J. Korean Math. Soc. 42 (2005), No. 5, pp. 1087-1100

A NOTE ON END PROPERTIES
OF MARCINKIEWICZ INTEGRAL

YonGg DING

ABSTRACT. In this note we give the mapping properties of the
Marcinkiewicz integral pq at some end spaces. More precisely, we
first prove that uq is a bounded operator from H'+>°(R™) to L1»°°
(R™). As a corollary of the results above, we obtain again the weak
type (1,1) boundedness of uq, but the condition assumed on 2 is
weaker than Stein’s condition. Finally, we show that pg is bounded
from BMO(R™) to BMO(R"™). The results in this note are the ex-
tensions of the results obtained by Lee and Rim recently.

1. Introduction

Suppose that S”~! is the unit sphere in R® (n > 2) equipped with
the Lebesgue measure do. Let 2 be a homogeneous function of degree
zero on R" satisfying Q € L}(S"~!) and

(1.1) /S Q@)dola) =0,

where 2’ = z/|z| for any = # 0. Then the Marcinkiewicz integral oper-
ator un of higher dimension is defined by

pa(f)(z) = ( / " |Fas(@) 2@)1/2,

t3

where

Fas() = /, =8 1)y,

a—yl<e [€ = y[*
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It is well known that the operator ug was first defined by Stein in [9].
He proved that if Q satisfies a Lip, (0 < . < 1) condition on S"~ 1, then
pa is of type (p,p) for 1 < p < 2 and of weak type (1,1). Subsequently
Benedek, Calderén and Panzone showed in [1] that if @ € C1(S™~!) then
pg is of type (p,p) for 1 < p < oo. In 2000, Ding, Fan and Pan[4] proved
the following result:

THEOREM A. Suppose that Q € H(S""!) and satisfies (1.1). Then
for 1 < p < oo, there exists a constant C' > 0, independent of f, such

that ||pa(f)llze < CllfiLe-

Here H!(S"~1) denotes the Hardy space on the unit sphere (see [2]
and [3] for the definition and properties of H!(S"~!)). Note that the
following relationship between H'(S™~!) and the other function spaces
on "1

Lip,(5™1) c LY(S™ 1) € Llogt L(S™})

1.2
( ) C Hl(Sn—l) CLl(Sn—l),
where all inclusions are proper for any 0 < & < 1 and ¢ > 1. Hence,
Theorem A improved the results in [9] (for 1 < p < 2)) and [1] mentioned
above.

Recently, Lee and Rim[8] discussed the (H?, L'), (L2 N L*°, BMO)
and (LP, L?) (1 < p < o0) boundedness of ug when there exist constants
C > 0 and p > 1 such that

C
(1.3) [z") = QW) £ >
(log r=577)”
holds uniformly in 2/,y’ € S*1.
It is easy to see that the condition (1.3) is weaker than the Lip,
(0 < a < 1) condition on S™~!. In addition, it is also obvious if Q
satisfies (1.3) for some p > 1, then by (1.2)

(1.4) Qe L>(S™" ) c LYS™ ) (1< g<o0)C H(S™ ).

In this note we will consider the mapping properties of the Marcinkie-
wicz integral pq on some end function spaces when Q satisfies (1.3)
for p > 2. More precise, we will first prove that po is bounded from
HUL®(R™) to LY (R™). Here H1*°(R™) denotes the weak Haidy space,
which was introduced first by Fefferman and Soria in [6]. To state our
results, let us recall the definition of H**°(R™).
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DEFINITION 1. Suppose that ¢ € C§°(R™) with [ ¢ # 0. Denote
F1(2) = supaso (6 * f)(x)], where ¢y(z) = t="(x /t). A function f is
said to belong to the weak Hardy space HV>®°(R") if fi € LY (R"),
i.e., there exists a constant C' > 0 such that for any 8 > 0

sup B {z € R" : f1(z) > B} < C.
B8>0

The smallest constant C satisfying the above inequality is called the
H'*°(R™) norm of f, which is denoted by || f|| g1.e.

We have the following conclusions.

THEOREM 1. Let Q satisfy (1.1) and (1.3) for some p > 2. Then ugq
is bounded operator from H»*(R") to L}»*°(R"). That is, there exists
a constant C > 0 such that for any f € HY*(R"™) and 3 > 0,

(1.5). {z: paf(z) > BY < Clfllare-/B-

REMARK 1. Let M be the Hardy-Littlewood maximal operator. It
is known that if ¢ € C$°(R™) and f € L*(R™), then f}(x) < CM(f)(x)
(see [10, pp. 62, Theorem 2]). Hence, by the weak (1,1) boundedness of
M, it is easy to see that the space L*(R™) is continuously embedded as
a subspace of the space H»®(R"), and || f| g1« < C||f||L: for any f €
L*(R™). Thus we get immediately the following corollary of Theorem 1.

COROLLARY. If Q satisfy (1.1) and (1.3) for some p > 2, then pgq is
of weak type (1,1). That is, there exists a constant C > 0 such that for
any f € LI(R™) and 8> 0, |{z : uaf(z) > B} < Clfllz /8.

REMARK 2. In [9], Stein proved that uq is of weak (1,1) if Q €
Lipo(S™™1) for 0 < o < 1. In [5], Fan and Sato showed that if Q €
Llogt L(S™ 1), then ugq is also of weak (1,1). Hence, the condition
(1.3) of Corollary is weaker than Stein’s condition but stronger than
Fan-Sato’s condition.

The second result in this note shows that ug is also bounded from
BMO(R") to BMO(R™).

DEFINITION 2. A locally integrable function f(z) is said to belong
to BMO(R™) if

. 1
I lanc0 = sup o /Q 1F(@) — foldz < oo,
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where the supremum is taken over all cubes in R™ with sides parallel
to the coordinate axes, and fg denotes the average of f over Q, i.e.

fo= I—C%—l fQ f(z)dz.
A well-known important fact on BMO(R") is that for any 1 < p < oo,

T (50 [ 150~ sapd "
BMO Sgp |Q|/Q| z) — fo :c) .

THEOREM 2. Let §) satisfy (1.1) and (1.3) for some p > 2. Suppose
that f(z) € BMO(R™) and there is a measurable set E C R"™ with
|E| > 0 such that pa(f)(z) < oo for any x € E. Then po(f)(z) < oo
a.e. on R™ and '

(1.6) lua(f)llermo < Clfllamos

where the constant C' is independent of f.

REMARK 3. In [7], Han gave an example to show that there exist an
Q and fo € L®(R"™) such that ug(fo)(xz) = oo for any z € R™. There-
fore, po can not map an L (R"™) function into a BMO(R") function in
general.

2. Proof of Theorem 1

We need the following Fefferman-Soria’s decomposition theorem of
function in H1*(R") (See [6]).

THEOREM B. Given a function f € HY®(R"), there exists a se-
quence of bounded functions { fi.}32 _., with the following properties:
(a) f— 2 k<~ fk tends to zero in the sense of distributions;

(b) Each fr may be further decomposed as fy = Y, h¥ in L' and
{hk} satisfies
(i) supp(h¥) C BF := B(zF,rF), where B(x,r) denotes the

ball in R™ with the center at x and radius r. Moreover,
> |BF| < Ci27%and ¥, xgk(z) < C, where Cy ~ || f|| grioo;
(ii) ||h¥]lcc < C2*, where C is independent of i and k;
(iii) [ h¥(z)dz =0, for every i and k.

Now let us turn to the proof of Theorem 1. We need to show that
there exists a constant C' > 0 such that (1.5) holds for any f € H1°°(R")
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and 8 > 0. To do this, for any given S > 0, we take ko satisfying
2ko < 3 < 2o+l then by Theorem B we may write

f= Z fe+ Z fe:=F +F; and fk*th,
k=—00 k=ko+1
where hY satisfies (i), (ii) and (iii). Now denote Ay = suppf, then 4 =

U; BF and |Ak] < 3, |BE| < C27%|| f|| g1 . Note that || filleo < C2F, we
have

[F1]l2 < Z I fellz < C Z 2% 4|2

k=—o00 k=—00
ko
1/2 1/2
<C S RSl < ClflE-BY2
k=—00

Using (1.4) and Theorem A, it is easy to see that

(2.1) {z : pa(F1)(z) > B} < llpa(F)5/82
< C|\F|3/8?
< C|fll 1./ B-

On the other hand, let

3k = B(z¥,2(3/2)kko)/npk) and By, = BE.
k2 2 ? 0 i

k=ko+1 i
We have
Bl< Y S |B
k=ko+1 i
= 3 Yot eiBY
(2‘2) k=ko+1 ¢
x0
<C > /22| fllgne
k=ko+1

< Ol fllzre/B.
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Thus, to prove (1.5) it suffices to show

(2.3) {z € (Bk,) : pa(F2)(x) > B} < C||fllgr.=/B.
Using the Minkowski inequality, we get
| pa(E) @
(Brg)©
| X Qz — 2\ /2
-/ (/ S [ e §)
(Bkg)© 0] k=ko+1 i |lz—y|<t Ix—yl t
dt\ "
< S|/ et o ﬁ) &
BkO) k= k +1 3 |:E y|<t Ix ’
S C Z Z(II + I2)7
k=ko+1 1
where
|z —z| 427k Qlz — 2dt 1/2
ne [ ([T a4
(Brg)® \Jo jo—yl<t 1T — Y| t
and
00 _ 1/2
12=/ (/ / U =Y) 4y d—f) dz.
(Brg)® |z—zk|42rk |lz—y|<t Ix_y,n t

2

It is easy to check that when y € B¥, for any « € (By,)¢, |z — z¥|
|z — y| ~ |z — =F| + 2rF, and

1 1
(jo —afl+2rf)2 |z —yl?| =
Hence by Q € L°°(S”‘1) and (2.4), we have

1/2
I < / / [ k) </ dt) dydz
Bko)C BF I.’IC - yln ! | lz—y|<t<|z—zk|+2rk t3

/Bk )c/Bk Jw— =t

= C2k 1/2/ / ——dsd
BE J2(3/2)(k=ko)/nyk 31+1/2 Y

(k—ko)/(2 —
<C2k( )1/2|Bk‘(§) 0 (n)(ri) 1/2

k
T

|z —yl*

(2.4)

1/2
dydx

lx—w’“l+2r 2 e —yl?



A note on Marcinkiewicz integral 1093

Thus

(2.5) Z Y h<c Z 2 )=k @ | £ 1 oo < Ol 1.0

k=ko+1 1 k= ko+1

Now let us consider I. As above we know that if x € (By,)¢, y € BF
then |z — z¥| ~ |z — y| ~ |z — zF| + 2rF, and

3

(2.6) Ty x_"”%z e —
lz—yl |z —zf |z ~ z7|

Thus by (1.3) and (2.6), we get

|z —y) — Qz - 2b)| = lﬂ(ﬁ) - Q(Ti%’“l)’
(2.7) ¢

2

&

Applying (2.7) we have

(2.8)
Qz-y) Qz — z¥)
A
e —y) ~ Q@ —=h)] 1
< FnoT V)l = Fn1
|z — 23 I” |z - l" e -k
< © |:1: xk T kin
|z — 2f "~ (log T+ ) |ac—x |
< o

= _rk .
o — 2|1 (log E274l)?

i

Now let us return to the estimate of I,. Note that when y € BF, for any
x € (Bg,)¢ and t > |z — z¥| + 2r¥, we have B C {y e R™: |z — y| < t}.
By the cancellation property of h¥(y) and (2.8), we get

i Az —y) Qz — zF)
I2 = n—1 k 1
(Big)© fe—ak|+2rk | J|z—y|<t |z — yl |z — zF|™=

2 1/2
X B (y)dy fé) dz
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corf,.]
(Big)e J BE

Qz —y) Qz — a:f)

lz -yt |z —zk|nt

1 1/2
X (/ dt> dydx
jz—y|<t,jz— m’“|<tt

< Czk/ / 1
Bk | — ""’k|>(3/2)(’c ko)/"r’“ |£L’ k:|n 1(1Og |-’B x |)p
————dxdy
o~ 2f|
o0
< 2Bl | b,
(3/2)(k=ko)/nyk S(log rik)

Note that p > 2

/oo ds
—pdS
(3/2)k—ko)/nrk 5(log %)

(3/2)(j+1)(k—k0)/n

/ ds
= ——ds
P21 J(3/2)itk—ko)/n s(log s)P
2.9 e (3/2)G+ 1) (k=ko)/n
j=1 (108(3/2)](’“_’“0)/") (3/2)3(k—ko)/n s
%) log 3/2 (k: ko)/n
- Z (log(3/2)3(k—ko)/n)?
< C(k —ko)' 7"
We therefore get by (2.9)
(2.10) I < C2¥B¥|(k — ko)
Thus
> oo
@1) > D L<C Y (k—ko) Pl flme < Cllfllme.
k=ko+1 ¢ k=ko+1

By (2.5) and (2.11), we have
@212) / no(Fa)(@)dz < C|f || rvoe-
(Bko)c

From (2.12) we get (2.3). Hence we finish the proof of Theorem 1.
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3. Proof of Theorem 2

Let us begin by recalling a known result.

LEMMA 1. Suppose that 1 < p < 0o, > 0 and f € BMO(R™).
Then there exists a C = C(n,p,n) > 0 such that for any cube Q with
its center at x and side length d,

/ d"|f(z) — fol”
R

o &+ [z — |77

dz < CllflBmo-

Now let us turn to the proof of Theorem 2. Take any density point T
of E and any cube Q with center at Z, and denote by d the side length of
Q. First we show that uq(f)(z) < o a.e. on Q. To do this, we denote
Q* = 16Q to be the sixteen times extension of @ with its center at Z.
Decompose f(z) as

f(@) = for + (f(z) — for)xer + (f(z) — for)(1 — xqr)
= fi(z) + f2(z) + f3(z).

By (1.1) we get uq(f1)(z) = 0. From (1.4) and Theorem A, we obtain

(3.1)

/ nalf2) (@)Pde < / ua(f2) (@) dz
Q R
<C |f2(a:)|2d:c
Rn

< CQIIf Iz mo-

Hence

1/2
(3.2) /Q Iun(fz)(m)lde|Q|1/2< /Q |un<f2>(m>|2dx)
< C1Q| | fllBmo-

This shows that uq(f2)(z) < oo a.e. on Q. Since |E| > 0, we have
|QN E| > 0. Hence there exists an 2o € QN E such that ua(f)(zo) < oo
and uq(f2)(@o) < oo hold at the same time, and we may chose zo to
close to Z enough, say, |zo — Z| < d/4. Thus

(3:3) pe(f3)(@o) < pa(f)(zo) + na(f2)(zo) < oo
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On the other hand, for any z € Q we have

(3.4)
lua(f3)(z) — pa(fs)(xo)]

( ‘/lm —yl<t |90—31|)’{CBg )dy

Qzo — y) f(y) 12
1) 3ly Zg)

Oz — 2 g\ 1/2
e ft|as) % )

|zo—y|<t |lzo —y[*!
_ 2 1/2
Q—(xg—y_)fg(y)(dy) @>

< ( (ﬁa:—mst
|zo—y|>t
|zo — y|™* t
dt 1/2
h(y )ld) —)

o0
x

r
avl (/NH Mo—y) _ Dla—y) :

o=yt oo — g

Below we shall give the estimates of Iy, I and I3, respectively. For Iy,
we have

Il(il')
9z — y)| ( @)”2
< | = inw) /méttt:,, dy

< C)|Q 1 n-l/ _
1€ 2 (Sm—1) (@")¢ | yln 1 lz—y|2  |zo — y|?

Note that y € (Q*)¢ and z,z9 € Q, we have |z — y| ~ |zg — y| ~ |Z — |
and

1/2
Fs()l|— .

dy.

1 1

|z —yl*  |zo —yl?
From this and applying Holder’s inequality, we get
a2\ f3(y)|

I < C Q oo n—1 _d

1(z) < CllQ Lo (s )/(Q*)c iz —yrrz Y

d1/2 1/2
. < Q oo (Qn— —d
(3.5) < Ol poo(sn-1) (/Q e o — y|n+1/2 )

1/2 2 1/2
o (/ d |f3(2|2dy> '
(@ |z —y[m+1/

Cd
Tz -yl
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It is easy to check that

dn+1/2 + lm _ y|n+1/2 < 21.’E _ y|n+1/2

for z € Q and y € (Q*)°. Hence by (3.5) and Lemma 1

/2| f3(y) 2 12
3.6 hiz)<C / e drHL/2 4 :v—y”+1/2dy
(@)

< C|fllBmo-

Similarly, we have Iz(z) < C||fllemo in the same way of estimating
I(xz). Now let us consider I3(x). Using Holder’s inequality again, we
get

Qz —v) Qzo —y)

@v)e |z —y"t Jzo —y|m?

<(/ %) w
lz—y|<t,lzo—yl<t T

< C/ Qz - y)1 _ Qzo — y)1
@ne e —y|"™ 1 jzo —y[™”
Similar to the estimates of (2.6)-(2.8), we get
| f3(y )ldy
I3 T S C/

1f3(y)]

AW,
lzo — ¥l

Note that y € (Q*)° and z,Z € Q, and hence
ly —zo| > |y — Z| — |Z — 20| > 8d — d/4 > 4d.

Thus

j=2 2jds|y—x0|<2j+ld |y —_ m0| (log Iy il?Ol)

— dy 1/2
<cC (/ )
j; 20 d<|y~zo|<29+1d |y — :Eo|n(log ly— wol)

x(/ Iﬁ(W@>m
27d<|y—zp|<2it1ld \y - 330!"




1098 Yong Ding

Observe
( dy >1/2
21 d<|y—=zo|<29+1d |y — To|™ (log ly— xo|)
( 2.7+1d ) 1/2
67) e el
21+1 1/2
( g2j </21 )
<<
T
On the other hand, denote by @, the 27 times extension of Q, then we
have
(3.8)

/ | f3(y )|2dy>
23d<|y—zo|<2i+1d |Y — To|™

1/2
|f3<y>|2dy)

1/2
17 ) = fay P + |fayen — for |2>dy)

2’d 20 d< |y—xo|<29+1d

2‘7d)n 2]d<|y m:|<27+ld
C

1/2
( , W) = fayuPdy + G +1) 22"||f||BMo) |
|QJ+1| Qi+

Thus by (3.7) and (3.8) and note that p > 2

8)
(3.9) <cy (14 G+ D2 flzao < Clfllaso.

Summing up (3.4), (3.6) and (3.9), we get
(3.10) lua(fs)(@) — palfs)(@o)| < Clflemo-

Thus we prove that

pa(f)(@) < pa(fi)(z) + pa(f2)(z)
+ [pa(f3)(®) — ua(fs)(zo)| + ua(fs)(zo)

< o0 a.e.on Q.
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Because Q is any cube with center at Z € E, we get actually ua(f)(z) <
oo a.e. on R™.

Finally, let us show that (1.6) holds. In fact, from the process of the
above proof we know that for any cube @ C R", there exists an zp €
such that pua(f3)(zo) < oo. Let Q@* = 16Q) and write f = fi+fo+f3 asin
(3.1). From the process of the above proof, we know that uq(f1)(z) =0
on Q, and [, |pa(f2)(@)ldz < ClQ||fl|Brmo- And by (3.2) and (3.10)
we get

/Q e (f)(@) — palfs)(zo) dz
(3.11)

IA

/ lafa) (@)|dz + / e (fs)(@) — ualfs)(zo)|dz
Q Q
< ClQ| IfllBmo-

Using (3.10) and (3.11) again, we have
/Q B0 (N(@) — (un(H)olde
< / lna(f)(z) — pa(fs)(zo)|dz -l-/ lua(f3)(zo) — (ua(f))oldz
Q Q

< ClQIIfllsmo + /Q alf)(@) — palfs)(@o)lds
< ClQllfllsao-

Thus we obtain (1.6) and complete the proof of Theorem 2.
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