A NOTE ON ENESTRÖM-KAKEYA THEOREM

A. A. Mogbademu ${ }^{1}$, S. Hans 2 and J. A. Adepoju ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Lagos
Lagos, Nigeria
e-mail: amogbademu@unilag.edu.ng
${ }^{2}$ Department of Mathematics, ITM University
Gurgaon, 122017, India
e-mail: sunil.hans82@yahoo.com
${ }^{3}$ Federal University of Petroleum
Effurum, Delta Nigeria
e-mail: jadi1011@yahoo.com

Abstract

In this paper, the restriction on the coefficients of a polynomial with complex coefficients is weakened in order to obtain an extension of Eneström-Kakeya's Theorem. Our method of proofs is of independent interest. Moreover, remark at the end simplifies several known results in this area of research.

1. Introduction

Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. One of the fundamental problem of finding out the region which contains all or a prescribed number of zeros of a polynomial was first studied by Gauss [9]. He proved:

Theorem 1.1. If $P(z)=z^{n}+\sum_{j=1}^{n-1} a_{j} z^{j}$, where a_{j} are all real, then $P(z)$ has all its zeros in $|z| \leq R$, where
(i) $R=\max \left(1,2^{\frac{1}{2}} s\right)$, s being the sum of positive a_{j}
(ii) $R=\max \left(n 2^{\frac{1}{2}}\left|a_{j}\right|\right)^{j}$.

In 1829, Cauchy [4] gave more exact bounds for the moduli of zeros of a polynomial than those given by Gauss [9]. He proved the following result.

[^0]Theorem 1.2. All the zeros of the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n lie in the circle $|z| \leq R$, where R is the root of the equation

$$
\left|a_{0}\right|+\left|a_{1}\right| z+\left|a_{2}\right| z^{2}+\ldots+\left|a_{n-1}\right| z^{n-1}+\left|a_{n}\right| z^{n}=0 .
$$

Several generalisations and improvements of this result are available in the literature (see [1-6, 11-12]). The following elegant results on the location of zeros of a polynomial with restricted coefficients is known as the EneströmKakeya theorem [13-14].

Theorem 1.3. (Eneström-Kakeya) Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n whose coefficients a_{j} satisfy

$$
a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0}>0
$$

Then all the zeros of $P(z)$ lie in the closed unit disk $|z| \leq 1$.
Joyal, Labella and Rahman[11] extended Theorem 1.3 to polynomials whose coefficients are monotonic but need not be non-negative as follows:

Theorem 1.4. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that

$$
a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0} .
$$

Then all the zeros of $P(z)$ lie in

$$
|z| \leq \frac{a_{n}+\left|a_{0}\right|-a_{0}}{\left|a_{n}\right|} .
$$

Aziz and Zargar [2] relaxed the conditions of Theorem 1.3 and proved the following generalisation of Theorem 1.4.

Theorem 1.5. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $k \geq 1$,

$$
k a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq a_{0} .
$$

Then all the zeros of $P(z)$ lie in

$$
|z+k-1| \leq \frac{k a_{n}+\left|a_{0}\right|-a_{0}}{\left|a_{n}\right|} .
$$

Aziz and Zargar[3] obtained some extensions of Theorem 1.3 by relaxing the hypothesis as follows:

Theorem 1.6. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some positive numbers k and ρ with $k \geq 1$ and $0<\rho \leq 1$,

$$
k a_{n} \geq a_{n-1} \geq \ldots \geq a_{1} \geq \rho a_{0} \geq 0
$$

then all the zeros of $P(z)$ lie in the closed unit disk

$$
|z+k-1| \leq k+2 \frac{a_{0}}{a_{n}}(1-\rho) .
$$

Theorem 1.7. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If for some positive number $\rho, 0<\rho \leq 1$, and some non-negative integer $\lambda, 0 \leq \lambda \leq n-1$,

$$
a_{n} \leq a_{n-1} \leq \ldots \leq a_{\lambda+1} \leq a_{\lambda} \geq a_{\lambda-1} \geq \ldots \geq \rho a_{0}
$$

then all the zeros of $P(z)$ lie in

$$
\left|z+\frac{a_{n-1}}{a_{n}}-1\right| \leq \frac{2 a_{\lambda}-a_{n-1}+(2-\rho)\left|a_{0}\right|-\rho a_{0}}{a_{n}}
$$

In this paper, we further weaken the hypothesis of Theorems 1.6 and 1.7 to prove following result for polynomials with complex coefficients. Our result is an extension of Theorem 1.3 (Eneström-Kakeya) among others.

2. Main Results

Theorem 2.1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with complex coefficients such that for some real $t>0, \mu \geq 0,0 \leq \lambda \leq n-1$ and $0<\rho \leq 1$,

$$
t^{n} a_{n} \leq t^{n-1} a_{n-1} \leq \ldots \leq t^{\lambda+1} a_{\lambda+1} \leq t^{\lambda} a_{\lambda}+\mu t^{\lambda-1} \geq t^{\lambda-1} a_{\lambda-1} \geq \ldots \geq \rho a_{0}
$$

Then all the zeros of $P(z)$ lie in

$$
\left|z-\frac{\mu}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left\{-a_{n} t+\mu+\frac{a_{0}}{t^{n-1}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}+\frac{\left|a_{0}\right|}{t^{n-1}}\right\} .
$$

Proof. Consider the polynomial

$$
\begin{aligned}
F(z)= & (t-z) P(z) \\
= & a_{0} t+\sum_{j=1}^{n}\left(a_{j} t-a_{j-1}\right) z^{j}-a_{n} z^{n+1} \\
= & -a_{n} z^{n+1}+\sum_{j=1}^{n}\left(a_{j} t-a_{j-1}\right) z^{j}+a_{0} t \\
= & -a_{n} z^{n+1}+\left(a_{n} t-a_{n-1}\right) z^{n}+\sum_{j=1}^{n-1}\left(a_{j} t-a_{j-1}\right) z^{j}+a_{0} t \\
= & -a_{n} z^{n+1}+\left(\mu-a_{n} t\right) z^{n}+a_{n} t z^{n}+\left(a_{n} t-\mu-a_{n-1}\right) z^{n} \\
& +\left(a_{1} t-a_{0}\right) z+\sum_{j=2}^{n-1}\left(a_{j} t-a_{j-1}\right) z^{j}+a_{0} t .
\end{aligned}
$$

This gives

$$
\begin{aligned}
|F(z)|= & \mid-a_{n} z^{n+1}+\left(\mu-a_{n} t\right) z^{n}+a_{n} t z^{n}+\left(a_{n} t-\mu-a_{n-1}\right) z^{n} \\
& +\left(a_{1} t-a_{0}\right) z+\sum_{j=2}^{n-1}\left(a_{j} t-a_{j-1}\right) z^{j}+a_{0} t \mid . \\
= & \mid-a_{n} z^{n+1}+\left(\mu-a_{n} t\right) z^{n}+a_{n} t z^{n}+\left(a_{n} t-\mu-a_{n-1}\right) z^{n} \\
& +\left(a_{1} t-a_{0}\right) z+\sum_{j=2}^{\lambda}\left(a_{j} t-a_{j-1}\right) z^{j} \\
& +\sum_{j=1+\lambda}^{n-1}\left(a_{j} t-a_{j-1}\right) z^{j}+a_{0} t \mid \\
\geq & |z|^{n}\left|a_{n} z-\mu\right| \\
& -|z|^{n}\left[\left|a_{n} t-\mu-\alpha_{n-1}\right|+\frac{\left|a_{1} t-a_{0}\right|}{|z|^{n-j}}\right. \\
& \left.+\frac{\left|a_{0}\right| t}{|z|^{n}}+\sum_{j=2}^{\lambda} \frac{\left|a_{j} t-a_{j-1}\right|}{|z|^{n-j}}+\sum_{j=1+\lambda}^{n-1} \frac{\left|a_{j} t-a_{j-1}\right|}{|z|^{n-j}}\right] \\
\geq & |z|^{n}\left|a_{n} z-\mu\right| \\
& -|z|^{n}\left[\left|a_{n} t-\mu-a_{n-1}\right|+\frac{\left|a_{1} t-\rho a_{0}\right|}{|t|^{n-1}}+\frac{\left|a_{0}-\rho a_{0}\right|}{|t|^{n-1}}\right. \\
& \left.+\frac{\left|a_{0}\right| t}{|z|^{n}}+\sum_{j=2}^{\lambda} \frac{\left|a_{j} t-a_{j-1}\right|}{|z|^{n-j}}+\sum_{j=1+\lambda}^{n-1} \frac{\left|a_{j} t-a_{j-1}\right|}{|z|^{n-j}}\right] .
\end{aligned}
$$

Now, let $|z| \geq t$, so that $\frac{1}{|z|^{n-j}} \leq \frac{1}{|t|^{n-j}}$ for $0 \leq j \leq n$. Then, we have

$$
\begin{aligned}
|F(z)| \geq & |z|^{n}\left[\left|a_{n} z-\mu\right|\right. \\
& -\left\{\left|a_{n} t-\mu-a_{n-1}\right|+\frac{\left|a_{1} t-\rho a_{0}\right|}{|t|^{n-1}}+\frac{\left|a_{0}-\rho a_{0}\right|}{|t|^{n-1}}\right. \\
& \left.\left.+\frac{\left|a_{0}\right| t}{|t|^{n}}+\sum_{j=2}^{\lambda} \frac{\left|a_{j} t-a_{j-1}\right|}{|t|^{n-j}}+\sum_{j=1+\lambda}^{n-1} \frac{\left|a_{j} t-a_{j-1}\right|}{|t|^{n-j}}\right\}\right] \\
= & |z|^{n}\left[\left|a_{n} z-\mu\right|-\left\{-a_{n} t+\mu+a_{n-1}\right.\right. \\
& +\frac{a_{1}}{|t|^{n-2}}-\rho \frac{\left|a_{0}\right|}{|t|^{n-1}}+\frac{a_{0}}{|t|^{n-1}}-\rho \frac{\left|a_{0}\right|}{|t|^{n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\sum_{j=2}^{\lambda} \frac{a_{j} t-a_{j-1}}{|t|^{n-j}}+\sum_{j=1+\lambda}^{n-1} \frac{a_{j-1} t-a_{j}}{|t|^{n-j}}+\frac{\left|a_{0}\right| t}{|t|^{n}}\right\}\right] \\
= & |z|^{n}\left[\left|a_{n} z-\mu\right|-\left\{-a_{n} t+\mu+a_{n-1}+\frac{a_{1}}{t^{n-2}}-\rho \frac{\left|a_{0}\right|}{t^{n-1}}\right.\right. \\
& +\frac{a_{0}}{t^{n-1}}-\rho \frac{\left|a_{0}\right|}{t^{n-1}}+\frac{a_{\lambda} t^{1+\lambda}}{t^{n}}+\sum_{j=2}^{\lambda-1} \frac{a_{j} t^{1+j}}{t^{n}}-\frac{a_{0}}{t^{n-1}}-\sum_{j=2}^{\lambda-1} \frac{a_{j} t^{1+j}}{t^{n}} \\
& \left.\left.+\frac{a_{\lambda} t^{1+\lambda}}{t^{n}}+\sum_{j=1+\lambda}^{n-2} \frac{a_{j} t^{1+j}}{t^{n}}-a_{n-1}-\sum_{j=1+\lambda}^{n-2} \frac{a_{j} t^{1+j}}{t^{n}}+\frac{\left|a_{0}\right| t}{|t|^{n}}\right\}\right] \\
= & |z|^{n}\left[\left|a_{n} z-\mu\right|-\left\{-a_{n} t+\mu+\frac{a_{1}}{t^{n-2}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}\right.\right. \\
& \left.+\frac{\left|a_{0}\right|}{\left.t^{n-1}\right\}}\right\} \\
\geq & |z|^{n}\left[\left|a_{n} z-\mu\right|-\left\{-a_{n} t+\mu+\frac{a_{0}}{t^{n-1}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}\right.\right. \\
& \left.\left.+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}+\frac{\left|a_{0}\right|}{t^{n-1}}\right\}\right] .
\end{aligned}
$$

If

$$
\left|a_{n} z-\mu\right|>\left\{-a_{n} t+\mu+\frac{a_{0}}{t^{n-1}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}+\frac{\left|a_{0}\right|}{t^{n-1}}\right\}
$$

i.e.,

$$
\left|z-\frac{\mu}{a_{n}}\right|>\frac{1}{\left|a_{n}\right|}\left\{-a_{n} t+\mu+\frac{a_{0}}{t^{n-1}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}+\frac{\left|a_{0}\right|}{t^{n-1}}\right\}
$$

then all the zeros of $F(z)$ whose modulus is greater than or equal to t lie in

$$
\left|z-\frac{\mu}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left\{-a_{n} t+\mu+\frac{a_{0}}{t^{n-1}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}+\frac{\left|a_{0}\right|}{t^{n-1}}\right\}
$$

But those zeros of $F(z)$ whose modulus is less than t already satisfy the above inequality and all the zeros of $P(z)$ are also the zeros of $F(z)$. Hence it follows that all the zeros of $F(z)$ and hence of $P(z)$ lie in

$$
\left|z-\frac{\mu}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left\{-a_{n} t+\mu+\frac{a_{0}}{t^{n-1}}-\rho \frac{\left(a_{0}+\left|a_{0}\right|\right)}{t^{n-1}}+\frac{2 a_{\lambda}}{t^{n-\lambda-1}}+\frac{\left|a_{0}\right|}{t^{n-1}}\right\}
$$

This completes the proof.

Remark 2.2. (1) For $t=1$ and $\lambda=n, \mu=0, \rho=1, a>0$, we recapture the Eneström-Kakeya Theorem 1.3 (see [13,14]).
(2) For $t=1$ and $\lambda=n, \mu=0, \rho=1, a$ is non-negative, we recapture the results of Joyal, Labella and Rahman [11].
(3) For $t=1$ and $\lambda=n, \mu=k-1, \rho=1, a$ is non-negative, we recapture the results of Aziz and Zargar [2].
(4) For $t=1$ and $\lambda=n, \mu=k-1, a \geq 0$, we recapture the results of Aziz and Zargar [3].

Remark 2.3. Finding the zeros of a polynomial is a long standing classical problem which has emerged as an interesting and fascinating area of research for Mathematicians and Engineers (see [7, 10]). Eneström-Kakeya result serves as a very strong tool for obtaining the region in the complex plane having all the zeros of a class of polynomial. The result has been employed to: analyze overflow oscillation of discrete-time dynamical system [15], investigate the properties of orthogonal wavelets [12], determine the asymptotic behavior of zeros of the Daubechies filter [10, 12].

References

[1] N. Anderson, E.B. Saff and R.S. Verga, An Extension of Eneström-Kakeya Theorem and its Sharpness, SIAM Math. Anal., 12 (1981), 10-22 .
[2] A. Aziz and B.A. Zargar, Some Extensions of Eneström-Kakeya Theorem, Glasňik Math., 31 (1996), 239-244.
[3] A. Aziz and B.A. Zargar, Bounds for the zeros of a polynomial with restricted coefficients, Appl. Math., 3 (2012), 30-33.
[4] A.L. Cauchy, Exercise de Mathematique, Oeuvres, 2(9) (1829), 122.
[5] K.K. Dewan and N.K. Govil, On the Eneström-Kakeya Theorem, J. Approx. Theory, 42 (1984), 239-244.
[6] K.K. Dewan and N.K. Govil, On the Eneström-Kakeya Theorem, J. Math. Anal. Appl., 180 (1993), 29-36 .
[7] F. Fricke, Lehrbuch der Algebra, Friedrich Vieweg and Sohn Verlag, braunschweig, Germany, (1924).
[8] R.G. Gardener and N.K. Govil, Some Generalizations of the Eneström-Kakeya Theorem, Acta Math. Hungar, 4 (1997), 125-134.
[9] K.F. Gauss, Beitrage zur Theorie der algebraischen Gleichungen, Abh. Ges. Wiss. Gottingen, 4 (1850), 73-102.
[10] W. Heitzinger, W.I. Troch and G. Valentin, Praxis nichtlinearer Gleichungen, Carl Hanser Verlag munchen, wien, Germany, Austria, (1985).
[11] A. Joyal, G. Labelle and Q.I. Rahman, On the Location of Zeros of Polynomials, Canadian Math. Bull., 10 (1967), 55-63.
[12] J.R. Karam, An application of the Kakeya-Eneström theorem, Proc. Int. Conf. Image Sci. in Syst. Technol. CISST, 4 (2004), 354-358.
[13] M. Marden, Geometry of polynomials, Math. Surveys, Amer. Math. Soc. Providence, RI, 3 (1949).
[14] G.V. Milovanovic, D.S. Mitrinovic and Th.M. Rassias, Topics in Polynomials: Extremal Properties, Inequalities, Zeros, World Scientific Publishing Co., Singapore, (1994).
[15] T. Ooba, On companion systems with state saturation nonlinearity, IEEE Trans. Autum. Control, 50 (2003), 1580.

[^0]: ${ }^{0}$ Received September 25, 2014. Revised November 25, 2014.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30C10, 30C15.
 ${ }^{0}$ Keywords: Zeros, Eneström-Kakeya, polynomials.

