
proceedings of the
american mathematical society
Volume 108, Number 4, April 1990

A NOTE ON EQUIVARIANT ETA INVARIANTS
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(Communicated by J. Marshall Ash)

Abstract. We prove the regulairty of equivariant eta functions near the origin.

We also propose an equivariant version of the Cheeger-Chou index theorem on

spaces with conelike singularities.

0. Introduction

Let M be an odd-dimensional compact Riemannian spin manifold with a

fixed spin structure, D the Dirac operator on M. The n function associated

to D is defined by [1]

(0.1) ,,(*,£) = £(signA)^^,
2^0 W

where A runs over the nonzero eigenvalues of D and T(EX) is the eigenspace

of X.

If T: M —> M is an isometry preserving the orientation and spin structure

and dTD = DdT, where dT: T(S(M)) -> T(S(M)) is the lift of dT: Y(TM)
—► Y(TM) to the spinors, then one can also define the equivariant n function

[1,5] by

,__            TrdTL.r-,
(0.2) r/r(5,D) = £(sign¿)--^ .

i¿o w

In the first two sections we prove some basic properties of equivariant n

functions and in §3, we point out that a slight modification of Bismut-Cheeger

[3] yields an equivariant index theorem for spaces with conelike singularities.
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Related work has also been done by J.-M. Bismut and J. Cheeger (unpub-

lished).

1. Equivariant n functions

It is clear that (0.1) and (0.2) are only defined when Re(s) is large enough.

Then by analytic continuation to the whole complex plane, we obtain the mero-

morphic functions n(s,D) and nT(s,D) on C. Of particular interest is their

regularity at 5 = 0.

Theorem 1.1. For Re(s) large enough,

i r°°
riT(s,D) = T{{s+l)/2)Jo    t(S~mtr(dTDexp(-tD2))dt

1 /*00 r

(1.2) =T((s+l)/2)J0   t{S~l),2dtJ   tr(dTxDcxp(-tD2)(x,Tx))dx,

where dx is the volume element associated to the metric, and Dexp(-tD )(x,y)

is the kernel of Dexp(-tD ).

Proof. For any A ^ 0, let cpx , ... ,cpx     be an orthonormal basis of T(EX),

then it is standard that

, m
(1.3) Dexp(-tD2)(x,y) = J2^~a E^i^K^'^

k^O k=l

Let {e¡(x)} be an orthonormal basis of Sx , then

X k

So

dTxDexp(-tD2)(x,Tx)e¡(Tx) = ^ke l>} ̂ dT(ph(x)(cph(Tx) ,et(Tx)).

tr dTDexp(-tD2)(x,Tx)

= ¿ZXe " }Z¿Z(dT^x^eÁTx))('Ph(Tx),ei(Tx))
l k      i

i. k

and

/ trdTDexp(-tD2)(x,Tx)dx = 'S2Ae~a2 [   y~^(dfcpx (x),cpx (Tx))dx
k

ma-^Ae      tr(dT\
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Thus

n(s +

/•OO

77)72)/     t(s~X)l2tr(dTDexp(-tD2))dt

1

r((j+i)/2)
j    t{s-X)/2J2Xe-'X tr df\T{Ex)dt

tr dT\(E

\k\*A¿0

Corollary 1.4. If T has no fixed points on M, then nT(s ,D) is an entire func-

tion.

Proof. We introduce an auxiliary Grassmann variable z as in [4]. Then we

have

(1.5) exp-t(D2 - zD) = exp(-tD2) + ztD exp(-tD2),

so

(1.6) exp(-t(D2 - zD))(x,y) = exp(-tD2)(x,y) + ziDexp(-lD2)(x,y).

Since T has no fixed points, d(x, Tx) > S for some constant S > 0. By

standard results for elliptic operators, there exist positive constants Ci (i =

1,2,3,4) such thai as / -► 0+ ,

(1.7) || exp(-t(D2 - zD))(x, Tx)\\ < -^ exp(-C2/i),

(1.8) ||exp(-i£)2)(x,rx)|| < -^exp(-C4//)

for all x € M. Here we have assumed that z has "norm" ||z|| = 1. By

(1.6)-( 1.8), there are positive constants C5,C6 such that as i-»0+,

£i
i/2-l

(1.9) ||Z)exp(-ÍJDz)(x,rx)|| < -^-xexp(-CJt).

Thus, Vs € C

lim|?(i  1)/2tr(i5irDexp(-/D2))|

= lim|í(5  1)/2|-|/ tr dTDexp(-tD2)(x ,Tx)dx
'-*0 \Jm

<\imy-xV2\.Cl-ß^exp(-CJt)

(1.10) =0,

where C7 is a suitable positive constant.

Thus /0°° t(s~X)l2tr(dfDexp(-tD2))dt is an entire function. On the other

hand, l/f((s + l)/2) is also an entire function, (1.4) follows from Theorem

1.1.   G
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Remark 1.11. In fact, ( 1.4) is a known result and can be proved directly without

introducing the Grassmann variable z.

2. Regularity near 5 = 0

In this section, we prove the following theorem:

Theorem 2.1.  nT(s ,D) is holomorphic on Re(s) > -2.

First note that it is sufficient to show that

/i\l/2 _

(2.2) (-)     |tr¿77Dexp(-?£>2)|<C,       as t -> 0+

for some constant C > 0. Because then the integration in (1.2) will be con-

vergent absolutely and uniformly on the compact subsets in Re(s) > -2, which

implies the holomorphic property.

Now we begin to prove (2.2).

Since T is an isometry, the fixed point set F of T consists of components

Fx, ... ,Fk , each of even codimension. If U is an open neighborhood of F ,

then by the argument in the proof of (1.4), it is easy to see that

(2.3) lim(-)      /      tr¿rDexp(-/£>2)(x,rx)í/x = 0,
t—o \ / J     Jm\u

so

1/2

(2.4) limf-)      i tr dTDexp(-tD2)(x,Tx)dx

/ , \ 1/2    ,        __

= lim(-) trdTDexp(-tD2)(x,Tx)dx.
r->0 \t J      Ju

Thus we meet a local problem, and the situation is similar to what was consid-

ered in [8]. As in [8], we may assume k = 1 and codimF = 2«'. Denote by

N(F) the normal bundle to F . We need only to prove that

(2.5) limf-)       [ f     tr dTDexp(-tD2)(x ,dTx)dN{dc;
t->0 \ t j JF JN,(e)

<c,

for some constant C > 0. Here A^e) = {v € NAF)\\\v\\ < e}, is a sufficiently

small neighborhood of the origin in the normal space N((F), and we use the

local trivialization of expNx(e) to Nx(e).

We choose an orthonormal basis and associated coordinates as in [8]. And

we define as in [9, 8],

(2.6) X(x"DßxeY) = \ß\-\a\ + \y\,

for a, ß € Zn, y € (Z2)n . We also define x(z) — 1 ■ Then we have

(2.7) X(zx"Dßxey)=l + \ß\-\a\ + \y\.
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(2.11) D2-zD = h  X(D2 + zu)h

(2.11)'       exp(-í(Z>2-zZ)))(x,y) = /i   x(x)exp(-t(D2 + zu))(x,y)h(y).
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Now as in [6], set

(2.8) h(x) = l+X-zYdxiel.
i=i

Then it is trivial to verify that

heth~  = ei + xiz,

(2.9) =ei + (X = 0),

and

(2.10) h(D2 - zD)h~X =D2 + zu,

where x(u) < 0 an^ « contains no z. Also write (2.10) as

(2.11)

Thus,

(2.11

By (1.6) and (2.11)',

zíZ)exp(-íZ)2)(x ,y) = h~X (x) exp(-t(D2 + zu))(x ,y)h(y)

(2.12) -exp(-tD2)(x,y).

Then

ztdTD exp(-tD2)(x, dTx) = dfh~X(x) exp(-t(D2 + zu))(x, dTx)h(dTx)

(2.13) -dfexp(-tD2)(x,dTx).

As in [9] (compare also with [4] or [7]), it is easy to see that

-d(x ,y)2/4t   f[n/2]+2

(2.14) exp(-fOP2 + zM))(x,y)= £ (£/,. + zVjt' + o(t[n/2,+2)
(4nt)        y  ¡=0

-d(x,y)1IAt   /[n/21+2

(2.15) exp(-/D2)(x,y) = ]T   U/+ o(tin/2]+2) ] ,
(4nt) \    l=0

where x{U¡) < 2/, x(V¡) < 2(í - 1) and U¡, K contain no z.

By (2.9) and (2.13)-(2.15), we get

tdTDexp(-tD2)(x,dTx)

d(x,dTx)2/4t _      [/ \       /[n/2]+2

= --;=— dT
(4nt)n/2

(2.16)

D^-i)*)4    E U/ + o(^+2)

i=0

where x(^) <2(/-l).

i=0

'[n/21+2
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Lemma 2.17. Suppose i < [n/2] + 2.  If W is an odd element and x(W) <

2i - 2 + 2n , then

(2.18) liml-
f-»0 V t

3/2

/

-d(x,dTx)1IM

>«/2
tr(W(0;x))t'dx <C.,

lN((e)      (4nt)n

for some constant Cx > 0 ; where in the W(y ; x), y stands for tangential

coordinates and x stands for normal coordinates.

Proof. We can assume that If is a monomial, then it can be written as

(2.19) W = cp(0)xh---xik-ex---en.

Here ex- ■ en all appear because otherwise, tr W = 0. Also note that we can

assume that the x('s in (2.19) are normal coordinates, for otherwise tr W(0 ; •) =

0.

(i) If x(W) — 2i-2 + 2n , then k - n + 2-2n -2i. By making the change
1 II

of variables x = t ' b , we get

lim
í—o n -d(x,dTxflM

\"/2

< lim^rpr
Í—0 t3'2

= 0

N((e)      (4nt

Jff.'.i.r.,        ÍAttA

tr (W)tl dx

-||(/-</7-)6||2/4 ,    .

t"/2+x-"-'b.

((e/Vt)        (4JTI)
'i ik

b; t't" db

(because k is odd).

(ii) If x(W) <2i-2 + 2n , then it is clear that

-d(x,dTxf/M

tr(W)t'dxlim
í—0 \nN((e)      (4nt) n/2

< C3.     D

Now consider the terms in (2.16). First note that the simple argument in [8]

shows that

(2.20) dT■= ea-f + g,
»=«-2«' + l

where x(f) < 0 and x(s) <2n - 2.
On the otherhand, dT\TF = IdTF , so

(2.21) J2((dT-I)x)iei= ¿2        ((dT-I)X)aea-
i a=n—2n' + l

By (2.21), (2.20),

(2.22) x (dT ■ £((¿r - I)x)fit ] <2n-2.
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Thus, all the monomial terms in (2.16) satisfy the condition of Lemma 2.17.

So we get

/1\l/2

(2.23) lim   7 <C,/      tr(dTDexp(-tD2)(x,dTx))dx
JN((e)

for some constant C4 > 0. By combining this with (2.5), (2.2), the proof of

Theorem 2.1 is completed.   D

Remark 2.24. A more careful look at the proof allows us to write (2.2) in a

more precise form:

Theorem 2.25. // T: M —► M is an isometry and F = L¡F¡ is its fixed point set,

then there exist smooth functions cpi on Fi such that

(2.26)        tr dTD exp(-tD2) = Y\ Í <pAx) dx ■ tX'2 + o(tX'2),       t\0.
i  Jf-

Remark 2.27. For T = Id, (2.1) and (2.25) were obtained by Bismut-Freed

[4] who improved an observation of Atiyah, Patodi, and Singer [1].

3.  AN INDEX THEOREM

Now that we have established the basic properties of equivariant n functions,

an equivariant version of the index theorem of Cheeger and Chou (cf. [3]), can

be obtained immediately by a slight modification of what was done in §1 of [3],

where a new proof of the Cheeger-Chou theorem was given.

Here we just state the theorem and indicate briefly what should be modified.

For notation and other details, we just refer to [3, §1].

Let Z denote a smooth connected compact manifold with smooth compact

boundary dZ . Assume Z has even dimension, is oriented and spin. Define

C(dZ) = ((0,l]xf3Z)U{<5}

and

Z' = Z[jC(dZ).
dZ

Z' e /
Introduce a metric g   '   on Z   as in [3].

Let T: Z' —> Z' be an isometry, which is a product near dZ, i.e. it is

a trivial extension of the isometry T\dZ : dZ —* dZ to (0,1 + e] x dZ in a

tubular neighborhood of dZ . Assume further more that T has no fixed points

on dZ . Let D£± be the Dirac operator on Z' associated to g 'e. Assume

dTDe± = DE±dT. Then we can define the Lefschetz number

(3.1) L(T) = trdT\^D%-trdT\kerDC

Suppose as in [3] that

(3.2) kerDdZ = 0,

then we can state the theorem as follows.
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Theorem 3.3. For e sufficiently small,

L(T) = W Â(TFi)(Pf(2sin(Çl/4n + ^e/2))(N(Fi)))-x
]  Jf'

(3.3) -\nT(0,DdZ),

where the F¡ are the components of the fixed point set of T in Z, and the

integrand is the standard density in Lefschetz fixed point formulas (cf., e.g. [8]

or [2]).

The proof is almost the same as what was done in [3, §1]. The first point is

to note that here we just use

(3.5) L(T) = tr, dfexp(-t(D£)2)

to replace the corresponding

(3.6) indD£+ = trs(exp(-t(Ds)2))

in [3]. Then the proof is almost line by line the same as there. We have only

to insert dT in all kernels, e.g. we write

(3.7) dfp¡((r,x),(r,Tx))

to replace

(3.8) P£((r,x),(r,x))

in [3]. The only difference worth mentioning is that the equivariant replacement

of ( 1.44) in [3] can be proved easily by using the fact that T has no fixed points

on dZ and the proof of Corollary 1.4 in this note.

Details are omitted.

Also note that the index theorem of Atiyah-Patodi-Singer and Donnelly [5]

for G-manifolds with boundary can also be deduced from (3.3) by a simple

argument, similar to what was done in §1, d) of [3].

Remark 3.9. The condition (3.2) and the assumption that T has no fixed points

on the boundary dZ are not essential. Indeed, this has been treated by J.-M.

Bismut and J. Cheeger (unpublished). Here we will not go into the analytical

details.

Acknowledgments

The author wishes to thank Professor Yu Yanlin for helpful conversations and

Professor Jeff Cheeger, Dr. Guoliang Yu and a referee for helpful comments

on an earlier version of this paper.

References

1. M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry,

Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69; 78 (1975), 405-432; 79 (1976), 71-99.

2. N. Berline and M. Vergne, A computation of the equivariant index of the Dirac operators, Bull.

Soc. Math. France 113 (1985), 305-345.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A NOTE ON EQUIVARIANT ETA INVARIANTS 1129

3. J.-M. Bismut and J. Cheeger, Families index for manifolds with boundaries: superconnections

and cones, J. Funct. Anal, (to appear).

4. J.-M. Bismut and D. S. Freed, The analysis of elliptic families II, Commun. Math. Phys. 107

(1986), 103-163.

5. H. Donnelly, Eta invariants for G-spaces, Indiana Univ. Math. J. 27 (1978), 889-918.

6. _, Local index theorem for families, Michigan Math. J. 35 (1988), 11-20.

7. E. Getzler, A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), 111-
117.

8. J. D. Lafferty, Y. L. Yu and W. P. Zhang, A direct geometric proof of Lefschetz fixed point

formulas, preprint, 1988. (to appear in Trans. Amer. Math. Soc.)

9. Y. L. Yu, Local index theorem for Dirac operator, Acta Math. Sinica (New Series) 3 (1987),

152-169.

Nankai Institute of Mathematics, Weijin Road 94, Tianjin, 300071, People's Republic

of China

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


