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Abstract .  Let Fpxp have the multivariate F-distribution with a scale matrix 
A and degrees of freedom nl and n2. In this paper the problem of estimating 
eigenvalues of A is considered. By constructing the improved orthogonally 
invariant estimators /~(F) of A, which are analogous to Haft-type estimators 
of a normal covariance matrix, new estimators of eigenvalues of A are given. 
This is because the eigenvalues of/~(F) are taken as estimates of the eigenvalues 
of A. 
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1. Introduction 

Suppose that  a p × p positive definite random matrix F has the probability 
density function 

(1.1) 
F p ( l ( n l  + n2)) (detF)(n,_p_l)/2 

1 1 det(Ip + A-1F)~/2 Fp( .~n l )Fp( .~n2)  (de tA)-nt /2  

where nl > p + 1, n2 > p + 1, n =- nl + n2, A is a p x p positive definite matrix 
p 

and Fp(a) = ~p(p-1)/4 1-I F(a - ( i -  1)/2). The matrix F having the distribution 
i=1 

given above does not arise in a natural way. However, the eigenvalues of F are 
important as they have the same distribution as the eigenvalues of S1S~ 1 where $1 
and $2 are independent Wishart matrices with Si ~ Wp(ni, E~)(i = 1, 2) and this 
particular distribution depends only on the eigenvalues of A, say 51, . . . ,  5p(51 > 
• .. > 5p > 0), which may be interpreted as the eigenvalues of E1E~ -1. In this 
paper our concern is the problem of estimating 51 , . . . ,  (~p in a decision theoretic 
way. These eigenvalues are important in the problem of testing H: Z1 = E2 against 
K: E1 ¢ E2, as the power function of any invariant test statistic depends only 
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on 51, . . . ,  5p. For details, see Muirhea~l (1982) and Muirhead and Verathaworn 
(1985). 

To give an alternative estimator of 51,..., 5p, we concentrate on estimating 
a matrix A based on the matrix F. As long as we restrict our attention to the 
orthogonally invaxiant estimators A(F)  of A, the eigenvalues of /~(F) may be 
taken as estimates of 51,..., 5p and we may expect that the eigenvalues of good 
estimators of A perform well as estimates of 51,..., 5p. This approach was first 
considered by Muirhead and Verathaworn (1985). Subsequently, Dey (1988) con- 
sidered the problem of estimating 51, . . . ,  5p directly under the squared error loss. 
In a different setup, Loh (1988) dealt with the problem of estimating the matrix 
E1E21. 

Here we employ two loss functions defined by LI(J~, A) -- tr(/~A -1) - 
logdet(fi~A -1) - p  and L~(/~, A) = tr(/~A -1 - I p )  2. The corresponding risk 

functions are given by Ri(/~, A) = EF[L~(A, A)], i = 1, 2. Following an approach 
similar to that by Haft (1982) in the problem of estimating a normal covaxiance 
matrix, Muirhead and Verathaworn (1985) developed an approximation to Bayes 
rule under the loss function L1. Later, using an approximation to the risk R1 
(due to Muirhead and Verathaworn (1985)), Gupta and Krishnamoorthy (1987) 
and Dey (1989) found new estimators under the loss function L1. Konno (1991) 
showed that, for the case p = 2, the orthogonally invaxiant estimator given in 
Gupta and Krishnamoorthy (1987) is minimax under the loss L1. Leung and 
Muirhead (1988) obtained the best scalar multiple of F under the loss function 
L2. 

Our estimators have the form 

(1.2) A(F) = + ut( )b] 

where a is a constant and t(u) is an absolutely continuous, nonincreasing and 
nonnegative function of u = 1/ t r (F-1) ,  which is analogous to the empirical Bayes 
estimator of the normal covariance matrix by Haft (1980). Note that our esti- 
mators are orthogonally invariant estimators of A, so that their eigenvalues may 
be considered as estimates of 51, . . . ,  5p. We show that the proposed estimators 
dominate the best scalar multiple of F under L1 and L2 losses. 

But the modification of estimators as done in this paper is not the best one 
since the proposed estimators move all eigenvalues of the best scalar multiple in 
the same direction. To remedy this shortcoming, one could apply the method 
of the Wishaxt matrix (Perron (1989)), which makes use of a doubly stochastic 
matrix to estimation of the F matrix. 

In Section 2 of this paper, we state the integration by parts formula, called 
an F identity, to help in our risk computations. In Sections 3 and 4, sufficient 
conditions are given under which our estimators dominate the best scalar multiple 
of F under the loss functions L1 and L2. 

Finally, in Section 5, numerical studies axe carried out to indicate percent- 
age improvements in average loss for our proposed estimators compared with the 
unbiased estimator, which is the best scalar multiple of F under the L1 loss. 
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2. Preliminaries: the Fidentity 

For Q = (qij) and a constant r, put Q(r) -- rQ + (1 - r)diag(Q) where diag(Q) 
is a diagonal matrix with diagonal elements equal to those of Q. Let D(p×p) -- 
(dij) be a matrix of differential operators given by ((1/2)(1 + 5ij)O/Ofij) for the 

Kronecker delta 5ij and F = (fij). We define DQ -- dikqk j as a formal 

product followed by differentiation at the component level and (O/OF)h(F) = 
(Oh(F)/Of~j) for a real-valued function h(F). Now we state the F identity which 
follows directly from (5) in Muirhead and Verathaworn (1985). This is useful 
to evaluate the risk difference between the usual estimators and our proposed 
estimators. 

LEMMA 2.1. Let F follow an Fp(nl, n2; A) distribution defined by (1.1). 
Under certain regularity conditions, we have 

(2.1) 
2 2 {Oh(F) \ 

E[h(F) tr (A + F) - IV]  = E h(F) tr (DV)  + n t r ~ V ( , / 2 ) )  

+ nl - p - i h (F) tr (F_lV)]  
n ] 

for a matrix V = (v~j(F, A)), a scalar h(F) and n = nl + n2. 

3. Improved estimators under L1 loss 

Muirhead and Verathaworn (1985) showed that, for the L1 loss, the unbiased 
estimate A u ( F )  -- e l F  (being al -- (n2 - p -  1)/nl)  is the best among the 
estimators aF where a is a constant. 

Our main results in this section concern the estimators A1 = al (F + ut(u)Ip). 

For the purpose of proving that fi~l dominates /ku under certain conditions on t, 
we need the following lemma. 

LEMMA 3.1. Let F have an Fp(nl, n2; A) distribution. 
inequality 

- n 2  - 2  ' 

which holds iff p = 1 and t(u) is a constant. 

Then we have the 

PROOF. Put  h(F) = t (u) / t r (F -1) and V(A, F)  = (A + F ) A  -1 in (2.1). 
Then, noting that t r ( D F A  -1) ---- ((p + 1)/2)trA -1 (see Haft (1979)), the first 
term on the r.h.s, of (2.1) is equal to [(p + 1)/n]E[t(u)trA-1/tr(F-1)].  Using 
(O/OF)trF -1 = -F~2 ~ (see Haft (1980)), we get 

oOFh(F)_ t(u)F   
+ ( t r F _ l ) 3  • 
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From these and the equation trA(r)B(1/r) -- t rAB for any p x p matrices A and 
B, direct calculations show that  (2.1) provides 

[ t (u ) t rA-1]  [2t(u)tr(F-1A -1 -k F -2) 
(3.1) n2EL ~ J = E l  ( trF_l)2 

2t'(u)tr(F -2 + F - 1 A  -1) 1) 1 
+ ( t rF_l)3 + t(u)(nl - p -  ~ . 

Note that t(u) >_ O. Applying t r ( F - 1 A  - I )  < ( t rF-1) ( t rA -1) and t rF-2/ ( t rF-1)  2 
_< 1 to the first term on the r.h.s, of (3.1) and noting that the second term on the 
r.h.s, of (3.1) is less than zero because t'(u) < 0, we get the desired result. 

THEOREM 3.1. For p > 2, the estimators of the form (1.2) given by a = 
(n2 - p - 1)In1 and t(u), an absolutely continuous and nonincreasing function 
bounded by 

(3.2) 0 < t(u) <_ 
2(p-- 1)(nl + n2 - - p -  1) 

nl (n2 - 2) 

beat the unbiased estimator Au  under the L1 loss. 

PROOF. Put C~l(A) = RI(/Xl, A) - Rl(£U,  A). Noting that log II + AI >_ 
trA - (1/2)trA 2 for any positive definite matrix A, the condition for a l (A)  < 0 
may be written as E[(1/2)t2(u) - t(u) + (alt(u)trA-1/trF-1)] < O. Using Lemma 
3.1 it is seen that the condition (3.2) is sufficient for c~l(A) < 0. 

Remark 3.1. Since S = n2F converges weakly to the Wishart distribution 
Wp(nl, A) as n2 tends to infinity, the estimators in Theorem 3.1 with if(u) = 
t(n2u) become reduced to the estimators of the covariance matrix A given by/~1 = 
(1/nl)(S + ut*(U)Ip) where t*(u) is an absolutely continuous and nonincreasing 
function o fu  = 1/ trS -1 bounded by 0 < t*(u) < 2 ( p -  1)/nl. Theorem 3.1 implies 
that/~1 dominates Au ---- S/n1, which was the result obtained by Haft (1980). 

4. Improved estimators under L2 loss 

It is shown in Leung and Muirhead (1988) that, for the L2 loss and n~ > p+3 ,  
the best estimator of the form aF is given by AB = a2F where 

(4.1) 
(n2 - p)(n2 - p - 3) 

a2--  ( n l + p + l ) ( n 2 - p - 1 ) + p n l + 2 "  

Assume that t(u) in (1.2) is a constant so that we lack the generality of t under the 
L2 loss. Now our goal is to find a sufficient condition under which the estimators 
A2 = a2(F + UtIp), where u = 1 / t rF  -1, dominate /~B under the L2 loss. Put  

(4.2) = A ) -  R (hB, A) 

= 2 a 2 t E [ t r ~  2) ] - 2a2tE[trF_l]  +a~t2E[ t rA-2  ] 
( t rF-1)2]  " 
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To evaluate (4.2), we need the following lemma given by the application of the 
identity (2.1). Their proofs add little insight into the problem. Therefore, the 
proofs have been put into the Appendix. 

LEMMA 4.1. Let F have an Fp(nl, n:; A) distribution with n2 > p+3.  Then 
the following inequalities hold: 

E [  t rA-2 ] ( n I - P l + I ) ( n l - p + 3 ) E [  URN-2 ] 
(i) [ ( t rF-1)2j  ~ ( ~ 2 - - 2 ) ~ 2 - 4 )  ( trF-1) 2 ' 

[ t rA -1] 2 [ t rF  -2 ] n a - p - l + 2 e  
(ii) E[tr---F~J -> n - 2 2 E [ ( ~ 2 J  + n2 

where 
p(nl - p -  1) + 2 

(4.3) c = p2(pn2 - 2) ' 

E [ t r (FA-2) ]  2 
(iii) [ t rF  -1 J -< ( n 2 - p - 1 ) ( n 2 - 2 )  

[(nl  ÷ n2)(nl -- p ÷ 1) + nl(n2 -- 2) 
O 

L n2 
(n 1 - - p +  1 ) ( n , - p + 3 )  ] + 

n2 - 4 J 
[ t rF  -2 ] h i ( h i - p - i )  

• E (trF_l)2 ÷ n2(n2 - -p--  1)" 

THEOREM 4.1. Assume that n2 > p + 3 and p > 2. Let 

2(n2 -- 2)(n2 -- 4) [ n a - p ÷  1 ÷ 2e n l ( n l - p - l )  
/3= (nl --~;-~ 1)-~l------pq- 3) L a2n2 -- n2(n2--p- -  1) 

2 f (hi ÷ n2)(nl - - p ÷  1) ÷ nl(n2 -- 2) 
( n 2  - p  - - 2 )  n 2  

÷ (nl--p÷l)(nl--p+3)}]n_2=_4 

where a2 and e are defined by (4.1) and (4.3), respectively. / f  ff > 0, then the 
estimators of the form (1.2) given by a -- a2 and 0 < t </3 beat AB under the L2 
loss. 

PROOF. From (ii) and (iii) of Lemma 4.1, the coefficient of t in (4.2) is 
bounded above by 

[ 4a 2 { ( n l + n 2 ) ( n l - p + l ) + n l ( n 2 - 2 )  
(4.4) (n2 - p --~)(n2 - 2) n2 

+ ( n l - p + l ) ( n l - p + 3 ) }  4a2]E [ t rF  -2 ] 
U--~4 -- n--2- J (trF-1)2 J 

+ 2a2{a2ni(___n~--p--i) } 
n2 n2 - p ~  1 - (nl - p - 1 + 2e) . 
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Noting tha t  e > 0 and tha t  the term inside the second curly bracket of (4.4) is 
bounded by 

(nl _ p _ l ) { (n2 - p - 1 ) 2  - (n2 - p + l ) } 
( n ~ - p - 1 )  2 - 1  < 0 ,  

it is seen tha t  (4.4) can be bounded above by 

(4.5) 
a29~(nl - p + 1)(n I - -  p + 3) [ t r F  -2 ] 

- - ( 4  ~ 2)~2 - 4)- E [ (tr-~_l) 2 ]. 

Using (i) of Lemma 4.1 and (4.5), a straightforward calculation shows tha t  the 
sufficient condition for a2(A) _< 0 becomes t 2-13t  ~ 0, which completes the proof. 

Remark 4.1. Similar to Remark 3.1, we can see tha t  Theorem 4.1 implies 
Theorem 4.6 in Haft (1980). 

Unfor tuna te ly /3  is not  always positive when p = 2. We carry out  numeri- 
cal calculations to see whether nl  and n2 satisfy fl > 0. It indicates tha t  /3 is 
monotonically decreasing in nl for each fixed n2, which follows tha t  13 has just  
one sign change. Table 1 shows that ,  for example, 13 is not positive for nl  > 43 
when n2 = 15. It also shows tha t  the minimum of nl  such tha t /3  does not take a 
positive value for each n2 first goes down and then goes up as n2 increases. When 
p _> 3, our numerical calculation shows tha t /7  is always positive. 

Table 1. For fixed n2, minimum of nl under which ~ is not positive. 

n2 10 11 12 13 14 15 16 17 18 19 20 30 40 50 
nl 298 74 53 46 44 43 43 43 44 46 47 64 83 102 

5. Numerical studies 

In this section, we use the Monte Carlo simulation method to compute average 
loss and percentage reductions in average loss fo r /~ l  (where t(u) = ( p -  1)(nl + 
n2 - p -  1) /{nl  (n2 - 2)}) compared with /~v under the loss function 

(5.1) L(Ae, /~e) = t r ( / ~ A ~  -1) -- log d e t ( / ~ A~  -1) - p, 

where for a matr ix  A, Ae = diag(A1, . . . ,  )~p), A~'s are the eigenvalues of A. 
For p = 4 and nl ,  n2 -- 10,25,50, a sample of 100 Sl'S and 1000 S2's is 

generated, where Si ~ W4(ni , /4 ) ,  i = 1,2. For each (nl ,  n2), the 100 pairs 

($1, $2) are transformed into F --- A1/2S~/2S21S~/2A1/2, for each 3 choices of A. 
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The  eigenvalues of F ' s  are then  obta ined to  form the est imates of the eigenvalues 

of A. 
Table 2 shows average loss and percentage reductions in average loss for /~I 

compared  t o / ~ v  under  the loss (5.1) when p -- 4. It  indicates tha t  for all choices 
of A, percentage reductions range between 5% and 20~0. 

Table 2. Average loss and improvements for /~1 Over /~U when p = 4. 

nl = 10 nl = 25 nl = 50 
n2 = 10 n2 = 25 n2 = 50 

A = diag(1, 1, i, 1) 
Au 2.78 .870 .403 
A1 2.46 .805 .383 

11.7% 7.36% 5.1% 

A = diag(8, 4, 2, 1) 
Au 1.57 .350 .165 
~1 1.26 .292 .147 

19.6% 16.8% 11.3% 

A = diag(10, 10, 1, 1) 
/~v 2.78 .539 .268 
~1 2.46 .481 .250 

11.7% 10.7% 6.8% 
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Append ix  

PROOF OF LEMMA 4.1. (i) Take h(F) = ( t r F - 1 )  -2 and V = (A + F ) A  -2 

in the F ident i ty  (2.1). From similar calculations to those for the proof  of Lem m a  
3.1, we may  see tha t  (2.1) provides 

(A.1) E I  t r A - 2  ] n l - P + 3 E r t r ( F - 1 A - 1 ) ]  
[ ( t r F - 1 ) 2 j  < - - -  - n 2 - 4  J 

Hence it suffices to show tha t  

(A.2) rtr(F-  -l)l n -p+ l E t  t r F  -2_ .] 
E / < - - -  

L 
( t r F - 1 )  2 J - - 2 - 2  L(trF-1)2j 
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Set G = F -1. Then it is seen that G follows an  Fp(n2, n l ;  /%-1) distribution. 
Applying Lemma 2.1 (being h(G) = (trG) -2 and V(G, A) = (A -1 + G)G 2 in 
(2.1)) with a distribution of G instead of F and noting that t r D A - 1 G  2 = ((p + 
2) /2) t r (A-1G) + ( l /2 ) ( t rA-1) ( t rG)  and trG 3 = ((2p + 3) /2) t rG 2 + (1/2)(trG) 2, 
a similar argument leads to (A.2), which completes the proof of (i). 

(ii) Let t(u) be a constant in (3.1). Then the remainder of the proof is 
to evaluate E[tr(F-1A-1)/(trF-1)2]. Using the fact that p t rF  -2 > ( t rF-1)  2 
and making the transformation T = A-U2FA -1/2, we can see that the term is 
bounded below by 

1 1 (A.3) - E  > 
p kt r (T-1A-1)2J  - p ~ " 

Noting that T -1 has an Fp(n2, nl; Ip) distribution and using Lemma 3.4 in Leung 
and Muirhead (1987), the r.h.s, of (A.3) is bounded below by {p(nl - p - 1) + 
2}/{p2(pn2 - 2)}, which completes the proof of (ii). 

(iii) Se t  h(F) = ( t r F - 1 )  -1 a n d  V(F,  A)  = ( A - t - F ) A - 2 F  in (2.1). F r o m  

t h e  e q u a l i t y  t r ( D F A - 2 F )  = (p + 1 ) t r ( A - 2 F )  (see K o n n o  (19S8)) a n d  s i m i l a r  

argument in the proof of Lemma 3.1, we may see that (2.1) gives 

[tr(FA-2)] [ trA -1 ] [ t r ( A - 1 F  -1 + A-2)] 
(A.4) ( n 2 - p - 1 ) E [  ~ ]--nlE[t---r-r~_lJ+2E [ ~--L-1T 2 j. 

First put (3.1) (t(u)) being a constant) into the first term on the r.h.s, of (A.3) 
and use (A.1) and (A.2). Then we may get the desired result. 
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