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A NOTE ON ELLIPTIC K3 SURFACES

JONGHAE KEUM

Abstract. We study the relationship between an elliptic fibration on an ellip-
tic K3 surface and its Jacobian surface. We give an explicit description of the
Picard lattice of the Jacobian surface. Then we use the description to prove
that certain K3 surfaces do not admit a non-Jacobian fibration. Moreover, we
obtain an inequality involving the determinant of the Picard lattice and the
number of components of reducible fibres, which implies, among others, that
if an elliptic K3 surface has Picard lattice with relatively small determinant,
then every elliptic fibration on it must have a reducible fibre. Some examples
of K3 surfaces are discussed.

0. Introduction

By a K3 surface we mean a simply connected projective complex surface with
trivial canonical bundle. A K3 surface is called elliptic if it admits an elliptic
fibration. For example, any K3 surface with Picard number ≥ 5 is always elliptic.
In this paper we study some properties of elliptic fibrations on K3 surfaces and their
Jacobian surfaces. To be more precise, let f : S → P1 be an elliptic fibration on a
K3 surface S. Let l be its multisection index, i.e. the positive minimum possible
intersection number of a fibre and a divisor. The fibration has a section if and only
if l = 1. We call the number k = Σ(mv−1) the index of reducibility of f , where mv

is the number of components of a singular fibre Fv. Denote by J(S) the Jacobian
surface corresponding to f , which is known to be an elliptic K3 surface with the
same Picard number and singular fibres of the same type as the surface f : S → P1

(cf. [3]).
First we give an explicit way of computing the Picard lattice Pic(J(S)) of J(S)

in terms of Pic(S) and a fibre of f , proving that Pic(J(S)) is an over-lattice of
Pic(S) of index l corresponding to the isotropic element (a fibre)/l of order l in the
discriminant group of Pic(S) (Lemma 2.1). This result, essentially follows from the
work of Mukai [8] on moduli spaces of stable sheaves on K3 surfaces, turns out to
be useful. It can be used to compute the possible values of l (Corollary 2.2) and
to prove that certain K3 surfaces do not admit a non-Jacobian fibration (Theorem
2.3). Section 2 ends with an example of a Kummer surface with an elliptic fibration
whose Jacobian surface fails to be Kummer (Proposition 2.5).

Using Lemma 2.1, the theory of Mordell-Weil lattices due to Shioda [12], [13]
and Rogers’ bound for sphere packing (cf. [2]) we obtain an inequality involving
detPic(S), multisection index l and index of reducibility k (Theorems 3.1, 3.3).
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It follows e.g. that if detPic(S) is small enough, then every elliptic fibration on
S must have a reducible fibre (Corollary 3.4). Some examples of K3 surfaces are
discussed at the end of Section 3.

Finally the author would like to thank Professor Shioda for valuable conversa-
tions, which initiated this paper, and also Professor Dolgachev for helpful discus-
sions, especially for the proof of Lemma 2.1.

1. Mordell-Weil lattices

Recently T. Shioda has done a systematic study of Mordell-Weil lattices in the
case of elliptic surfaces. In this section, we review the definition and some basic
results. The main reference is [12] or [13].

We assume that the ground field is C, although everything in this section is true
in an arbitrary characteristic.

Let K = C(C) be the function field of a smooth complex projective curve C.
Let E be an elliptic curve defined over K with a K-rational point, and let E(K)

denote the group of K-rational points of E, with origin O. The Kodaira-Néron
model of E/K is an elliptic surface f : S → C with a section, where S is a smooth
complex projective surface and f is a relatively minimal fibration with the generic
fibre E. So, the group E(K) of K-rational points of E can be identified with
the group of sections of f . For P ∈ E(K), (P ) will denote the image curve of
P : C → S.

Assume throughout that f has at least one singular fibre. Then E(K) is finitely
generated (Mordell-Weil theorem) and the Néron-Severi group NS(S) of S, the
group of divisors modulo algebraic equivalence, becomes an integral lattice of finite
rank with respect to the intersection pairing D.D′. Let T denote the sublattice of
N = NS(S) generated by zero section (O), a fibre F and the irreducible components
of fibres. Then T is a direct sum:

T = (Z(O) + ZF )⊕
(⊕
v∈R

Tv

)
whereR = {v ∈ C : Fv = f−1(v) is reducible} and Tv is generated by the irreducible
components of Fv not meeting the zero section (O).

The map P → (P ) mod T induces a group isomorphism :

E(K) ∼= NS(S)/T

and then a unique homomorphism :

φ : E(K)→ NS(S)⊗Q

such that

φ(P ) = (P ) mod T ⊗Q, im(φ) ⊥ T.

For P, P ′ ∈ E(K), let

〈P, P ′〉 = −φ(P ).φ(P ′).

Then with this pairing the group E(K)/E(K)tor becomes a positive definite
lattice, called the Mordell-Weil lattice of E/K or of f : S → C. Mordell-Weil
lattices are not integral lattices in general.
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The above height pairing can be written as follows:

〈P, P ′〉 = χ+ P.O + P ′.O − P.P ′ −
∑
v∈R

contrv(P, P ′).

Here χ is the algebraic Euler characteristic of the surface S, P.Q = (P ).(Q), and
the local contribution term contrv(P, P ′) is a nonnegative rational number, which
is nonzero only if both P and P ′ pass through non-identity components of Fv; it is
indeed the (i, j)-entry of the matrix (−A−1

v ), where Av is the intersection matrix of
non-identity components of Fv,and P and P ′ meet the i-th and j-th components,
respectively.

The subgroup E(K)0 of E(K) consisting of those sections meeting the identity
component of every fibre is a torsion-free subgroup of E(K) of finite index, and
becomes a positive definite even lattice, called the narrow Mordell-Weil lattice of
E/K or of f : S → C. This lattice is isomorphic via the map φ to the opposite
lattice T⊥(−1) of the orthogonal complement T⊥ of T in the Neron-Severi lattice
NS(S).

Note that

〈P, P ′〉 = χ+ P.O + P ′.O − P.P ′ ∈ Z if P or P ′ ∈ E(K)0,

〈P, P 〉 = 2χ+ 2P.O ≥ 2χ for P ∈ E(K)0, P 6= O.

The invariants of Mordell-Weil lattices can be expressed in terms of geometric
data of the surface S. Let M = E(K)0 be the narrow Mordell-Weil lattice of
f : S → C. Then

rankM = ρ(S)− 2−
∑
v∈R

(mv − 1),

detM = ν2| detNS(S)/ detT |, ν = [E(K) : E(K)0],

µ(M) = 2χ+ 2 min{P.O : P ∈ E(K)0, P 6= O} ≥ 2χ,

where ρ(S) = rankNS(S) is the Picard number of S and mv is the number of
irreducible components of the singular fibre Fv, and µ(M) is the square of the
minimal norm of M .

The following lemma will be used in Section 3.

Lemma 1.1. With the same notation, we have

ν2/| detT | ≤ | detT | ≤ 2k,

where k =
∑
v∈R(mv − 1).

Proof. Note that there is an embedding :

E(K)/E(K)0 → Πv(F ∗v /F
∗0
v ),

where F ∗v and F ∗0v are the smooth part and the identity component of Fv, resp.,
and see that

ν ≤ Πv|F ∗v /F ∗0v | = Πv(detTv) = det T.

Next it is easy to see that detT takes its maximum 2k only when mv = 2 for all
v ∈ R.
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2. Elliptic K3 surfaces and their Jacobian surfaces

Let f : S → P1 be an elliptic K3 surface. It is known (cf. [3]) that the Jacobian
surface J(S) of S is an elliptic K3 surface and that J(S) and S have the same
Picard number and singular fibres of the same type.

Let F be a general fibre of f . Then the set

{D.F : D ∈ Pic(S)}
is an ideal of Z. The positive generator l of this ideal is called the multisection
index of f : S → P1. Note that the element F/l belongs to the dual lattice Pic(S)∗

and gives an isotropic element of order l in the discriminant group of Pic(S).
The following result, which contains a relationship between the Picard lattices

of the surface S and its Jacobian surface J(S), will serve as a useful tool for the
rest of the paper.

Lemma 2.1. Let f : S → P1 be an elliptic K3 surface with multisection index
l. Let F be the divisor class of a fibre. Then Pic(S) embeds in Pic(J(S)) as a
sublattice of index l and the quotient Pic(J(S))/P ic(S) is a cyclic group of order l
generated by F/l. (That is, Pic(J(S)) is generated as a lattice by Pic(S) and F/l.)
In particular,

detPic(S) = l2 detPicJ(S).

Proof. This lemma essentially follows from Mukai [8].
Let H̃(S,Z) be the cohomology ring

H∗(S,Z) = H0(S,Z) ⊕H2(S,Z)⊕H4(S,Z)

with the following bilinear form and Hodge structure of weight 2 (see [8]):
(i) The bilinear form ( . ) on H∗(S,Z) is defined by

((r,D, s).(r′, D′, s′)) = −rs′ +D.D′ − r′s ∈ Z
for every (r,D, s) and (r′, D′, s′) in H∗(S,Z), where we identify H0(S,Z) and
H4(S,Z) with Z by the fundamental cycle and cocycle.

(ii) The Hodge decomposition of H̃(S,C) = H̃(S,Z)⊗ C is defined by

H̃2,0(S,C) = H2,0(S,C),

H̃0,2(S,C) = H0,2(S,C),

H̃1,1(S,C) = H0(S,C)⊕H1,1(S,C)⊕H4(S,C).

Let v = (0, F,−l) be an element of H̃(S,Z) and let M(v) be the moduli space of
(stable coherent) sheaves E on S with respect to a fixed embedding S → PN with
rankE = 0, c1(E) = F and c2(E) = l, i.e.

(rank E , c1(E), rankE + 1/2c1(E)2 − c2(E)) = v.

Since v is primitive (i.e. not divisible in H̃(S,Z)) and isotropic (i.e. v2 = 0), M(v)
is smooth and 2-dimensional.

We identify the Jacobian surface J(S) of f : S → P1 with the compactifica-
tion of the Picard variety of the generic fibre of f or the relative Picard variety
Pic0S/P1(C) ∼= PiclS/P1(C) (cf. [3]). Note that a generic element of PiclS/P1(C)
can be represented by a pair (Z,F ), where Z is a divisor of degree l on the fibre
F . Let i : F → S be the inclusion morphism. It is easy to check that for each
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(Z,F ) ∈ PiclS/P1(C) the sheaf i∗OF (Z) on S belongs to the moduli space M(v).
This defines a birational embedding : PiclS/P1(C)→M(v).

Now by a result of Mukai (Theorem 1.4 and Remark, [8]) the K3 surface J(S)
is the compactification of a component of M(v) and there is an isomorphism of
Hodge structures between H2(J(S),Z) and v⊥/Zv which is compatible with the
intersection pairing on H2(J(S),Z) and the bilinear form on v⊥/Zv induced by
that on H̃(S,Z). From this, we see that

Pic(J(S)) ∼= (v⊥ ∩ H̃1,1(S,C))/Zv

= {(−D.F/l,D, b) ∈ H̃(S,Z) : D ∈ Pic(S), b ∈ Z}/Zv

= {{(−D.F/l,D, 0) : D ∈ Pic(S)}+ Z(0, 0, 1)}/Zv.
Now it is easy to see that the map

ψ : Pic(S)→ Pic(J(S)), ψ(D) = (−D.F/l,D, 0)

is an isometric embedding. Finally we see that

l(0, 0, 1) ≡ ψ(F ) mod v.

Thus

Pic(J(S)) ∼= Pic(S) + ZF/l ⊂ Pic(S)∗.

The result follows from the primitivity of F in Pic(S).

Remark. (i) In [1] Belcastro has proved a similar result in a slightly different way;
she applied the result of Mukai to the moduli space of stable vector bundles E on
the surface S with respect to a fixed embedding S → PN with rank E = l, c1(E) = F
and c2(E) = l (the Mukai vector in this case is v = (l, F, 0)). We believe our result
is a bit more precise.

(ii) We point out that Lemma 2.1 can not be generalized directly to general
elliptic surfaces. In fact, every Enriques surface is elliptic and its corresponding
Jacobian surface is isomorphic to a projective plane with nine points blown up.
The Picard lattice of an Enriques surface modulo torsion is even unimodular and of
signature (1, 9), while the Picard lattice of its Jacobian surface is odd unimodular.

Corollary 2.2. Let S be an algebraic K3 surface.
1. If detPic(S) is square free, then every elliptic fibration on S is a Jacobian

fibration, i.e. has a section.
2. If the discriminant group of Pic(S) does not contain an isotropic element of

order l, then S does not admit an elliptic fibration with multisection index l.

Example. S = the Fermat quartic surface in P3.
The transcendental lattice T (S) = 〈8〉 ⊕ 〈8〉 and detPic(S) = 64. Since there

are no isotropic elements of order 4 or 8 in the discriminant group of Pic(S), the
multisection index l of any elliptic fibration must be 1 or 2.

Now let us consider the following K3 surfaces :
Xm (m = 3, 4), the minimal resolution of the quotient surface

Eτm × Eτm/〈σ : (z1, z2)→ (τmz1, τ
−1
m z2)〉

(τm = m-th root of 1),
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where Eτ is the elliptic curve with period τ . These surfaces are singular K3 surfaces
whose automorphism groups were computed by Vinberg [14].

As an application of Lemma 2.1, we have the following :

Theorem 2.3. Let X be one of the following three singular K3 surfaces:

X3, X4, Km(Eτ3 × Eτ3).

Then every elliptic fibration on X is a Jacobian fibration.

Proof. (i) If X = X3, then detPic(X) = 3, which is square free.
(ii) If X = X4, then detPic(X) = 4 and, since there is no even unimodular

lattice of signature (1, 19), we are done by Lemma 2.1.
(iii) If X = Km(Eτ3 × Eτ3), then detPic(X) = 12, so we need to rule out the

possibility l = 2.
Suppose l = 2 for some elliptic fibration on X . Then PicJ(X), being an over-

lattice of Pic(X) of index 2, corresponds to an isotropic element of order 2 in the
discriminant group of Pic(X). Since the transcendental lattice of X is generated
by two elements e, f with e2 = f2 = 4, ef = 2, one can check that there is no such
element in the discriminant group of Pic(X).

Remark. Recently, Nishiyama [10] has classified all possible Jacobian fibrations on
each of the three K3 surfaces in Theorem 2.3 (plus two more Kummer surfaces).
The above theorem strengthens his result.

On the other hand, there exists an example of a Kummer surface with an elliptic
fibration whose Jacobian surface fails to be a Kummer surface.

First, we need the following, which easily follows from Morrison [7, Corollary
4.4].

Lemma 2.4. Let S be an algebraic Kummer surface.
1. If ρ(S) = 20, then | detPic(S)| ≥ 12.
2. If ρ(S) = 19, then | detPic(S)| ≥ 16.
3. If ρ(S) = 18, then | detPic(S)| ≥ 16.
4. If ρ(S) = 17, then | detPic(S)| ≥ 64.

Proposition 2.5. Let S be the Kummer surface Km(E × E′) of the product of
non-isogenous elliptic curves E and E′. Then there exists an elliptic fibration on
S whose Jacobian surface is not a Kummer surface.

Proof. Note that the transcendental lattice T (S) and the Picard lattice Pic(S) of
S can be computed to be

T (S) = U(2)⊕ U(2), P ic(S) = D8 ⊕D8 ⊕ U.
Thus

ρ(S) = 18, detPic(S) = 16.

We shall find explicitly such an elliptic fibration. Recall that the surface S contains
24 smooth rational curves, 4 from the elliptic curves E× (a 2-torsion of E′), 4 from
(a 2-torsion of E) ×E′, and 16 from the resolution of 16 nodes. The configuration
of these 24 curves is given in Figure 1.

Denote by Hi (i = 1, 2, 3, 4) the 4 horizontal curves, by Vj (j = 1, 2, 3, 4) the 4
vertical ones, and by Nij the curve meeting Hi and Vj . The divisor

2V1 + 4N11 + 6H1 + 5N14 + 4V4 + 3N44 + 2H4 +N42 + 3N12
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Figure 1.

is of type Ẽ8 and defines an elliptic fibration on S. Away from this fibre there are
seven curves,

N22, H2, N23, V3, N33, H3, N32.

These seven curves form a string and hence a part of a fibre of type D̃8,Ã7,Ã8,Ẽ8,
or Ẽ7. The last two possibilities can be ruled out by the fact that N21, N31, N43

are 2−sections of the fibration. The third possibility also can be ruled out; on the
Jacobian surface J(S) the irreducible components of singular fibres and a section
would generate a sublattice of PicJ(S) isomorphic to U+E8 +A8, which is absurd,
because det(U+E8+A8)(= 9) can’t be a multiple of detPicJ(S)(= 4 or 16). Finally
the second possibility Ã7 also can be ruled out by considering the 4-section V2 and
another elliptic fibration defined by the divisor

V1 +N11 +H1 +N14 + V4 +N44 +H4 +N43 + V3 +N23 +H2 +N21

of type Ã11. This proves that the other fibre is D̃8. Now it is easy to see that
the fibration does not have a section; the existence of a section would imply that
Pic(S) contains as a sublattice U ⊕ E8 ⊕D8 whose determinant is not a multiple
of detPic(S), a contradiction. So, the multisection index l = 2 and, by Lemma 2.1
detPicJ(S) = 4. The result now follows from Lemma 2.4.

3. Reducibility of elliptic fibrations

Recall that a positive-definite lattice L (not necessarily integral) gives rise to a
sphere packing in L⊗R by spheres of radius

√
µ(L)/2, where

√
µ(L) is the minimal

norm of L. The density ∆(L) is the ratio of the volume of one sphere to that of the
fundamental domain of L, i.e.

√
detL. The quantity δ(L) = ∆(L)/vol(unit sphere)

is called the center density: one has

δ(L) = (
√
µ(L)/2)r/

√
detL, r = rankL.

In each dimension r there is a bound for center density (cf. Table 1.2, [2]), known
as Lindsey’s bound (r = 3) and Rogers’ bound (r ≥ 4). We denote this bound by
Br.
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Theorem 3.1. Let f : S → P1 be an elliptic K3 surface with multisection index l
and Picard number ρ. Suppose there is no reducible fibre. Then l2 divides detPic(S)
and

| detPic(S)|/l2 ≥ Cρ−2,

where Cr is an integer given as follows:

C1 = 4, C2 = 12, C3 = 30, C4 = 59, C5 = 101, C6 = 152, C7 = 206,

C8 = 250, C9 = 278, C10 = 283, C11 = 266, C12 = 233, C13 = 191,

C14 = 146, C15 = 106, C16 = 73, C17 = 47, C18 = 29.

Proof. The first assertion follows from Lemma 2.1. Let M be the (narrow) Mordell-
Weil lattice of the Jacobian surface J(S). Then from Section 1

rankM = ρ− 2, detM = | detPicJ(S)|.
By Lemma 2.1, we have

Bρ−2 ≥ δ(M) = (
√
µ(M)/2)ρ−2/

√
| detPicJ(S)|

≥ l/
√
| detPic(S)|.

Here we use the fact that µ(M) ≥ 4. Now we take the integer Cr as the smallest
integer not less than 1/(Br)2 and prove the second assertion.

Corollary 3.2. If | detPic(S)| < Cρ−2, then every elliptic fibration with or without
a section on the K3 surface S must have a reducible fibre.

Let f : S → C be an elliptic surface (with or without a section) and let mv be
the number of irreducible components of the singular fibre Fv. We call the number
k = Σv(mv − 1) the index of reducibility of the fibration.

Theorem 3.3. Suppose that a K3 surface S has an elliptic fibration with multi-
section index l and index of reducibility k. Then l2 divides detPic(S) and

| detPic(S)|/l2 ≥ Cρ−2−k/| detT | ≥ Cρ−2−k/2k,

where T is the sublattice of PicJ(S) generated by irreducible components of singular
fibres and a section. (So, detT is completely determined by the types of singular
fibres, more precisely, detT = Πvsv, where sv is the number of simple components
of the singular fibre Fv.)

Proof. The second inequality follows from Lemma 1.1. Let M be the narrow
Mordell-Weil lattice of the Jacobian surface J(S). Then from Section 1, Lemma
1.1 and Lemma 2.1

rankM = ρ− 2− k,

detM = | detPicJ(S)|ν2/| detT | ≤ | detPicJ(S)|| detT |

= | detPic(S)|| detT |/l2.
Now the same argument as in the proof of Theorem 3.1 proves the first inequality.
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Remark. In the proof above we couldn’t use the (full) Mordell-Weil lattice. The
reason is that even though the determinant of this lattice gets in general smaller
than detM (e.g. if ρ − 2 − k ≥ 11, then there is no torsion section (Cox [4]) and
hence the determinant of the Mordell-Weil lattice is detM/ν2), the lower bound
for the minimal norm also gets smaller simultaneously.

Corollary 3.4. If | detPic(S)| < Cρ−2−k/2k, then the K3 surface S can not have
an elliptic fibration with index of reducibility k.

Corollary 3.5. Suppose that there is an elliptic fibration on a K3 surface S with
index of reducibility k and that

| detPic(S)| < s2Cρ−2−k/| detT |

for some integer s. Then the multisection index of the fibration is less than s.

Examples. 1. K3 surfaces with ρ = 2.
This case is not covered by the above results and is trivial in the sense that every
elliptic fibration, if any, is irreducible. We remark here that a K3 surface S with
ρ = 2 is elliptic if and only if − detPic(S) is a square number if and only if Pic(S)
embeds in the unimodular even lattice U of signature (1, 1). This follows from
Lemma 2.1, or from the following arithmetical fact: an even lattice L of signature
(1, 1) has an isotropic element if and only if − detL is a square number if and only
if L embeds in U .

2. K3 surfaces with ρ = 3.
A K3 surface S with ρ = 3 is elliptic if and only if Pic(S) embeds in U ⊕ (−2m), m
a positive integer. This follows from Lemma 2.1 and the decomposition PicJ(S) =
U ⊕ (−2m). Now let us consider a K3 surface X with Picard lattice isomorphic to
L = U ⊕ (−2m). Such a surface exists, as L embeds primitively in the K3 lattice
U3 ⊕ E2

8 and the period map for K3 surfaces is surjective. It is easy to see that
X has an irreducible elliptic fibration if and only if m ≥ 2. This shows that our
bound C1 = 4 is sharp.

3. A K3 surface with ρ = 4 and detPic(S) = 12.
Consider a K3 surface S with Pic(S) = U ⊕ W , where W is generated by two
elements x, y, x2 = y2 = −4, xy = 2. The existence of S can be shown in a
similar manner as in the previous example. Since W contains no roots, the surface
S admits an irreducible elliptic fibration whose Mordell-Weil group is W . This
shows that the bound C2 = 12 is sharp.

4. Jacobian Kummer surface S with ρ = 17.
This is a generic Kummer surface associated to the Jacobian of a curve of genus 2.
It is known [6] that

T (S) = 〈−4〉 ⊕ U(2)⊕ U(2), P ic(S) = D8 ⊕D8 ⊕ 〈4〉.

So, detPic(S) = 64 and the multisection index l = 1, 2, 4, or 8. The last possi-
bility is ruled out, as there is no unimodular even lattice of signature (1, 16). The
possibility l = 4 also can be ruled out, as the discriminant group of Pic(S) does
not contain an isotropic element of order 4. Applying Theorem 3.3 to each of the
remaining 2 cases, we obtain the following lower bound for the index of reducibility
k:

k ≥ 2 (l = 1); k ≥ 4 (l = 2).
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In particular, there is no irreducible fibration (k = 0) (whose existence was erro-
neously claimed in [5]). We do not know whether these bounds are sharp.

5. S = Km(E × E′), E not isogenous to E′.
There is no isotropic element of order 4 in the discriminant group of Pic(S), so
the multisection index l = 1 or 2 (see Proposition 2.5). If l = 1, Oguiso’s list [11]
shows that the index of reducibility k ≥ 12, while our method merely shows that
k ≥ 4. This happens mostly when Pic(S) contains a root sublattice of large rank
(cf. [10]). For non-Jacobian fibrations with l = 2, our method shows that k ≥ 7.
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