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Abstract. We study the equilibrium problem for two-dimensional bodies made of
a no-tension material under gravity, subjected to distributed or concentrated loads on
their boundary. Admissible and equilibrated stress fields are interpreted as tensor-valued
measures with distributional divergence represented by a vector-valued measure, as de-
veloped by the authors of the present paper. Such stress fields allow us to consider stress
concentrations on surfaces and lines. Working in R

n, we calculate the weak divergence
of a stress field that is asymptotically of the form |x |−n+1T 0(x/|x |) for x → 0 on a
region that is asymptotically a cone with vertex 0. Such stress fields arise as parts of our
solutions for two-dimensional panels. Proceeding to problems in dimension two, we first
determine an admissible equilibrated solution for a half-plane under gravity that under-
lies two subsequent solutions for rectangular panels. For the latter we give solutions for
three types of loads.

1. Introduction. We study the equilibrium problem of bodies made of a no-tension
(or masonry-like) material [1], [3] under gravity. We seek stress fields that are equili-
brated with the applied loads and compatible with the incapability of the material to
withstand traction. Referring to [10] for a motivation in the context of limit analysis [2],
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E-mail address: silhavy@math.cas.cz

E-mail address: nicola.zani@unifi.it

c©2007 Brown University
605

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



606 M. LUCCHESI, M. ŠILHAVÝ, AND N. ZANI

we observe that these solutions can be used to determine lower bounds for the collapse
load and sometimes the collapse load itself. The solution to this problem is considerably
simplified by allowing for singularities of the stress field on one or more surfaces or curves
of concentrated stress. This feature corresponds to infinite compressive strength of the
material, a simplifying hypothesis that is frequently used in the study of masonry struc-
tures [6]. As in [7], [8], [9], [10], we use tensor-valued measures to describe the singular
stress fields. We refer to [11], [12], [13] for solutions for two-dimensional panels in the
absence of gravity and to [9] for some three-dimensional solutions.

In the present paper we consider two-dimensional rectangular panels under gravity
and several types of loads. We first review the basic facts on stresses interpreted as
measures in the general setting in R

n and calculate the weak divergence and the normal
trace of a stress field that is asymptotically of the form |x|−n+1T0(x/|x|) on a region
that is asymptotically a cone with vertex 0 as x → 0. Such stress fields arise as parts of
our solutions for two-dimensional panels. Proceeding to dimension two, we first give a
solution for a half-plane under gravity and prescribed distributed loads on its boundary.
The latter underlies two solutions subsequently given for rectangular panels. The rect-
angular panels are subjected to three types of loads, and the solutions are glued from
solutions on various subregions of the panel dictated by the load.

2. Divergence measure tensor fields. Throughout the paper, Lin denotes the
space of all linear transformations from R

n into R
n with the scalar product A · B =

tr(ABT), A, B ∈ Lin, and Sym is a subspace of Lin consisting of all symmetric trans-
formations. We interpret Lin as the space of all second order tensors and use vector and
tensor notation and conventions from [5], [16].

If Ω is an open subset of R
n, we denote by C∞

0 (Ω, Rn) the set of all infinitely differ-
entiable functions v : R

n → R
n whose support spt v is contained in Ω.

Throughout the paper, we use Lin-valued measures on R
n to describe fields of the

stress tensor in a body and R
n-valued measures on R

n to describe body forces acting on
the body or surface tractions acting on the boundary of the body. These measures are
σ additive functions µ with values in Lin or in R

n defined on the collection of all Borel
subsets of R

n. If A ⊂ R
n is a Borel set, we say that µ is supported by A if µ(B) = 0

for each Borel set B ⊂ R
n with A∩B = ∅; equivalently, we say that µ vanishes outside

A. We denote by M(A, Lin) [or by M(A, Rn)] the set of all Lin-valued [or R
n-valued]

measures on R
n that vanish outside A. Thus our convention is that all measures are

defined on the whole of R
n, but we shall often work with measures supported by one or

another subset of R
n.

If Ω ⊂ R
n is open, we say that T ∈ M(Ω, Lin) is a divergence measure tensor

field in Ω if there exists a measure div T ∈ M(Ω, Rn), called the divergence of T in Ω,

such that ∫
Ω

∇v · dT = −
∫

Ω

v · ddiv T
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EQUILIBRATED STRESS FIELDS FOR NO-TENSION BODIES UNDER GRAVITY 607

for each v ∈ C∞
0 (Ω, Rn). A measure T ∈ M(Ω, Lin) is said to be an equilibrated tensor

field in Ω if there exist measures b ∈ M(Ω, Rn) and t ∈ M(∂Ω, Rn) such that∫
Ω

∇v · dT =
∫

Ω

v · db +
∫

∂Ω

v · dt (2.1)

for each v ∈ C∞
0 (Rn, Rn). Here ∂Ω denotes the topological boundary of Ω. Since the

measures b and t are supported on the disjoint sets Ω and ∂Ω, respectively, they are
uniquely determined (provided they exist). We call the pair (b, t) the load corresponding
to T and the measure t the normal trace of T on ∂Ω; we use the notation N(T) := t

for the normal trace. Equation (2.1) then reads∫
Ω

∇v · dT = −
∫

Ω

v · ddiv T +
∫

∂Ω

v · dN(T) (2.2)

for each v ∈ C∞
0 (Rn, Rn). Clearly, any equilibrated tensor field T is a divergence measure

tensor field and if (b, t) is the load, then div T = −b. We refer to [10] for the literature.
There are divergence measure tensor fields that are not equilibrated [17, Example 9.1],
i.e., for which the measure t does not exist.

We denote by Ln the Lebesgue measure in R
n [4, Subsection 2.6.5] and by Hk the

k-dimensional Hausdorff measure [4, Subsections 2.10.2–2.10.6]. We denote by δ0 the
scalar Dirac measure at 0. If µ is a measure in R

n and B ⊂ R
n a Borel set, we denote

by µ B the restriction of µ to B, i.e., a measure on R
n defined by

(µ B)(A) = µ(A ∩ B)

for any Borel subset A of R
n. If f is a Borel µ integrable function, defined µ almost

everywhere, we denote by fµ the product of f and µ, i.e., the measure defined by

(fµ)(A) =
∫

A

f dµ

for every Borel set A ⊂ R
n. Note that (fµ) B = f(µ B) and we use the symbol

fµ B for the last two expressions.
If an equilibrated tensor field T ∈ M(Ω, Lin) is interpreted as the stress field in a

continuous body under the action of a body force given by a prescribed measure b0 ∈
M(Ω, Rn) and the boundary traction given by a prescribed measure t0 ∈ M(∂Ω, Rn),
then the equations of equilibrium read

div T + b0 = 0, (2.3)

N(T) = t0.

In particular, if b0 is absolutely continuous with respect to the Lebesgue measure (e.g.,
the gravity), i.e.,

b0 = b0Ln Ω (2.4)

where b0 : Ω → R
n is an Ln integrable function, then div T must be absolutely continuous

with respect to Ln as well.
More generally, assume that T consists of a regular part Tr distributed over Ω and of

a singular part Ts concentrated on an (n − 1)-dimensional oriented surface S, i.e.,

T = TrLn Ω + TsHn−1 S.
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Assume that S has a piecewise smooth boundary ∂S that is contained in the boundary
∂Ω of Ω, that the regular part Tr is piecewise continuously differentiable with a jump
discontinuity [Tr ] on S and that the singular part Ts is superficial and continuously
differentiable in the interior of S. The requirement that Ts be superficial means that
Ts(x)n(x) = 0 for any x ∈ S where n is the normal to S. Under the assumptions of [10,
Section 3(ii)] then (2.3) with (2.4) reduces to

div Tr + b0 = 0 in Ω \ S (2.5)

and
[Tr ]n − divS Ts = 0 on S (2.6)

where div is the classical divergence operator and divS denotes the surface divergence.
Moreover, if Ω is a region with Lipschitz boundary, then under the assumptions of [10,
Section 3(ii)] we have

N(T) = TrmHn−1 ∂Ω + TspHn−2 (∂Ω ∩ ∂S)

where m is the outer normal to ∂Ω and p is the outer normal to ∂S.

A subset C of R
n is said to be a cone with vertex at 0 if rv ∈ C for each r > 0 and

v ∈ C. For each r > 0 let B(r) denote the open ball in R
n of center 0 and radius r and

let B̄(r) be the closure of B(r). We denote by clΩ the closure of Ω ⊂ R
n and let S

n−1

be the unit sphere in R
n.

The following proposition will be employed to determine the divergences and traces
of (parts of) the singular stress fields of Section 3 and of those in Examples 1 and 3 in
Section 4.

Proposition 2.1. Consider the following objects:

• a bounded region Ω with Lipschitz boundary in R
n of exterior normal m,

• a region W ⊂ Ω with Lipschitz boundary of exterior normal n with 0 ∈ ∂W,

• a tensor-valued continuous map T on cl W \ {0}, continuously differentiable in W,

with div T integrable on W and Tn integrable on ∂W, satisfying |T (x)| ≤ c|x|−n+1

for some c and every x ∈ W \ {0},
and assume that there exists a cone C with vertex 0 and a bounded Hn−1 measurable
function T0 : C ∩ S

n−1 → Lin such that if ∆(W, C) denotes the symmetric difference of
W and C, then

lim
r→0

Hn−1[∆(W, C) ∩ ∂B(r)]/rn−1 = 0, (2.7)

lim
r→0

sup{|rn−1T (x) − T0(x/r)| : x ∈ C ∩ ∂B(r)} = 0. (2.8)

Then
T := TLn W (2.9)

is an equilibrated tensor field in Ω; moreover, if 0 ∈ Ω, then

div T = cδ0 + div TLn W − TnHn−1 (∂W ∩ Ω), (2.10)

N(T) = TmHn−1 (∂Ω ∩ ∂W ) (2.11)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



EQUILIBRATED STRESS FIELDS FOR NO-TENSION BODIES UNDER GRAVITY 609

where

c = −
∫

C∩Sn−1
T0(d)d dHn−1(d) (2.12)

while if 0 ∈ ∂Ω, then

div T = div TLn W − TnHn−1 (∂W ∩ Ω), (2.13)

N(T) = −cδ0 + TmHn−1 (∂Ω ∩ ∂W ). (2.14)

This generalizes [10, Proposition 2.2] in which W = Ω ∩ C with C a cone and

T (x) = |x|−n−1α(x/|x|)x ⊗ x,

x ∈ (clC ∩Ω) \ {0} where α is a scalar-valued function. In accordance with our conven-
tions on measures, T is a measure on R

n which vanishes outside W. In (2.12), d denotes
the integration variable. The cone C and the function T0 describe the asymptotics of the
set W and the field T near the singular point 0 ∈ ∂W. Thus (2.7) says that the region
W looks asymptotically like C near 0 while (2.8) says that T (x) is asymptotically equal
to

|x|−n+1T0(x/|x|)

as x → 0; indeed, it is possible to show that clC equals the tangent cone to W at 0 [4,
Subsection 3.1.21] and

T0(d) = lim
r→0

rn−1T (0 + rd) (2.15)

for every d ∈ C ∩S
n−1. It is easy to see that the hypotheses of the proposition guarantee

that the individual terms in the right hand sides of (2.9), (2.10), (2.11), (2.13), (2.14)
are well defined measures.

Proof. If v ∈ C∞
0 (Rn, Rn), then∫

Ω

∇v · dT =
∫

W

∇v · T dLn = lim
r→0

∫
W\B̄(r)

∇v · T dLn.

Writing Wr := W \ B̄(r), Sr := ∂B(r), r > 0, we note that Wr is a set of finite perimeter
[4, Subsections 4.5.1–4] and for L1 a.e. r > 0 the measure theoretic boundary ∂Wr of
Wr is given by

∂Wr = (∂W \ B̄(r)) ∪ (W ∩ Sr) (2.16)

to within a set of Hn−1 measure 0; moreover, the measure theoretic normal lr to Wr is
given by

lr(x) =

{
n(x) on ∂W \ B̄(r),

−x/r on W ∩ Sr

(2.17)

to within a change on a set of null Hn−1 measure. To prove (2.16)–(2.17), we note that
Wr = W ∩ [Rn \ B̄(r)] and use the integration by parts argument similar to that in the
proof of [15, Proposition 2.4] with M replaced by W and Ht replaced by R

n \ B̄(r); the
details are omitted here. Formulas (2.16)–(2.17) hold for L1 a.e. r > 0; in the remaining
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part of the proof we consider only such values of r. We apply the divergence theorem for
sets of finite perimeter [4, Subsection 4.5.6] and formulas (2.16)–(2.17) to obtain∫

W\B̄(r)

∇v · T dLn = −
∫

W\B̄(r)

v · div T dLn

+
∫

∂W\B̄(r)

v · Tn dHn−1

−
∫

W∩Sr

v · T (x)x/r dHn−1(x).

(2.18)

We denote the three integrals on the right hand side of (2.18) by I1
r , I2

r , I3
r , respectively.

Considering the limits r → 0, we note that

I1
r →

∫
W

v · div T dLn, (2.19)

I2
r →

∫
∂W

v · Tn dHn−1 =
∫

∂W∩Ω

v · Tn dHn−1 +
∫

∂W∩∂Ω

v · Tm dHn−1 (2.20)

where in (2.20) we use the decomposition ∂W = (∂W ∩Ω)∪ (∂W ∩∂Ω) and the equality
n = m for Hn−1 a.e. point of ∂W ∩ ∂Ω. Furthermore, the continuity of v at 0 implies

I3
r → v(0) · lim

r→0
I4
r (2.21)

where

I4
r =

∫
W∩Sr

T (x)x/r dHn−1(x)

provided the limit in the right hand side exists. We write T0 for T0(x/r) and make the
following rearrangements of I4

r :

I4
r =

∫
W∩C∩Sr

(
T (x) − T0r

−n+1
)
x/r dHn−1

+
(∫

C∩Sr

−
∫

(C\W )∩Sr

)
T0r

−nx dHn−1

+
∫

(W\C)∩Sr

T (x)x/r dHn−1.

(2.22)

We note that ∫
W∩C∩Sr

|T (x) − T0r
−n+1| dHn−1 → 0

by (2.8). Furthermore,∫
C∩Sr

T0r
−nx dHn−1 =

∫
C∩Sn−1

T0(d)d dHn−1(d) = −c

for scaling reasons since C is a cone with vertex 0. Next note that since T0 is bounded,
say by c, we have

|
∫

(C\W )∩Sr

T0r
−nx dHn−1| ≤ cr−n+1Hn−1((C \ W ) ∩ Sr) → 0
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Fig. 1. The isostatic curves for the half-plane.

by (2.7). Since |T (x)| ≤ c|x|−n+1 for every x ∈ W \{0} and some c, a combination with
(2.7) provides

|
∫

(W\C)∩Sr

T (x)x/r dHn−1| ≤ cr−n+1Hn−1((W \ C) ∩ Sr) → 0.

Thus (2.22) implies
I4
r → −c. (2.23)

Combining (2.15), (2.18), (2.19), (2.20), (2.21), and (2.23), we find that∫
Ω

∇v · dT = −
∫

W

v · div T dLn

+
∫

∂W∩Ω

v · Tn dHn−1

+
∫

∂W∩∂Ω

v · Tm dHn−1

− v(0) · c.

(2.24)

Assume that 0 ∈ Ω. Then the measures div TLn W, TnHn−1 (∂W ∩ Ω),−cδ0 are
supported in Ω and the measure TmHn−1 (∂W ∩ ∂Ω) is supported on ∂Ω; comparing
(2.24) with (2.2), we see that T is an equilibrated tensor field and, moreover, div T and
N(T) are given by (2.10) and (2.11). If 0 ∈ ∂Ω, then the measure −cδ0 is supported on
∂Ω and a comparison of (2.24) with (2.2) gives (2.13) and (2.14). �

3. The half-plane. Let us consider a half-plane H with a horizontal boundary ∂H

subjected to its own weight and to distributed normal and tangential loads p0 and q,

respectively, on ∂H, where p0 is constant and q is a linear function of the horizontal
coordinate of the point on ∂H; see Fig. 1.
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Suppose that the stress tensor S is negative semidefinite and that its determinant is
zero,

S ≤ 0, detS = 0. (3.1)

The negative semidefiniteness is the basic property of no-tension materials; if the two
eigenvalues of S are negative, the material behaves as a linear elastic material [1] while
its behavior is trivial if the two eigenvalues vanish; thus in dimension two the main
non-trivial case arises if one eigenvalue is negative and the other vanishes; this leads to
detS = 0. We write

H := {(x, y) ∈ R
2 : y < y0}

where y0 > 0. Changing the value of y0 amounts to shifting the origin of the coordinate
system in the vertical direction and thus y0 can be chosen arbitrarily; however, later we
shall eventually choose y0 so as to make the coordinate line {(x, 0) : x ∈ R} coincident
with the line where the solution becomes singular. The outer normal to H is e = (0, 1),
the body force is b = (0,−b) where b > 0 is the uniformly distributed specific weight of
the body, and the normal traction on ∂H is given by

t(x) = (q′x,−p0)

for any x = (x, y0) ∈ ∂H, where q′ < 0, p0 > 0 are constants. With

S = S(x, y) =
[

Sxx Sxy

Sxy Syy

]
,

we rewrite (3.1) as
Sxx ≤ 0, Syy ≤ 0, SxxSyy = S2

xy; (3.2)

the equilibrium equations divS + b = 0 and Se = t read

Sxx,x + Sxy,y = 0,

Sxy,x + Syy,y = b

}
(3.3)

and
Sxy(x, y0) = q′x,

Syy(x, y0) = −p0.

}
(3.4)

We shall show that the problem admits a unique solution on the strip

Σ = {(x, y) : x ∈ R, 0 < y ≤ y0}

for which Sxy is of the separated form

Sxy(x, y) = f(x)g(y) (3.5)

where f, g are some functions on R and (0, y0), respectively. We motivate (3.5) by the
relative simplicity of the resulting solution, in particular by the simple form of the active
isostatic curves of S to be determined below. Our original derivation of the solution
was based on the characteristics of the system (3.3)–(3.4) and on a transformation of
variables employed in [14], which in particular suggested the crucial substitution (3.10)
(below).

A comparison of (3.5) with the boundary condition (3.4)1 shows that Sxy has the form

Sxy = xg, g(y0) = q′. (3.6)
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EQUILIBRATED STRESS FIELDS FOR NO-TENSION BODIES UNDER GRAVITY 613

Inserting Sxy into the balance equations, integrating, and comparing the result with the
boundary condition (3.4)2, we obtain

Sxx = −1
2x2g′ + r, (3.7)

Syy = −G + b(y − y0) − p0

where G is the primitive function of g with G(y0) = 0 and r some function of y. The
determinantal condition (3.2)3 reads

( 1
2x2g′ − r)(G + p0 − b(y − y0)) = x2g2;

expanding the product and comparing the coefficients in front of x, we obtain

1
2g′(G + p0 − b(y − y0)) = g2, (3.8)

r(G + p0 − b(y − y0)) = 0.

From the last equation we obtain r = 0 identically. Inserting r = 0 into (3.7) and using
Sxx ≤ 0, we see that g′ ≥ 0; since g(y0) = q′ < 0, we deduce that g < 0 for y < y0. The
differentiation of (3.8) with respect to y gives

g2g′′ + 1
2g′2(g − b) = 2gg′2. (3.9)

Referring to the negativity of g, we now make the substitution

g = −1/η2 (3.10)

where η > 0. The relations

g′ =
2η′

η3
, g′′ =

2ηη′′ − 6η′2

η4

reduce (3.9) to

η′′ = bηη′2,

which integrates to

η′ exp(−bη2/2) = c (3.11)

where c is a constant. Using (3.7) with r = 0, (3.6)1, and (3.2)3, we find that

S(x, y) = −

⎡
⎢⎢⎣

x2η′

η3

x

η2

x

η2

1
ηη′

⎤
⎥⎥⎦ (3.12)

where η and η′ are evaluated at y. The constant c and the function η are determined as fol-
lows. Combining the boundary conditions with (3.12), we obtain p0 = 1/η(y0)η′(y0), q′ =
−1/η(y0)2, from which

η(y0) = 1/
√
−q′, η′(y0) =

√
−q′/p0 (3.13)

and hence

c =
√
−q′ exp(b/2q′)/p0. (3.14)
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614 M. LUCCHESI, M. ŠILHAVÝ, AND N. ZANI

Integrating (3.11) over the interval [y, y0] and making the substitution t =
√

b/2η(u), we
obtain

c(y0 − y) =
∫ y0

y

exp(−bη(u)2/2)η′(u) du

=
√

2/b

∫ √
−b/2q′

√
b/2·η(y)

exp(−t2) dt

=
√

π/2b
(
φ
(√

−b/2q′
)
− φ

(√
b/2η(y)

))
(3.15)

where φ : [0,∞) → [0, 1) is the error function,

φ(z) =
2√
π

∫ z

0

exp(−t2)dt, z ∈ R, (3.16)

with the inverse φ−1 : [0, 1) → [0,∞). We now choose

y0 =
√

π/2b φ
(√

−b/2q′
)
/c (3.17)

and observe that for this value of y0, (3.15) reduces to

φ
(√

b/2η(y)
)

= c
√

2b/π y. (3.18)

If 0 < y < y0, then the right hand side of (3.18) is positive and bounded by φ(
√
−b/2q′) <

1; thus (3.18) can be solved for η = η(y) which gives

η(y) =
√

2/bφ−1
(√

2b/πcy
)
. (3.19)

Equations (3.12) and (3.19) provide an explicit solution of the problem in the strip
0 < y < y0 with the required properties.

From (3.16) one finds that z/
√

π ≤ φ(z) ≤ 2z/
√

π whenever z ≥ 0 is small enough to
satisfy exp(−z2) ≥ 1/2. The increasing character of φ−1 then gives

√
π w/2 ≤ φ−1(w) ≤√

π w for every sufficiently small w ≥ 0, which in turn implies

cy ≤ η(y) ≤ 2cy (3.20)

for every sufficiently small y ≥ 0 by (3.19). Furthermore,

φ−1(w) =
1
2
√

π w + O(w3)

for small w and hence

η(y) = cy + o(y), η′(y) = c + o(1) (3.21)

as y → 0 by (3.19) and (3.11). Writing x = (x, y) and inserting this asymptotics into
(3.12), we obtain

S(x) = S0(x) + |x|2M(x)/(x · e)4 (3.22)

where
S0(x) = x ⊗ x/c2(x · e)3

for every x ∈ R
2 \ {0} and M is a tensor-valued function such that

|M(x)| ≤ m(x · e) (3.23)

where m : [0, y0] → [0,∞) is a nondecreasing function with

lim
y→0

m(y)/y = 0. (3.24)
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Note for future use that
divS0 = 0

on R
2 \ {0}.

Abbreviating η = η(y), η′ = η′(y), we have η′/c = exp(bη2/2) ≤ 2 for all sufficiently
small y ≥ 0; combining with (3.20)2, we obtain ηη′ ≤ 4c2y and hence

Syy(x, y) = −1/ηη′ ≤ −1/4c2y (3.25)

for all x ∈ R and all sufficiently small y ≥ 0. We deduce from (3.25) that Syy is not
integrable on Σ and hence S cannot be interpreted as a measure on Σ; in fact Syy is not
even locally integrable on Σ. However, S can be integrable on subsets of Σ; in particular
we shall see below that S is integrable on sectors of Σ delimited by active isostatic curves.

By (3.1), one eigenvalue of S(x, y) vanishes while the other eigenvalue is nonpositive;
from (3.12) one finds that the nonvanishing eigenvalue is

λ = − 1
ηη′ −

x2η′

η3
< 0

where η and η′ are evaluated at y; the eigenvector corresponding to this eigenvalue is
found to be (proportional to)

v = v(x) = (vx, vy) = (x/η, 1/η′).

The active isostatic curves κ are the integral curves of v, i.e., solutions of
dy

dx
= vy/vx.

An integration gives
x = ξη(y), 0 ≤ y ≤ y0, (3.26)

where ξ ∈ R is an integration constant. From η(0) = 0 we see that each κ starts at
the origin 0; putting y = y0 and using (3.13)1, we see that κ intersects ∂H at the point
(ξ/

√
−q′, y0) (see Fig. 1). Using (3.21)1, one finds that

x = ξcy + o(y)

as y → 0.

Let ξ > 0 be fixed and put

W = {(x, y) : 0 < y < y0, 0 < x < ξη(y)},

which is the region delimited by the y axis, ∂H, and the isostatic curve κ of equation
(3.26); in fact one has

∂W = L ∪ κ ∪ R

where
L = ∂W ∩ ∂H = {(x, y0) : 0 ≤ x ≤ ξ/

√
−q′}

and
R = {(0, y) : 0 ≤ y ≤ y0}.

Let T be the restriction of S to W. One finds that the normal component of T on
∂W vanishes on κ ∪ R while on L the normal component is equal to Se = t. Let us
show that T is L2 integrable on W. Writing x = (x, y), using (3.22) and (3.23), and
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noting that m(y)/y is bounded for all sufficiently small y ≥ 0 by (3.24), we obtain
|T (x)| ≤ c1|x|2/y3 for all x ∈ W and some c1. The integrability of T on W then follows
from

∫
W

|x|2/y3 dL2(x) < ∞ which is verified by applying a successive integration with
respect to x and y and using (3.20)2. Thus

T = TL2 W

is a well defined measure on R
2.

Let Ω ⊂ R
2 be any open set with Lipschitz boundary such that

W ⊂ Ω, L ⊂ ∂Ω; (3.27)

we now wish to determine the divergence div T of T in Ω and the normal trace N(T) of
T on ∂Ω. In this section Ω is arbitrary (subject to (3.27)); in Section 4 we shall employ
the results on div T and N(T) with concrete choices of Ω.

Let us show that Ω, W, and T satisfy the hypotheses of Proposition 2.1. Putting

C = {(x, y) : y > 0, 0 < x < ξcy},

one finds that C ∩ Σ ⊂ W and

W \ C = {(x, y) : 0 < y < y0, ξcy < x < ξη(y)}

where we recall (3.20)1; using η(y) − cy = o(y), one deduces that (2.7) is satisfied.
Furthermore, putting

T0(d) = S0(d)

for every d ∈ C ∩ S
1, we verify (2.8) as follows. If r > 0 and x = (x, y) ∈ C ∩ ∂B(r),

then (3.22) gives

rT (x) − T0(x/r) = r
(
S(x) − S0(x)

)
= r3M(x)/y4

and thus
|rT (x) − T0(x/r)| ≤ r3m(y)/y4

by (3.23). We have y ≤ r and the definition of C gives ξcy ≥ x =
√

r2 − y2 from which
y ≥ αr where α = 1/

√
ξ2c2 + 1. Thus

|rT (x) − T0(x/r)| ≤ α−4r3m(r)/r4 = α−4m(r)/r;

recalling that m(r)/r → 0, we obtain (2.8), which completes the verification of the
hypothesis of Proposition 2.1. Hence, putting

c = −
∫

C∩S1
S0(d)d dH1(d)

and using divS = −b in W, we deduce from (2.10) and (2.11) that

div T = −bL2 W + cδ0,

N(T) = tH1 L

if 0 ∈ Ω while from (2.13) and (2.14) we deduce that

div T = −bL2 W,

N(T) = tH1 L − cδ0 (3.28)
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if 0 ∈ ∂Ω. The constant c can be evaluated as follows. Since S0 is divergence free and
the normal component of S0 on ∂C vanishes, the divergence theorem yields

c = −
∫

P

S0(x)e dH1(x) (3.29)

where P is any line segment of the form P = C ∩Q where Q is any horizontal line in Σ.

Taking, e.g., Q = ∂H, one obtains P = {(x, y0) : 0 ≤ x ≤ ξcy0} and

S0(x)e = x/c2y2
0

for each x = (x, y0) ∈ P ; an elementary integration in (3.29) gives

c = −(ξ2/2, ξ/c). (3.30)

4. Rectangular panels. Consider a rectangular panel of base B and height H, free
from loads on its sides and subjected, besides to its own weight, to various loads on its
top.

4.1. Example 1. We start with the case for which the loads at the top are as in Fig.
2, which coincide with a segment of those of Section 3 if one puts q′ = −q0/B. We place
the origin of the coordinate system into the lower left corner of the panel. We shall
construct the stress field by gluing part of the solution S determined in Section 3 with
some simple solution corresponding to b = (0,−b). We recall the value y0 from (3.17)
and limit ourselves to the case y0 = H, which corresponds to the situation when the
horizontal load has the maximum value compatible with the equilibrium, given p0 and
b. By (3.17) and (3.13) the equation H = y0 reads

H = p0

√
π/2b φ

(√
−b/2q′

)
exp(−b/2q′)/

√
−q′; (4.1)

given b, H, p0, this can be viewed as an implicit equation for q′; introducing the variable
µ :=

√
−b/2q′, (4.1) can be rewritten as

√
πµφ(µ) exp(µ2) = bH/p0. (4.2)

The panel is divided into the regions Ω1 and Ω2 by the active isostatic curve ι of S

which connects the origin 0 with the upper right corner of the panel. This requirement
determines the parameter ξ in (3.26) by ξη(H) = B; putting H = y0 and using (3.13)1,
we obtain

ξ = B
√
−q′. (4.3)

Expressing the y coordinate of the point (x, y) ∈ ι as a function of x, i.e., introducing
ȳ : [0, B] → [0, H] by

x = ξη(ȳ(x)), 0 ≤ x ≤ B,

we find from (3.19) that

ȳ(x) =
√

π/2b φ
(√

b/2 x/ξ
)
/c.

The regions Ω1, Ω2 are given by

Ω1 = {(x, y) : 0 ≤ x ≤ B, y > ȳ(x)}, Ω2 = {(x, y) : 0 ≤ x ≤ B, y < ȳ(x)};
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Fig. 2. The rectangular panel with distributed loads on the top.

letting e = (0, 1), we put

T (x) =

{
S(x) if x ∈ Ω1,

b(y − ȳ(x))e ⊗ e if x ∈ Ω2,
(4.4)

for any x = (x, y) ∈ Ω := (0, B) × (0, H). Since the classical divergences of the two
expressions in (4.4) are equal to −b on Ω1, Ω2, respectively, and the normal components
of these two expressions on ι vanish, we deduce that the distributional divergence div T

of T = TL2 Ω in Ω satisfies
div T + b = 0; (4.5)

moreover, referring to (3.28), we obtain that the normal trace N(T) on ∂Ω is given by

N(T) = tH1 ∂Ω − cδ0 (4.6)

where
c = B(Bq′/2,−p0 exp(−b/2q′)) (4.7)

by (3.30), (4.3) and (3.14), and

t(x) =

⎧⎪⎨
⎪⎩

(q′x,−p0) if x = (x, H), 0 ≤ x ≤ B,

(0, bȳ(x)) if x = (x, 0), 0 ≤ x ≤ B,

0 otherwise,

for any x ∈ ∂Ω. We observe that the first component of c equals the resultant of the
horizontal load applied to the top of the panel and that the second component of c is
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the sum of the resultant −Bp0 of the vertical load applied to the top of the panel and
the weight of Ω1.

The moment of the body forces in Ω1 with respect to 0 is

Mb = −b

∫
Ω1

x dL2(x)

= −b

∫ B

0

∫ H

ȳ(x)

x dydx

= −b

∫ B

0

x(H − ȳ(x)) dx

= −b
(

1
2HB2 − c−1

∫ B

0

x
√

π/2b φ
(√

b/2 x/ξ
)
dx

)
;

making the substitution t =
√

b/2 x/ξ, noting that this substitution transforms the upper
limit of the last integral to µ =

√
−b/2q′, using∫

tφ(t) dt = 1
2 (t2 − 1

2 )φ(t) +
1

2
√

π
t exp(−t2)

and employing (4.2), (3.14), and (4.3), we find

Mb =
1
2
B2(Hq′ + p0).

Then it is an easy matter to verify that the region Ω1, when subjected to its weight and
the loads applied to the top of the panel, is in equilibrium with respect to the rotation
about the point 0. Let rm = q0B/2 be the resultant of the horizontal load applied on
the top of the panel. Using µ :=

√
−b/2q′, we find

rm =
bB2

4µ2
; (4.8)

here µ can be calculated from the implicit formula (4.2). The graph of 1/µ2 = 4rm/bB2

as a function of ζ = bH/p0 is the curve corresponding to ν = 1 in Fig. 5.
4.2. Example 2. Let us consider the case in which the load consists of the uniform

vertical load p = −p0 on the top of the panel, the weight of the panel, and of a force
f = −(f1, f2) concentrated at the upper right corner of the panel (Fig. 3). For reasons
that will become apparent in Example 3, we place the origin of the coordinate system
at that corner, with the positive x axis in the right direction and the positive y axis
pointing upwards.

Suppose that the stress field is described by a tensor-valued measure T of the form

T = TrL2 Ω + TsH1 γ (4.9)

where Ω denotes the interior of the panel, γ is a curve of equation

y = ω(x), x0 ≤ x ≤ 0, (4.10)

with one endpoint x = 0 and the other on the base of the panel. Furthermore, Ω+ and
Ω− are regions resulting from the division of Ω by γ, and Tr and Ts denote the regular
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Fig. 3. The rectangular panel undergoing a concentrated force.

and singular parts of the stress. In a way similar to [10] we assume that

Tr =

{
(by − p0) e ⊗ e in Ω−,

b(y − ω(x)) e ⊗ e in Ω+,
(4.11)

and observe that Tr satisfies (2.5) in Ω \ γ. The singular stress Ts must be superficial;
this gives

Ts = σ t ⊗ t

where t is the unit tangent vector to γ and necessarily σ ≤ 0 since Ts must be negative
semidefinite. We determine γ and σ from (2.6) as follows. Writing

t = J−1(1, ω′), n = J−1(−ω′, 1), J :=
√

1 + ω′2,

where the prime denotes the differentiation with respect to x, we have [10]

divγ Ts = J−1
(
(σ/J)′, (σω′/J)′

)
;

from (4.11) we obtain
[Tr ]n = J−1(0, p0 − bω).

Equation (2.6) then reads

(σ/J)′ = 0, (σω′/J)′ = p0 − bω, (4.12)

with the boundary condition σ(0)t(0) = f at x = 0, which gives σ(0)/J(0) = −f1,

σ(0)ω′(0)/J(0) = −f2 and ω(0) = 0; consequently

σ(0) = −|f |, ω′(0) = f2/f1. (4.13)
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The solution of (4.12) and (4.13) is

ω(x) = α sinh(kx) − β cosh(kx) + β, (4.14)

σ(x) = −f1

√
1 + ω′(x)2 (4.15)

with

k =
√

b/f1, α =
f2√
f1b

, β =
p0

b
.

Keeping the direction of f constant, the maximum value of |f | is attained when the
curve γ meets the lower left corner of the panel. For this value of |f |, the region Ω−

is in equilibrium with respect to the rotation around the lower left corner of the panel
when Ω− is subjected to its weight, the load p0, and the force f . The corresponding
maximum value fm of the horizontal component f1 of f can be determined from the
implicit equation

bB2 = fm

(
ln

√
Hb(Hb + 2p0) + b(λ2 − 1)fm + Hb + p0

p0 +
√

b(λ2 − 1)fm

)2

(4.16)

where λ = |f |/f1; that equation is obtained from (4.14) for x = −B, ω(x) = −H. We can
verify that if λ2 = 1+H2/B2, then the right hand side of (4.16) tends to the left hand side
bB2 when fm tends to infinity. Thus (4.16) can have a solution only if λ2 < 1 + H2/B2,
i.e., if f2/f1 < H/B. Moreover for p0 = 0 we deduce that the equilibrium is possible only
if λ > 1, that is, if f2 = 0. In particular, if f2 = 0, then λ = 1 and from (4.16) we obtain

fm =
bB

2(
ln

√
Hb(Hb + 2p0) + Hb + p0

p0

)2 (4.17)

if p0 > 0.

4.3. Example 3. Finally, we consider the uniform vertical load p0 on the top and a
linear tangential load on a part of the top of width B0; see Fig. 4. As in Example 1,
the boundary condition partly coincides with that of Section 3 provided we put q′ =
−q0/B0, and we shall again use a sector of the solution S of Section 3 delimited by the
active isostatic curve ι that ends in the upper right corner of the panel. We denote by
Ω = (0, B) × (0, H) the interior of the panel of base B and height H, and we place the
origin of the coordinate system at the point of singularity of S; see Fig. 4. We assume
that the stress field is described by a measure T of the form (4.9) where Tr and Ts are
the regular and singular parts of the stress and γ is a curve with one endpoint equal to
x = 0 and the other endpoint on the base of the panel, given by (4.10).

Let ι be the isostatic curve of S as in Example 1, let

c := B0(B0q
′/2,−p0 exp(−b/2q′)),
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Fig. 4. The isostatic lines for the panel in Example 3.

cf. (4.6) and (4.7), assume that γ is given by (4.14) with f = c, and define the solution
T of the form (4.9) as follows. Put

Ω1 = {(x, y) : 0 < x < B0, y > ȳ(x)},
Ω3 = {(x, y) ∈ Ω : 0 < x < B0, y < ȳ(x)},
Ω4 = {(x, y) ∈ Ω : x0 < x < 0, y < ω(x)},
Ω2 = Ω \ (Ω1 ∪ Ω3 ∪ Ω4),

and define the regular part of the stress by

Tr (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(x) if x ∈ Ω1,(
b(y − y0) − p0

)
e ⊗ e if x = (x, y) ∈ Ω2,

b(y − ȳ) e ⊗ e if x = (x, y) ∈ Ω3,

b(y − ω(x)) e ⊗ e if x = (x, y) ∈ Ω4

and the singular part of the stress by

Ts = σt ⊗ t

where t is the unit tangent vector to γ and σ is given by (4.15) with f = c. Noting that
the measure T coincides with that of Example 1 in the quadrant {(x, y), x > 0, y > 0} and
with that of Example 2 with p0 redefined to p0+by0 in the quadrant {(x, y), x < 0, y < 0}
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Fig. 5. The behaviour of 1/µ2 as a function of ζ, for different values
of ν.

and comparing the expression for normal trace in (4.6) with the boundary conditions in
Example 2, it is not hard to see that T satisfies (4.5) in Ω and the boundary condition
on the top of the panel.

The curve γ meets the lower left corner of the panel if ω(B0 −B) = y0 −H. Inserting
ω from (4.14) and y0 from (3.17), we obtain the implicit relation

bH

p0
=

√
πµ φ(µ) exp(µ2) +

(
µ exp(µ2) + 1/2

)
exp

(
2µ(ν − 1)

)
−

(
µ exp(µ2) − 1/2

)
exp

(
2µ(1 − ν)

)
− 1,

(4.18)

where µ =
√
−b/2q′ and ν = B/B0. We note that (4.18) reduces to (4.2) for ν = 1. Let

rm be the value of the resultant of the horizontal load B0q0/2; taking into account that

rm =
bB2

0

4µ2

by (4.8), we can calculate rm by solving (4.18). Furthermore, one can consider the limit
B0 → 0 keeping rm constant. It is easy to see that then the solution of the present
example reduces to that of Example 2 with f2 = 0. In particular, the regions Ω1 and Ω3

vanish and (4.18) reduces to (4.17) provided we identify fm ≡ rm, as is natural. Fig. 5
shows the graphs of 1/µ2 = 4rm/bB2

0 versus ζ = bH/p0 for different values of ν.
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