general-
ized inverse S such that TS = ST if and only if X can be written
X = R(T)®N(T).

Proof Let X = R(T)($N(T) and let P be the projection from X
onto R(T) along N(T). Let

0 = T\R(T)

then N(Q) = (0) and Q is bounded with closed range. Hence, Q has a
bounded inverse on R(T). We define

S = Q-χP.

It is easy to see that S is a commuting generalized inverse of Γ.
Conversely, if T has a commuting generalized inverse 5 then TS is a

projection from X onto R(T). Let

where Xx = N(Γ5). For each x E X,, TSx = 0 and

Γx = ΓSΓx = TΓSx = 0;

this implies x £ N ( Γ ) . On the other hand, for each xEN(T) then
Γx = 0 and

this says x E X,. Consequently, N(Γ) = Xi.
In fact, T5 = SΓ implies N(Γ) = N(S) and R(T) = Λ(S). Thus,

THEOREM 1. Suppose T is an operator in B(X) with generalized
inverse S such that TS = SΓ. Then the nonzero points in p(Γ), the
resolvent set of T are precisely the reciprocals of the nonzero points in p (S).

Proof. By Lemma 1, X can be decomposed into

Assume λ^O in p(Γ) then
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τ(τ - λiy\τ - λi)s = TS,

which yields

-T(T- λ/)"1 (s-j TS\ = TS.

Since TS is the identity on R(T), for each x E R(T),

- \τ(τ - λiy1 is -jήx = χ.

This implies (5 - (1/λ)/) has a bounded inverse on R(T) for all λ ^ 0 in
P(T).

On the other hand, for each x E N(T)

or

Thus (S — A"1/) also has a bounded inverse on N(T)for all A/ 0 in p(T).
Because (S-λ- 1 ί )Λ(Γ) = ( S - λ - 1 I ) Λ ( S ) C U ( S ) = Λ ( T ) and

( S - λ - 7 ) N ( Γ ) = (S-λ-7)N(S)CN(S)=ΛΓ(Γ), so 1/λ 6p(S).
The converse statement is established with T replaced by 5 and S by

T. The proof is complete.

REMARK. The commutativity condition in Theorem 1 is essential,
for consider the shift operator S: (JC1? X2, JC3, •) (0, xu x2, •) in I2. Then
SS*S = S and S*SS* = 5* so that S* is a generalized inverse of 5. But

THEOREM 2. Let T be an operator in B(X) with Drazin inverse D
and index k. Then Dk is a generalized inverse of Tk and Dk commutes
with Tk.

Proof. Obviously Dk and Tk commute. Then

DkTkDk = D2kTk = (D2T)k = Dk
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and

_ ηrk + l ΓΛ kηrk-1

= Tk+ιD

COROLLARY. If D is the Drazin inverse of T with index k, then
X = R(Tk)φN(Tk).

THEOREM 3. // T in B(X) has a Drazin inverse D and λ is a
nonzero point in p(T), then A"1 belongs to p(D).

Proof (TDf = TDTD = TD, so TD is a projection. It is easy to
verify that R(D)=R(TD) and N(D) = N(TD). Hence R(D) and
N(D) are closed complemented in X.

Since

D(T2D)D = T2D3 =TD2 = D

and

(T2D)D(T2D) = TD3 = TD2 = T2D,

this shows that T2D is a commuting generalized inverse of D. Then, by
Lemma 1,

The rest of the proof is analogous to the first part of Theorem 1 since
TD is identity and zero on R(D) and N(D) respectively.

Recall the definition of ascent a(T) and descent d(T) for operator T
in B(S): an operator has finite ascent if the chain N(T)CN(T2)C
N(Ty)C''- becomes constant after a finite number of steps. The
smallest integer k such that N(Tk) = N(Tk+1) is then defined to be
a(T). The descent is defined similary for the chain R(T)D R(T2)D
R(T3)D - - . If T has finite ascent and descent, then they are equal ([6],
Theorem 5.41-E).
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THEOREM 4. An operator T in B(X) has a Drazin inverse if and
only if it has finite ascent and descent. In such a case, the index of T is
equal to the common value of a{T) and d(T).

Proof of sufficiency. Let k = a(T)= d(T) be finite. Then ([61,
Theorem 5.41-G) T is completely reduced by the pair of closed
complemented subspaces R(Tk) and N(Tk) of X and

X = R(Tk)®N(Tk).

Let P be the projection from X onto R(Tk) along N(Tk). Then

(1) PTk = TkP.

For each x in X, x can be written as x = y + z where y E R(Tk) and

z EN(Tk).

TkPx = Tkp(y + z) = ΓkPy = Γky

PΓkx = PTk(y + z) = PΓky = Tky.

Since N(Tk) = N(Tn) and R(Tk) = R(Tn) for all n ^ fc, we have X =
) for all n^k. This implies

(2) PT = TP.

From (1), we have

(TP)Tk = Γk + 1P = (PT)Tk.

Thus, P and Γ commute on R(Tk). Again, for each x = y + z in X,

PTJC = PT(y + 2) = PTy = ΓPy = TPx.

Therefore PT = TP on X.

(3) Define Q = TR(Tk). Q is a closed operator follows from the
fact that O is bounded with closed domain. To show Q has a bounded
inverse on R(Tk) we need only to prove that Q maps R(Tk) in a
one one manner onto itself. Because T maps R(Tk) onto itself, so does
O. If Ox = 0 with x E jR(Tk) then

0 = Ox = OTky = Tk+]y for some y E
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This implies yN(Tk+1) = N(Tk), thus x = Tky = 0. We define

D = Q-'P.

(4) Now, we must show that D, defined as above, is a Drazin
inverse of Γ, which is unique by ([2], Theorem 1). For every x = y + z
in X with y G R(Tk) and z G N(Γ k ) then

TDx = TQ^P(y + z) = TQ^Py = y

DΓx = QιPT(y + z) = QιTP(y + z)=QιTy = y,

so that DΓ = ΓD.

D2Γx = Q'ιPTQιP(y + z) = Q- !P2JC = DJC.

Thus, D = TD2.
Finally, (TD)2 = TDTD = TD = P. Hence / - TD is a projection

from X onto N(Γ fc) along i?(Γk). For any x in X

(I-TD)x N(Tk).

This implies Tk(I - TD)x = 0 and then we have

(5) It remains only to show that k is the smallest positive integer
such that Tk = Tk+ιD. Suppose there is a positive integer m < k such
that

τ m __ ηrm+ίr\

then

Tm(I-TD)x =0 VxEX,

hence (/- ΓD)x EN(Tm). But (I - D)x G N(T k), this contradicts the
hypothesis that k is the smallest common value of a(T) and d(T).

Proof of necessity. In Theorem 3 we have proved that if D is the
Drazin inverse of T with index k then T2D is a commuting generalized
inverse of D and X = i? (D) 0 N(D). The proof will be complete if we
can show that JR(D) = R(Tk) and N(D)=N(Tk).

If y G R(Tk) then there is some x G X such that
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y = Tkx = Tk+ίDx = DTk+ιx ER(D).

Conversely, if y G R(D) then there is some x G X such that

= TD2x = T 2 D 3 JC = = TkDfc+1JC G

This shows that R(D) = R(Tk). Similarly, we can show that N(D)
N(Tk). Conclusion is that

X

This implies Tk(I- TD)x = 0 and then we have

(6) It remains only to prove that k is the smallest positive integer
such that Tk = Tk+ιD. Suppose there is a positive integer m < k such
that

then

Tm(I-TD)x=0 JCGX,

hence (/ - TD)x G N(Tm). But (/ - ΓD)x E N(Tk), which contradicts
the hypothesis that k is the smallest common value of a(T) and d(T).

The proof of the necessary part is included in Theorem 1.
The operator T can be written as

since T and p commute, then for each x E. X

T(I-p)kx = Tk(I-p)x=0.

This shows that T(I - p) is nilpotent of order k. As mentioned earlier
T2D = TP is a commuting generalized inverse of D, so that TP has index
0 or 1 (it is zero when T is invertible). The following theorem is proved
by Greville ([4], Theorem 9.3) in finite dimensional space. It can be
extended to the general case without changing the proof. We merely
state:
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THEOREM 5. The decomposition (*) is the only decomposition of T
of the form

T = A + B,

where A has index 0 or 1, B is nilpotent of order k and AB = BA = 0.
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