
Theoretical Computer Science 370 (2007) 254–264
www.elsevier.com/locate/tcs

A note on efficient aggregate queries in sensor networksI

Boaz Patt-Shamir∗,1

Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

Received 15 May 2006; received in revised form 30 October 2006; accepted 31 October 2006

Communicated by D. Peleg

Abstract

We consider a scenario where nodes in a sensor network hold numeric items, and the task is to evaluate simple functions of the
distributed data. In this note we present distributed protocols for computing the median with sublinear space and communication
complexity per node. Specifically, we give a deterministic protocol for computing median with polylog complexity and a
randomized protocol that computes an approximate median with polyloglog communication complexity per node. On the negative
side, we observe that any deterministic protocol that counts the number of distinct data items must have linear complexity in the
worst case.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Sensor networks; Communication complexity; Median computation; Aggregate queries

1. Introduction

Most nodes in a sensor network must work with extremely constrained resources, which means that they must be
very frugal in terms of the number of bits they communicate, the number of memory bits they require and the amount
of processing they do. Typically, the largest power consumption is due to communication (sending or receiving a small
message may consume as much power as a thousand processing cycles). Therefore, it is highly desirable to reduce the
amount of data transmitted, possibly by doing more local processing. This basic motivation underlies sensor network
systems like TAG [9], Cougar [15], and others (see, e.g. [16]). Intuitively, the idea is to view sensors as sources of
data, and the goal of the system is to support aggregate queries formed in an SQL-like language. The setting envisaged
is that a root node (connected to the user entity) issues queries regarding the data collected by the sensors, and the
sensors collaborate in trying to generate an accurate response. In TAG, it is proposed to use a spanning tree of the
network and let the sensors do some simple local aggregations so as to avoid sending all raw data to the root. In
particular, in [9] the operations of finding the maximum, minimum, count, sum and average are identified as aggregate
queries that can be carried out efficiently on a spanning tree. Finding the median and counting the number of distinct
elements are explicitly classified in [9] as aggregates that require linear space and communication.

I A preliminary version of this paper appeared in 23rd ACM Symp. on Principles of Distributed Computing, July 2004.
∗ Tel.: +972 3 640 7036; fax: +972 3 643 6392.

E-mail address: boaz@eng.tau.ac.il.
1 Research done while visiting HP Cambridge Research Lab, One Cambridge Center, Cambridge, MA 02142, USA.

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.10.032

http://www.elsevier.com/locate/tcs
mailto:boaz@eng.tau.ac.il
http://dx.doi.org/10.1016/j.tcs.2006.10.032

B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264 255

Subsequent work did not quite settle the question of median and distinct elements. In [2], to improve robustness,
the spanning tree condition is relaxed to allow for arbitrary duplication by the communication subsystem; [2] gives
randomized algorithms that solve efficiently the aggregates of counting, sum and average. Attacking the robustness
of computing these aggregates from another angle, Zhao et al. [16] finely-tune protocols for building spanning trees.
Singh and Prasanna [14] give an algorithm for median computation in single-hop networks (i.e. all hear all), in which
each node transmits only O(log N) bits, where N is the number of items in the system. Note that each node in in the
algorithm of [14] receives O(N log N) bits. The best deterministic median computation in general sensor networks
to date required some node to communicate Ω(N) bits in the worst case. Regarding randomized algorithms, the best
known result is [6], where nodes are assumed to communicate by gossip; [6] presents an algorithm that finds, with
high probability, the exact median (or any other order statistics) using O((log N)3) bits of communication per node,
assuming that the network has the best possible “diffusion speed” (a concept closely related to “mixing time”).

Our results. In this paper we show that very little communication suffices to find the median element, but obtaining an
exact count of the number of distinct elements requires a lot of communication. Specifically, we present the following
results. First, for completeness, we give a very simple deterministic algorithm that computes the median value such that
each node transmits and receives only O((log N)2) bits, assuming that data items can be represented using O(log N)

bits. (It has been brought to our attention that a very similar algorithm appears in [11].) Our main result is an algorithm
that computes an approximate median, in which each node transmits O((log log N)3) bits. (Note that just sending
a single item costs Ω(log N) bits in the exact case!) Both algorithms are completely indifferent to the underlying
communication mechanism: the first bound only assumes the existence of a deterministic protocol for counting with
communication complexity O(log N) bits, and the second requires a randomized protocol for approximate counting
with communication complexity O(log log N) bits. Such protocols are known for various communication models
(see, e.g. [13,3]). On the negative side, we give a simple reduction that proves a conjecture from [9]. Specifically, we
show that computing the exact number of distinct elements in the data set indeed requires linear communication in
the worst case, even if the algorithm is randomized and allowed to err with some probability. This result should be
contrasted with known methods of approximating the number of distinct elements, where each node needs only to
send O(log log N) bits (see, e.g. [1,3]).

Concurrent results by others. At about the same time our results were announced in a conference [12], another
algorithm for computing the median deterministically in sensor networks was discovered by Greenwald and Khanna
[4], using the same communication cost model we use here. To compute the median (or any order statistic),
their algorithm requires O((log N)4) communication bits per node, as compared to our O((log N)2) deterministic
protocol. The algorithm in [4], however, can compute deterministically, after one pass over the data and O((log N)3)

communication bits, any approximate order statistic. In contrast, our randomized approximate algorithm computes
only a single order statistic, but it does it using exponentially fewer communication bits.

Another result published concurrently with our initial publication is by Nath et al. [10], who advocate using “order-
and duplicate-insensitive synopses” (similarly to [2]). Among other things, they propose using their tool to solve the
median problem approximately by uniform sampling; in our terms, the complexity of that algorithm is Ω(log N)

communication bits per node, as opposed to our polyloglog approximate algorithm (both algorithms are randomized).

2. Model and preliminaries

2.1. System model

The system is modelled as a set of nodes denoted V , of which one is called root. We do not make any specific
assumption about the way communication is carried out: all we require is that the root can initiate some protocols and
get back the results when a protocol terminates. The communication mechanism will be abstracted by the assumptions
we make about the existence of protocols for primitive tasks in Section 2.2 below.

To formalize the problems we address, we assume that each node holds a multiset of non-negative integers called
input items. The root node is assumed to have, in addition, a special output register. To simplify notation, we will be

256 B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264

mainly concerned with the case where each node i ∈ V holds a single input item, denoted xi .2 The collection of all
input items is denoted by X . In general, X is a multiset. The cardinality of X including multiplicities is denoted by

|X |, and by convention we also use the notation N def
= |X |. We denote the maximal possible value of X by X , and

assume X is known. We further assume that the input values are polynomial in N , i.e. that log X = O(log N). (All
logarithms in this paper are to base 2.)

Let X denote all possible values the input multiset can take. A task is a function from X to the set of non-negative
integers denoted Z+. A protocol is said to solve a given task f : X → Z+ if for all X ∈ X , when the protocol is given
input X , the value written to the output register at the root node is f (X).

The complexity measures we use to evaluate the performance of a given protocol are worst-case measures per node.
We will be mainly concerned with the communication complexity of a protocol, defined to be the maximum, over all
inputs, of the number of bits transmitted and received by any node. We stress that our communication complexity
measure is individual, in the sense that we measure the maximal number of bits communicated by any single node.
The space complexity of a protocol is the maximum, over all inputs, of the number of bits used by any node during
the execution of the protocol. The processing complexity of a protocol is defined to be the maximum, over all inputs,
of the total number of computation steps taken by any node until output is made. For the purpose of accounting for
computational complexity, we assume that each node is a classical RAM machine with access to an infinite tape of
random bits. We use PA(N) to denote the processing complexity of an algorithm A as a function of the number of input
items N . Similarly, CA(N) denotes the communication complexity of A, and SA(N) denotes its space complexity.
The complexities of all protocols considered in this paper are nondecreasing functions of N .

2.2. Primitive protocols: Max, counting, approximate counting

Possibly the simplest tasks in our framework is computing max(X), min(X), and |X |. We call these task MAX, MIN
and COUNT, respectively. The broadcast-convergecast protocol [13] with the natural corresponding aggregation rules
gives the following trivial result.

Fact 2.1. There exist protocols that compute MAX, MIN and COUNT with communication complexity O(log N), space
complexity O(log N), and processing complexity O(1).

We remark in order to get the stated complexity bounds, one usually uses a bounded-degree spanning tree of the
network [9] (bounded degree is required to maintain low individual communication complexity).

A much more interesting fact is that |X | can be approximated with exponentially smaller communication
complexity. Intuitively, the basis for the best approximate counting protocols is the following fact [1,3,7]: if each
node samples an independent geometric random variable with parameter 1/2 (say, by counting random bits until the
first “1” occurs), then the maximum of these samples is about log N . Therefore, by using the MAX algorithm over these
samples (each of which is O(log log N) bits long), we get an estimate of the count while incurring only O(log log N)

communication complexity.
To formalize this result, we use the following concept.

Definition 2.1. A protocol APX COUNT is said to solve the α-counting problem with variance σ 2 if for all possible
inputs X of size N , its output is a random variable APX COUNT(X) such that:
•

1
N |E [APX COUNT(X)]− N | ≤ α, and
•

1
N 2 Var [APX COUNT(X)] = σ 2,

for some α, σ ≥ 0.

Durand and Flajolet [3] analyze an algorithm based on the above idea, and prove a result which, cast in our
framework, can be stated as follows.

Fact 2.2. For any given parameter m, there exists an α-counting protocol with communication and processing
complexity O(m log log N). The protocol has α < 10−6, and its variance σ 2 satisfies σ ≤ βm/

√
m+ 10−6

+ o(1) for
some sequence of constants βm → 1.298.

2 We consider nonsingleton local inputs only in Section 5.

B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264 257

Using the hash value of an item as the source of random bits, the algorithm of [3] can be used to count the number
of distinct elements with small space (in fact, this is the intended use in [1,3]). Moreover, in this case the requirement
for a spanning tree is not necessary [2].

2.3. Order statistics and median

Finally, we define the median problem and its generalization, the order-statistics problem. We use the following
notation (recall that X is a multiset of integers):

Notation 2.2. For any number y, `X (y) denotes the number of items xi ∈ X strictly smaller than y, i.e., `X (y) =

| {xi ∈ X | xi < y} |.

We usually omit the subscript when X is clear from the context. Using the above notation, we define the following
tasks.

Definition 2.3. For any given 1 ≤ k ≤ N , a k-order statistics of X , denoted OS(X, k) is a number y such that `(y) < k

and `(y + 1) ≥ k. The median of X is defined by MEDIAN(X)
def
= OS(X, N/2).

We extend the definitions of order statistics and median to allow for approximations.

Definition 2.4. Let 0 ≤ α ≤ 1 and 0 < β ≤ 1 be given parameters. Given an integer k, we say that a number y is a k
(α, β)-order statistics of X , denoted APX OS(X, k), if there exists a number y′ such that

(1) `(y′) < k(1+ α) and `(y′ + 1) ≥ k(1− α).
(2) 1

max(X)
|y − y′| ≤ β.

An N/2 (α, β)-order statistics of X is called an (α, β)-median of X .

Both parameters are related to the density of input values in the vicinity of the order statistics (or median). The α

parameter controls the allowed error in terms of rank, while the β parameter controls the allowed error in terms of
value.

3. Efficient deterministic median and order statistics

In this section we give a deterministic algorithm to compute the median with communication complexity of
O((log N)2) bits. The algorithm extends directly to compute any desired order statistics; we explain below the median
algorithm in the interest of clarity. We remark that a similar algorithm appears in [11].

First, we define the following convenient generalization of the counting problem.

3.1. The COUNTP protocol

The COUNTP protocol takes a predicate P as an input argument, and returns the number of elements x for which
P(x) is true. For example, the result of COUNTP(X, “ > 5”) is the number of elements in X whose value is strictly
more than 5, and COUNTP(X, TRUE) is a long way to write COUNT(X).

If a predicate P is locally computable, then any implementation of COUNT can be used to implement COUNTP(P),
by letting COUNT run only on the elements that satisfy P . It is important to note that in order for the asymptotic
complexity of COUNTP to remain comparable to the underlying COUNT protocol, we need to ensure that P can
be represented in O(CCOUNT(N)) bits, and that its local processing and space complexities are O(PCOUNT(N)) and
O(SCOUNT(N)).

3.2. Deterministic median algorithm

We now specify the median algorithm. The idea is extremely simple: we count the number of elements in a specified
prefix of the range of values; doing a binary search on the upper bound of the prefix, we can find the median quickly.
Pseudocode for the root node is given in Fig. 1. Nonroot nodes just follow the protocols (MIN, MAX, COUNT and
COUNTP) initiated by the root.

258 B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264

Algorithm MEDIAN(X)

1 Invoke protocols to compute m ← MIN(X), M ← MAX(X) and n← COUNT(X).
2 y ← M+m

2 ; z← 2dlog(M−m)e−1. y is an integer or an integer + 1
2

3 while z > 1
2 do binary search

3.1 Invoke protocol to compute c(y)← COUNTP(X, “ < y”).
3.2 if c(y) < n

2 then y ← y + z
2 else y ← y − z

2 .
3.3 z← z

2 .
4 if y ∈ Z then output y
4.1 else if COUNTP(X, “ < dye ”) < n/2 then output dye else output byc.

Fig. 1. Algorithm for computing the median using COUNTP: code for the root node.

3.3. Analysis

We first prove the following loop invariant.

Lemma 3.1. Let µ denote the median of X. Then whenever Line 3 of the code is executed, µ ∈ [y−z, y+z].

Proof. By induction on the execution. The basis of the induction follows from Lines 1 and 2: by assumption about the
correctness of the primitive protocols, we have that m = min X and M = max X . Since z = 2dlog(M−m)e−1

≥
M−m

2
and y = M+m

2 , we have that in the first time Line 3 is executed, y − z ≤ m and y + z ≥ M , and therefore,
µ ∈ [y−z, y+z]. For the induction step, let y, z and y′, z′ denote the value of the variables before and after executing the
iteration. Consider first the case where c(y) < n/2. In this case, by correctness of the COUNTP protocol, `(y) < n/2.
Then by definition, µ ∈ [y, M]. Since by induction µ ∈ [y−z, y+z], we get that µ ∈ [y, y+z]. It is sufficient to
prove that [y, y+ z] ⊆ [y′− z′, y′+ z′]. This is true because by Line 3.2, y′ − z′ = (y + z/2) − (z/2) = y, and
y′ + z′ = y + (z/2)+ (z/2) = y + z. The case c ≥ n/2 is similar.

The following theorem summarizes the properties of the algorithm.

Theorem 3.2. Algorithm MEDIAN(X) outputs the median of X with communication complexity O((log N)2),
processing complexity O(log N) and space complexity O(log N).

Proof. Let µ denote the median of X . By Lemma 3.1 and the condition of Line 3, when Line 4 is reached,
µ ∈ [y − 1/2, y + 1/2]. Hence, if y is integer, then y = µ. Otherwise, µ ∈ {byc , dye}. Line 4.1 finds which
case is it directly. Regarding complexity, note that the while loop is executed exactly dlog(M − m)e + 1 = O(log N)

times. By Fact 2.1, each invocation of COUNTP has communication complexity O(log N) bits, since the predicate
requires O(log N) bits to describe, and the result requires O(log N) bits. The processing and space complexities are
trivially O(log N).

3.4. Algorithm for order statistics

We note that it is straightforward to extend the algorithm to answer arbitrary k-order statistics queries: just replace
the n/2 expression with k in Lines 3.2 and 4.1.

4. Approximate median algorithm

There are two main ideas in the approximate median computation algorithm we now describe. First, we replace the
deterministic counting protocol with an approximate counting protocol; this forces us to develop a version of binary
search that can tolerate errors. To further reduce the complexity, we change the target of the binary search: instead of
looking for the value of the median, we look for the length (i.e. the logarithm) of that value.

To help exposition, let us first present the algorithm without the reduction of input items lengths. We assume the
existence of a protocol APX COUNT for α-counting with variance σ 2 such that α ≤ σ/2 (cf. Fact 2.2). Using such a

B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264 259

Algorithm APX MEDIAN(X, ε) ε is desired success probability
1 Invoke protocols to compute m ← min(X), M ← max(X).
2 Let q ← log(M−m)

ε
; n← REP COUNTP(d2qe , TRUE) q is convenient shorthand

3 y ← M+m
2 ; z← 2dlog(M−m)e−1.

4 while z > 1
2 do binary search

4.1 c(y)← REP COUNTP(d32qe , “ < y”). σ 2 is variance of APX COUNT

4.2 if c(y) < n(1
2 − αc − σ) then y ← y + z

2
4.2.1 else if c(y) ≥ n(1

2 + αc + σ) then y ← y − z
2 else output byc and halt.

4.3 z← z
2 .

5 output byc.

Subroutine REP COUNTP(r, P)

R1 Invoke r independent instances of APX COUNTP(P)

R2 Return the average result.

Fig. 2. Algorithm for computing the median using COUNTP, assuming that APX COUNT is an α-counting protocol with α = αc and variance σ 2

such that αc < σ/2.

protocol as a black box, we define a protocol REP COUNTP, that takes a repetition parameter r , and a predicate P .
Protocol REP COUNTP simply applies APX COUNT r times to count the elements that satisfy the predicate P . Pseudo
code for the root protocol is presented in Fig. 2; nonroot nodes participate in the counting protocols initiated by the
root.

4.1. Analysis

Throughout the analysis, we shall assume that APX COUNT is an α-counting protocol with α = αc and variance
σ 2 such that αc < σ/2. In the interest of brevity, let us denote an interval [y−z, y+z] by [y ± z].

We start with the basic property of REP COUNTP.

Lemma 4.1. Let P be a predicate on X, and let r be a positive integer. Suppose that | {x ∈ X | P(x)} | = g for some
g. Then for any t > 0 we have that:

Pr [|REP COUNTP(r, P)− g| ≥ t + αcg] ≤
σ 2

r t2 .

Proof. REP COUNTP applies APX COUNTP independently r times. By definition of α-counting protocol,

|E [REP COUNTP(r, P)]− g| ≤ αcg,

and Var [REP COUNTP(r, P)] = σ 2

r . The result follows from Chebychev’s Inequality.

Corollary 4.2. After executing Line 2,

Pr
[
|N − n|

N
> αc + σ

]
<

1
2q

.

Proof. Follows from Lemma 4.1 when we let t = σ and r = 2q.

The following lemma analyzes an iteration of the while loop that did not halt.

Lemma 4.3. Let µ denote the median of X, and consider any execution of an iteration of the while loop that did not
halt. Let y, z and y′, z′ denote the value of the variables before and after the iteration, respectively. If µ ∈ [y± z] and
|N−n|

N ≤ αc + σ , then Pr
[
µ ∈ [y′ ± z′]

]
≥ 1− ε/2 log(M − m).

260 B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264

Proof. Suppose first that µ ∈ [y, y+ z], i.e., `(y) < N/2, and consider the probability that the algorithm takes a
“wrong turn”, i.e. it assigns y′← y − z/2: By Line 4.2.1, this happens only when c(y) ≥ n(1

2 + αc + σ). But

P
[

c(y) ≥ n
(

1
2 + αc + σ

) ∣∣∣∣ `(y) < N/2
n > N (1− αc − σ)

]
≤ Pr

[
c(y) ≥ N

1+ αc + σ

2

∣∣∣∣ `(y) <
N
2

]
≤ Pr

[
c(y) ≥ `(y)

(
1+

αc + σ

2

)]
≤ Pr

[
|c(y)− `(y)(1+ αc)| ≥

σ − αc

2

]
. (1)

Now, assuming σ > αc/2, we get from Eq. (1) and Lemma 4.1 that the probability that y′ ← y − z/2 when
|N−n|

N ≤ 1 + αc + σ and `(y) < N/2 is at most 16
q < ε

2 log(M−m)
, and the lemma holds in this case. Similarly, if

µ ∈ [y−z, y] then `(y) ≥ N/2, and applying Lemma 4.1 and the assumption that n < N (1+ αc + σ), we get that in
this case too,

Pr
[

c(y) ≤ n
(

1
2
− αc − σ

) ∣∣∣∣`(y) ≥
N
2

, n < N (1+ αc + σ)

]
≤

ε

2 log(M − m)
,

and the result follows.

The next lemma analyzes the case of termination in the middle of an iteration of the while loop.

Lemma 4.4. If the algorithm halts at Line 4.2.1, and if |N−n|
N ≤ αc + σ , then the output is an (α, β)-median with

probability at least 1− ε/2, for α = 3σ and β = 1/X.

Proof. If the algorithm halts at Line 4.2.1, then n(1
2 − αc − σ) < c(y) < n(1

2 + αc + σ), and hence N−3αc−3σ
2 <

c(y) < N+3αc+3σ
2 . Since by assumption αc < σ/2, we get from Lemma 4.1 that Pr

[
|`(y)− n

2 | ≥ 3σ
]

< 1
9q < ε

2 . For
β, note that Line 4.2.1 changes y by at most 1.

We can now summarize the properties of APX MEDIAN.

Theorem 4.5. Suppose that protocol APX COUNT is an α-counting protocol with α = αc and variance σ 2 such that
αc < σ/2. The output of Algorithm APX MEDIAN(X, ε) is an (α, β)-median with probability at least 1−ε for α = 3σ

and β = 1/N. The communication complexity of APX MEDIAN is O((log max(X))2CA(N)/ε), where CA(N) is the
communication complexity of APX COUNT.

Proof. Let µ denote the median of X . Let N denote the event that |N−n|
N ≤ αc + σ . We claim, by induction on the

number of iterations of the while loop, that if N holds, and if i − 1 iterations have completed without halting, then
before the i th iteration, µ ∈ [y± z] with probability at least 1 − (i−1)ε

2 log(M−m)
. First, note that if N holds before an

iteration, then it also holds after the iteration, so we need only to verify claim about µ. For the basis for the induction,
i = 1, note that before the first iteration we have µ ∈ [y±z] because [y±z] ⊇ [m, M] by Line 3 of the code. For the
inductive step, consider the (i + 1)st iteration. Let y, z and y′, z′ denote the value of the variables before and after the
execution of the iteration. The induction is completed since by Lemma 4.3 we have

P
[
µ ∈ [y′ ± z′] | N

]
= Pr

[
µ ∈ [y′ ± z′] | N , µ ∈ [y ± z]

]
· Pr [µ ∈ [y ± z] | N]

≥

(
1−

ε

2 log(M − m)

) (
1−

(i − 1)ε

2 log(M − m)

)
≥ 1−

iε
2 log(M − m)

.

Now, if the algorithm halted before completing log(M − m) iterations, then by Lemma 4.4 we have that for α = 3σ

and β = 1/N , the output is an (α, β)-median with probability at least 1− ε/2, provided that N holds. Otherwise, by
applying the inductive claim with i = log(M − m), we obtain that the output is an (α, β)-median with probability at
least 1− ε/2. Since by Corollary 4.2, Pr [N] ≥ 1− 1

2q ≥ 1− ε/2, we can conclude that APX MEDIAN(ε) computes
an (α, β)-median with probability at least 1− ε, for α = 3σ and β = 1/N .

B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264 261

Fig. 3. Above: An example of the input values on the real line. Below: The values after the adjustment step (Line 3.2 of the algorithm). The
algorithm “zooms” into the interval that contains the median.

To account for the communication complexity, note that each iteration of the while loop contains O(
log(M−m)

ε
) =

O(log max(X)/ε) invocations of APX COUNT, and that there are at most O(log(M−m)) = O(log max(X)) iterations.
The communication complexity of the MIN and MAX protocols invoked at Line 1 is O(log max(X)).

Approximate k-order statistics. As was the case with the deterministic algorithm, Algorithm APX MEDIAN can be
easily extended to answer arbitrary k-order statistics queries with the same complexity.

Theorem 4.6. Suppose that protocol APX COUNT is an α-counting protocol with α = αc and variance σ 2 such that
αc < σ/2. Then there exits an Algorithm APX OS(X, ε, k) that computes the k (α, β)-order statistics with probability
at least 1−ε for α = 3σ and β = 1−1/N. The communication complexity of APX OS is O((log max(X))2CA(N)/ε),
where CA(N) is the communication complexity of APX COUNT.

Proof Sketch. The algorithm is obtained from APX MEDIAN by replacing the “ 1
2 ” expressions in Lines 4.2 and 4.2.1

by “ k
N ”.

4.2. Approximate median with polyloglog complexity

To further reduce the complexity of computing median, we use the following simple idea: Each node i will use,
instead of its original input value xi , the number x̂i = blog xic. Now, since maxi∈V (x̂i) = O(log N), by using an
approximate counting algorithm with polyloglog complexity, we get from Theorem 4.5 that the complexity of the
resulting algorithm for computing an (α, β)-median is polyloglog. However, the precision (expressed by β) of that
algorithm is only constant. Using recursion, we can improve β almost arbitrarily. Specifically, suppose that the median
of the x̂i values is µ̂. Then the median of the original xi values must be between 2µ̂ and 2µ̂+1

− 1. We can therefore
discard all items whose value is outside that range. Then, scaling the remaining items to be in the range [1, X] (recall
that X is a known upper bound on the values in X), and setting k ← N

2 −

∣∣∣{xi | xi < 2µ̂
}∣∣∣, we can apply APX OS

to the new values. See Fig. 3 for a schematic example. Repeating this process for O(log 1
β
) stages, we achieve the

desired precision of β. Pseudo-code for the algorithm is presented in Fig. 4. Note that once an intermediate result is
computed (denoted µ̂(j) in the j th iteration) and broadcast to nodes (Line 3.1), each node can locally find whether it
is active in the next iteration, and if so, what is the scaled value it should use (Lines 3.2–3.3). The analysis is similar
to the analysis of Algorithm APX MEDIAN, and we only sketch it below.

Theorem 4.7. Let A be an α-counting algorithm with communication complexity CA(N), α = αc and variance σ 2

such that αc < σ/2. Then for any given ε, β > 0, an (α, β)-median can be computed with probability at least 1 − ε

with O((log log max(X))2CA(N)(log 1
β
)2/ε) communication complexity for α = O(σ log 1

β
).

Proof Sketch. Consider the j th iteration of the for loop. By Theorem 4.6, with probability at least 1 − ε/2 log 1
β

we have that after executing Line 3.1, µ̂(j) is a k(j) (α, 1
N)-order statistics of X̂ (j). Line 3.2 just applies a linear

transformation to the x (j)
i values, which maps the range [2µ̂(j)

, 2µ̂(j)
+1
− 1] to the range [1, X]. For Line 3.3, note

that since µ̂(j) is implicitly broadcast in Line 3.4, each node i can locally tell whether x (j+1)
i ∈ X̂ (j+1). Line

3.4 computes the value of k(j+1) by subtracting from k(j) the number of elements in X (j) whose value is less

262 B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264

Algorithm APX MEDIAN2(X, β, ε) β is desired precision, ε is desired success probability

1 Root invokes protocol to compute n← REP COUNTP(X,
⌈

2 log 1
β
/ε

⌉
, TRUE);

k(1)
← n/2. initialization

2 Each node i sets x̂ (1)
i ← blog xic;

Let X (1)
← X , X̂ (1)

←

{
x̂ (1)

i | i ∈ V
}

.

3 for j ← 1 to
⌈

log 1
β

⌉
do

3.1 Root invokes protocol to compute µ̂(j)
← APX OS(X̂ (j), ε/2 log 1

β
, k(j)),

and broadcasts µ̂(j) to all nodes.
3.2 Each node i executes: if 2µ̂(j)

≤ x (j)
i < 2µ̂(j)

+1 then scale input value

x (j+1)
i ← 1+

(x (j)
i − 2µ̂(j)

) · (X − 1)

2µ̂(j)
− 1

. otherwise i becomes passive

3.3 X (j+1)
←

{
x (j+1)

i | 2µ̂(j)
≤ x (j)

i < 2µ̂(j)
+1

}
; redefine input set

X̂ (j+1)
←

{⌊
log x (j+1)

i

⌋
| x (j+1)

i ∈ X (j+1)
}

.

3.4 k(j+1)
← k(j)

− REP COUNTP(X (j),
⌈

2 log 1
β
/ε

⌉
, “ < 2µ̂(j)

”). adjust k

4 Output µ
(dlog 1

β
e). µ(j) is the original value that corresponds to µ̂(j)

Fig. 4. Algorithm for computing the approximate median with polyloglog complexity.

than 2µ̂(j)
. Regarding approximation, we use the union bound to estimate that with probability at least 1 − ε

log 1
β

,

both µ(j+1) is within a factor of 3σ from the actual k(j)-order statistics (by Theorem 4.6), and that k(j+1) is
within a factor of αc + σ < 2σ from

∣∣∣{xi ∈ X (j)
| xi < 2µ̂(j)

}∣∣∣ (by Lemma 4.1). Now, assuming that X > 2,
the difference between any two distinct values is at least doubled with each additional iteration, i.e. for any j ,
if x (j)

i1
, x (j)

i2
∈ X (j+1) then |x (j)

i1
− x (j)

i2
| ≤

1
2 |x

(j+1)
i1

− x (j+1)
i2
|. Since after a single iteration we have an (α, β)-

median with β = O(1), after log 1
β

iterations, the algorithm will achieve the desired precision β, and the result will
be correct with probability at least 1 − ε. However, note that α is increased by O(σ) in each iteration due to the
inaccuracy in computing APX OS and REP COUNTP. Regarding the communication complexity, note that since for
each j we have max(X̂ (j)) ≤ log X = O(log N), Theorem 4.5 guarantees that each invocation of APX OS incurs
only O((log log N)2CA(N)ε/ log 1

β
) bits to the communication complexity. Since the number of calls to APX OS is

O(log 1
β
), the result follows.

Theorem 4.7, in conjunction with Fact 2.2, has the following corollary.

Corollary 4.8. For any given constants β, ε > 0 and α > 10−6, an (α, β)-median can be computed with probability
at least 1− ε in O((log log N)3) communication complexity.

It is clear that the space complexity of the algorithm is dominated by the size of the input item, i.e. it is O(log N).

5. The COUNT DISTINCT aggregate

The output of the COUNT DISTINCT aggregate is the number of distinct elements in the input multiset X . In [9],
this aggregate is classified as “unique”, a term whose interpretation is that the size of the state required to compute it
(and hence its communication complexity) is proportional to the number of distinct elements in X . We first note that
if an approximate answer is sufficient, then extremely efficient algorithms exist. For example, given a parameter k,
the algorithm of [3] uses communication complexity of k2 log log n bits, and guarantees with probability at least 99%,

B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264 263

that its output is within a factor of (1± 3.15/k) from the true answer to COUNT DISTINCT.3 In this section we make
the simple observation that if the exact answer is sought, then the communication complexity of COUNT DISTINCT
jumps to Ω(n).

The proof is based on a simple reduction from the decision problem of Set Disjointness, that asks whether two
input sets are disjoint. Our result can be interpreted in two possible ways. The first is that if a node may have up
to a constant fraction of the input items, then for each topology there exists an input instance that requires Ω(n)

communication complexity; alternatively, in the case where each node may have at most one input item, then there
exist some topologies, and input instances for these topologies, that require Ω(n) communication complexity.

Theorem 5.1. The communication complexity of any deterministic algorithm for COUNT DISTINCT is Ω(n) in the
worst case.

Proof. By contradiction. Consider the Two-Party Set Disjointness Problem (2SD), defined as follows. There are two
players denoted A and B, and the input consists of a set to each player, where player A sees initially only the set X A
and player B sees initially only the set X B . During the execution of a protocol, the players exchange bit strings and
can compute arbitrary functions of their local input and the bits communicated so far. A protocol is said to solve 2SD
if eventually, one of the players (doesn’t matter which) outputs 1 iff X A∩ X B = ∅. The communication complexity of
a protocol is the total number of bits communicated between the players before the output is made. It is well known

that no deterministic protocol can solve 2SD with o(n) bits in the worst case, where n def
= |X A| + |X B | (see, e.g., [8]).

So, suppose that a deterministic protocol P solves COUNT DISTINCT with communication complexity CP (n), and
assume for contradiction that CP (n) = o(n). Let X A and X B denote the inputs sets for the 2SD problem. Consider
the following protocol 2SD(P) for 2SD defined using P as a subroutine.

(1) A sends |X A| to B, and B sends |X B | to A.
(2) A and B run P to compute c← COUNT DISTINCT on X A ∪ X B .
(3) Output YES iff c = |X A| + |X B |.

Obviously, 2SD(P) solves 2SD since X A ∩ X B = ∅ iff |X A ∪ X B | = |X A| + |X B |. To complete the description, we
specify the mapping of the two parties to network nodes. In the case the model allows for multiple items per node, we
can take any topology with more than a single node, let A simulate the root node, and let B simulate all other nodes,
and distribute the input accordingly. Otherwise, if only one input item can be held by a node, we can take a line graph
of length 2n, let A simulate the left n nodes and let B simulate the right n nodes. In any case, the communication
complexity of 2SD(P) is O(log n + CP (n)), which is o(n) if CP (n) = o(n), contradiction.

We note that it is known [5] that the Ω(n) lower bound on communication complexity holds also for any randomized
algorithm that solves 2SD correctly with probability at least 1 − ε, for any constant ε < 1/2. This may seem
to contradict the fact that COUNT DISTINCT can be solved approximately using O(log log n) bits. Intuitively, the
explanation is that in order to solve 2SD, an algorithm must distinguish, with non-negligible probability, between
some two answers of COUNT DISTINCT that differ by as little as 1: this is because a difference of 1 in the result of
COUNT DISTINCT can flip the result of 2SD. Therefore, the proof above, in conjunction with the randomized lower
bound for 2SD, implies that if an approximation algorithm for COUNT DISTINCT produces the exact result with some
significant probability, then its communication complexity is Ω(n).

6. Conclusion

In this paper we looked at the communication complexity of some natural distributed aggregate queries. We showed
that contrary to some initial conjectures, the median can be computed efficiently once we allow multiple passes over
the network, and even extremely efficiently if we only seek an approximate answer. However, the exact complexity
of both the exact and the approximate versions of the median task are left open. It would be very interesting to see a
superlogarithmic lower bound on the complexity of deterministic median computation; it would be also nice to reduce
the complexity of approximate median computation to better than O((log N)3).

3 Under the assumption that good hash functions exist.

264 B. Patt-Shamir / Theoretical Computer Science 370 (2007) 254–264

Acknowledgments

The author wishes to thank George Kollios and Mike Franklin for proposing the problem, and Mark Tuttle for
useful discussions. Additional thanks are due to the anonymous reviewers of a previous version of this paper, who
pointed out the existence of [11], and helped to clarify some confusion around the exact conditions under which
Theorem 5.1 holds.

References

[1] Noga Alon, Yossi Matias, Mario Szegedy, The space complexity of approximating the frequency moments, J. Comput. System Sci. 58 (1)
(1999) 137–147. Prel. version in STOC’96.

[2] Jeffrey Considine, Feifei Li, George Kollios, John Byers, Approximate aggregation techniques for sensor databases, in: Proc. 20th Int. Conf.
on Data Engineering, ICDE, April 2004, pp. 449–460.

[3] Marianne Durand, Philippe Flajolet, Loglog counting of large cardinalities, in: Proc. 11th European Symposium on Algorithms, ESA,
September 2003, pp. 605–617.

[4] Michael B. Greenwald, Sanjeev Khanna, Power-conserving computation of order-statistics over sensor networks, in: Proc. 23rd ACM Symp.
on Principles of Database Systems, PODS, June 2004, pp. 275–285.

[5] Bala Kalyanasundaram, Georg Schnitger, The probabilistic communication complexity of set intersection, in: 2nd Annual Structure in
Complexity Theory Conference, STRUCTURES, 1987, pp. 41–49.

[6] David Kempe, Alin Dobra, Johannes Gehrke, Gossip-based computation of aggregate information, in: 44th Annual Symposium on
Foundations of Computer Science, 2003, pp. 482–491.

[7] Peter Kirschenhofer, Helmut Prodinger, A result in order statistics related to probabilistic counting, Computing 51 (1993) 15–27.
[8] Eyal Kushilevitz, Noam Nisan, Communication Complexity, Cambridge University Press, 1997.
[9] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, TAG: A tiny aggregation service for ad-hoc sensor networks, in: 5th

Ann. Symp. on Operating Systems Design and Implemntation, OSDI, December 2002, pp. 131–146.
[10] S. Nath, P.B. Gibbons, S. Seshan, Z.R. Anderson, Synopsis diffusion for robust aggregation in sensor networks, in: SenSys’04: Proc. 2nd

International Conference on Embedded Networked Sensor Systems, November 2004, pp. 250–262.
[11] Alberto Negro, Nicola Santoro, Jorge Urrutia, Efficient distributed selection with bounded messages, IEEE Trans. Parallel and Dist. Systems

8 (4) (1997) 397–401.
[12] Boaz Patt-Shamir, A note on efficient aggregate queries in sensor networks, in: Proc. 23rd Ann. ACM Symp. on Principles of Distributed

Computing, July 2004, pp. 283–289.
[13] David Peleg, Distributed Computing: A Locality-Sensitive Approach, Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2000.
[14] Mitali Singh, Viktor K. Prasanna, Optimal energy balanced algorithm for selection in single hop sensor network, in: IEEE International

Workshop on Sensor Network Protocols and Applications (SNPA) ICC, May 2003.
[15] Yong Yao, Johannes Gehrke, The Cougar approach to in-network query processing in sensor networks, ACM SIGMOD Record 31 (3) (2002)

9–18.
[16] Jerry Zhao, Ramesh Govindan, Deborah Estrin, Computing aggregates for monitoring wireless sensor networks, in: The First IEEE

International Workshop on Sensor Network Protocols and Applications, SNPA’03, Anchorage, AK, May 2003.

	A note on efficient aggregate queries in sensor networks
	Introduction
	Model and preliminaries
	System model
	Primitive protocols: Max, counting, approximate counting
	Order statistics and median

	Efficient deterministic median and order statistics
	The countP protocol
	Deterministic median algorithm
	Analysis
	Algorithm for order statistics

	Approximate median algorithm
	Analysis
	Approximate median with polyloglog complexity

	The count_distinct aggregate
	Conclusion
	Acknowledgments
	References

