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Abstract: In this note we gave new interpretations of Euclid idea for Greatest Common

Divisor for Polynomials (GCDP) and Extended Euclidean Algorithm for Greatest Common

Divisor for Polynomials (EEAGCDP). The reason of this interest is wide usage of these al-

gorithms [50], [34]. In our implementation we reduce the number of iterations and now they

are 50% of wide spread implementation of Euclidean GCDP and EEAGCDP. In every seri-

ous book of algorithms the Euclidean algorithms are part of basic examples [1]-[29], [31]-[50].

Visual C# 2017 programming environment is used.
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1. Introduction

Our work is next part of research in [27]-[30].
Euclidean algorithm for polynomials is well known (see [15], [37]):
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Algorithm 1.

INPUT: two polynomials a(x ) and b(x ).

OUTPUT: the greatest common divisor of a(x ) and b(x ).

1. While b(x ) != 0 do the following:

1.1 Set r(x )←a(x ) mod b(x ), a(x )←b(x ), and b(x )←r(x ).

2. Return(a(x )).

Extended Euclidean algorithms for polynomials ([15], [37]) is:

Algorithm 2.

INPUT: two polynomials a(x ) and b(x ).

OUTPUT: d(x ) = gcd(a(x ), b(x )) and polynomials s(x ), t(x ) which satisfy

s(x )a(x ) + t(x )b(x ) = d(x ).

1. Set s2(x )← 1, s1(x)← 0, t2(x)← 0, and t1(x)← 1.

2. While b(x ) != 0 do the following:

2.1 q(x )← a(x ) div b(x ), and r(x )← a(x ) - b(x )q(x ).

2.2 s(x )← s2(x ) - q(x )s1(x ), and t(x )← t2(x ) - q(x )t1(x ).

2.3 a(x )← b(x ), and b(x )← r(x ).

2.4 s2(x )← s1(x ), s1(x )← s(x ), t2(x )← t1(x ), and t1(x )← t(x ).

3. Set d(x )← a(x ), s(x )← s2(x ), and t(x )← t2(x ).

4. Return(d(x ),s(x ),t(x )).

2. Main Results

Now we set the task to optimize Euclidean GCDP algorithm and EEAGCDP.
For testing we will use the following computer: processor - Intel(R) Core(TM)
i7-6700HQ CPU 2.60GHz, 2592 Mhz, 4 Core(s), 8 Logical Processor(s), RAM
16 GB, Microsoft Windows 10 Enterprise x64.

with the following programming environment (see Fig. 1.).

We suggest the following algorithms.

Algorithm 3.

INPUT: two polynomials a(x ) and b(x ).

OUTPUT: the greatest common divisor of a(x ) and b(x ).

1a. If degree of a(x ) is greater than degree of b(x ). While (true) do the
following:

1a.1 set r(x )← a(x ) mod b(x ).

1a.2 If r(x ) = 0 set gcd(x ) = b(x ), and break.
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Figure 1: Visual C# 2017

1a.3 set r1(x )← b(x ) mod r(x ).

1a.4 If r1(x ) = 0 set gcd(x ) = r(x ), and break.

1a.5 set a(x )← r(x ), and b(x )← r1(x ).

1b. [else] If degree of b(x ) is greater than or equal to the degree of a(x ). While
(true) do the following:

1b.1 set r(x )← b(x ) mod a(x ).

1b.2 If r(x ) = 0 set gcd(x ) = a(x ), and break.

1b.3 set r1(x )← a(x ) mod r(x ).

1b.4 If r1(x ) = 0 set gcd(x ) = r(x ), and break.

1b.5 set b(x )← r(x ), and a(x )← r1(x ).

2. [Make monic] Set c != 0 as the leading coefficient of gcd(x );

d(x ) = cˆ{-1}gcd(x );

Return(d(x )).

Algorithm 4.

INPUT: two polynomials a(x ) and b(x ).

OUTPUT: d(x ) = gcd(a(x ), b(x )) and polynomials s(x ), t(x ) which satisfy

s(x )a(x ) + t(x )b(x ) = d(x ).

1. Set ao(x ) = a(x ), and bo(x ) = b(x ).



716 A. Iliev, N. Kyurkchiev

2a. If degree of a(x ) is greater than degree of b(x ). Set s2(x )← 1, and s1(x)←
0. While (true) do the following:

2a.1 q(x )← a(x ) div b(x ), and r(x )← a(x ) - b(x )q(x ).

2a.2 s(x )← s2(x ) - q(x )s1(x ), s2(x )← s1(x ), and s1(x )← s(x ).

2a.3 If r(x ) = 0 then set d(x )← b(x ), s(x )← s2(x ), t(x )← (b(x ) – s(x )ao(x ))boˆ{-
1}(x ), and break.

2a.4 q(x )← b(x ) div r(x ), and r1(x )← b(x ) - r(x )q(x ).

2a.5 s(x )← s2(x ) - q(x )s1(x ), s2(x )← s1(x ), and s1(x )← s(x ).

2a.6 If r1(x ) = 0 then set d(x )← a(x ), s(x )← s2(x ), t(x )← (a(x ) – s(x )ao(x ))boˆ{-
1}(x ), and break.

2a.7 a(x )← r(x ), and b(x )← r1(x ).

2b. [else] If degree of b(x ) is greater than or equal to the degree of a(x ). Set
s2(x )← 0, and s1(x)← 1. While (true) do the following:

2b.1 q(x )← b(x ) div a(x ), and r(x )← b(x ) - a(x )q(x ).

2b.2 s(x )← s2(x ) - q(x )s1(x ), s2(x )← s1(x ), and s1(x )← s(x ).

2b.3 If b(x ) = 0 then set d(x )← a(x ), s(x )← s2(x ), t(x )← (a(x ) – s(x )ao(x ))boˆ{-
1}(x ), and break.

2b.4 q(x )← a(x ) div r(x ), and r1(x )← a(x ) - r(x )q(x ).

2b.5 s(x )← s2(x ) - q(x )s1(x ), s2(x )← s1(x ), and s1(x )← s(x ).

2b.6 If a(x ) = 0 then set d(x )← b(x ), s(x )← s2(x ), t(x )← (b(x ) - s(x )ao(x ))boˆ{-
1}(x ), and break.

2b.7 b(x )← r(x ), and a(x )← r1(x ).

3. [Make monic] Set c !=0 as the leading coefficient of d(x ).

(d(x ), s(x ), t(x )) = (cˆ{-1}d(x ), cˆ{-1}s(x ), cˆ{-1}t(x )).

Return(d(x ), s(x ), t(x )).

The asymptotic of number of divisions of Knuth’s revision of Euclid’s GCD is
known [34], [40] using CAS Mathematica here we will seek approximation of
the data where first coordinate of every point is N and second coordinate is
average CPU time in seconds. We will use the example given in [15]: a(x ) =
7xˆ11 + xˆ9 + 7xˆ2 + 1, b(x ) = -7xˆ7 - xˆ5 + 7xˆ2 + 1. The gcd(x ) =
d(x ) is xˆ2+ 1/7. We will solve this example up to 100 000 000 times using
classical algorithm 1 and new algorithm 3. We calculate the CPU time taken
by algorithms 1 and 3. Data1 are data taken from Euclidean algorithm [15],
[37] and data2 are data which we received from new algorithm 3. The reader
can be convinced of the benefits of the new method (see Fig. 2).

data1:={{1000000,0.944},{2000000,1.527},{3000000,2.281},

{4000000,3.015},{5000000,3.761},{6000000,4.546},

{7000000,5.301},{8000000,6.063},{9000000,6.806},
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Figure 2: Euclid algorithm (red line - 1) and Iliev-Kyurkchiev algorithm
(blue line - 2)

{10000000,7.667},{11000000,8.327},{12000000,9.136},

{13000000,9.797},{14000000,10.582},{15000000,11.342},

{16000000,12.095},{17000000,12.93},{18000000,13.646},

{19000000,14.367},{20000000,15.259},{21000000,15.888},

{22000000,16.817},{23000000,17.236},{24000000,17.887},

{25000000,18.99},{26000000,19.968},{27000000,20.293},

{28000000,21.037},{29000000,21.789},{30000000,22.447},
{31000000,23.134},{32000000,23.932},{33000000,24.794},

{34000000,25.537},{35000000,26.257},{36000000,27.033},

{37000000,27.748},{38000000,28.58},{39000000,29.194},

{40000000,29.992},{41000000,30.724},{42000000,31.427},

{43000000,32.216},{44000000,32.887},{45000000,33.718},

{46000000,34.32},{47000000,35.197},{48000000,35.819},

{49000000,36.709},{50000000,37.694},{51000000,38.123},

{52000000,38.867},{53000000,39.627},{54000000,40.253},
{55000000,41.116},{56000000,41.624},{57000000,42.351},

{58000000,43.436},{59000000,43.887},{60000000,44.758},

{61000000,45.376},{62000000,46.518},{63000000,46.949},

{64000000,47.748},{65000000,48.338},{66000000,49.061},

{67000000,49.738},{68000000,50.609},{69000000,51.277},

{70000000,52.313},{71000000,52.729},{72000000,53.912},

{73000000,54.431},{74000000,55.041},{75000000,55.782},

{76000000,56.585},{77000000,57.268},{78000000,58.002},
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{79000000,58.843},{80000000,59.517},{81000000,60.784},

{82000000,60.995},{83000000,61.737},{84000000,62.459},

{85000000,63.203},{86000000,63.999},{87000000,64.789},

{88000000,65.456},{89000000,66.671},{90000000,67.156},

{91000000,67.702},{92000000,68.405},{93000000,69.187},

{94000000,69.904},{95000000,70.647},{96000000,71.471},

{97000000,72.129},{98000000,72.93},{99000000,73.723},

{100000000,74.297}};

data2:={{1000000,0.897},{2000000,1.49},{3000000,2.128},

{4000000,2.894},{5000000,3.576},{6000000,4.256},

{7000000,4.981},{8000000,5.76},{9000000,6.355},

{10000000,7.092},{11000000,7.813},{12000000,8.505},

{13000000,9.232},{14000000,9.925},{15000000,10.652},

{16000000,11.463},{17000000,12.069},{18000000,12.766},

{19000000,13.662},{20000000,14.193},{21000000,14.882},

{22000000,15.625},{23000000,16.368},{24000000,16.994},

{25000000,17.883},{26000000,18.669},{27000000,19.378},

{28000000,20.212},{29000000,20.569},{30000000,21.316},

{31000000,21.98},{32000000,22.838},{33000000,23.516},

{34000000,24.124},{35000000,24.814},{36000000,25.482},

{37000000,26.264},{38000000,26.877},{39000000,27.568},

{40000000,28.293},{41000000,29.018},{42000000,29.931},

{43000000,30.806},{44000000,31.171},{45000000,31.944},

{46000000,32.622},{47000000,33.354},{48000000,34.031},

{49000000,34.805},{50000000,35.409},{51000000,36.163},

{52000000,36.91},{53000000,37.574},{54000000,38.207},

{55000000,38.966},{56000000,39.764},{57000000,40.421},

{58000000,41.021},{59000000,42.038},{60000000,42.406},

{61000000,43.397},{62000000,43.87},{63000000,44.609},

{64000000,45.846},{65000000,46.01},{66000000,46.639},

{67000000,47.489},{68000000,48.171},{69000000,48.529},

{70000000,49.15},{71000000,49.81},{72000000,50.766},

{73000000,51.203},{74000000,52.102},{75000000,52.628},

{76000000,53.546},{77000000,53.964},{78000000,54.675},

{79000000,55.551},{80000000,56.085},{81000000,56.886},

{82000000,57.418},{83000000,58.273},{84000000,58.794},

{85000000,59.71},{86000000,60.223},{87000000,61.003},

{88000000,61.615},{89000000,62.571},{90000000,63.361},
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{91000000,63.801},{92000000,64.632},{93000000,65.309},
{94000000,65.803},{95000000,66.673},{96000000,67.276},
{97000000,68.174},{98000000,68.708},{99000000,69.536},
{100000000,70.216}};

We can conclude that Algorithms 3 and 4 are faster than the Algorithms 1 and
2 respectively because we reduce some computational operations.
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