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A NOTE ON EXPONENTIAL INTEGRABILITY

AND POINTWISE ESTIMATES

OF LITTLEWOOD-PALEY FUNCTIONS
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(Communicated by J. Marshall Ash)

Abstract. Let Tf denote any one of the usual classical or generalized Little-

wood-Paley functions. This paper derives a BLO norm estimate for (Tf)~ and

a pointwise estimate for Tf.

1. Introduction

In this paper we will derive a BLO norm estimate and a pointwise inequality

for Tf being any one of the usual classical and generalized Littlewood-Paley

functions.

Let / belong to L°° . We shall obtain (Theorem 1 ) that Tf satisfies

(1.1) ii™2Hblo<cii/iiL-

This kind of result can be found in [1], and by duality in [3] and [4]. However

our result is motivated by the distribution inequalities of Murai and Uchiyama

[8], where Tf is the Lusin area integral.

A function / is said to belong to BLO if

(1.2) [ f(x)-infif)dx<C\Q\,
Jq Q

for any cube Q of R". The John-Niremberg lemma for BMO, where inf„(/)

is replaced by aveQ{f), still holds for BLO with a usual proof, see [6], requiring

easy modifications. Thus (1.1) implies Tf is exponentially square integrable

in the sense of

(1.3) /'exp(-^!r[(r/(x))2-inf(r/)2]Ux<C7|e|.
Jo /!„ Q
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186 MARK LECKBAND

Some understanding of the difference between BLO and BMO can be found

by looking at the class of Calderon-Zygmund singular integral operators. Con-

sider the simplest example, the Hubert transform Hf. For / in L°° , the

function Hf belongs to BMO, but Hf will not belong to BLO in general. Yet

the maximal Hubert transform, though pointwise larger, maps L°° into BLO,

see Lemma 1. of [7]. Since the proof of this result requires only an inequality

known as a good- k inequality, we can state that this trait is characteristic of

the class of C-Z operators. We may infer that maximizing a singular integral

operator creates a less varying operator that is insignificantly larger. We should

also note that (1.1) involves the square of the L-P function and what we have

just said about a C-Z operator does not hold for the square of the operator, for

example, iHf)~ does not belong to BMO.

Littlewood-Paley functions represent an example of what are called vector-

valued C-Z singular integral operators, this is discussed in [6]. We can see that

(1.1) really shows two distinctions between L-P functions and C-Z singular

integral operators. The former are significantly smaller, since the singularities

are no worse than (log(l/r)) verses log(l/i) for bounded functions, and the

former vary less. This is at odds with the usual assumption that vector-valued

singular integral operators are just as bad as singular integral operators.

Our second result is motivated by the pointwise inequalities of Calderón and

Torchinsky [2], Chanillo and Wheeden [4], and Stein [9]. Specifically we show

(1.4) Tf(x)<Cg¡(f)(x),        l<fi<(n + 2)/n,

where g*(f) is the classical function defined in [9]. The generalized L-P func-

tions are usually, and will be defined here using Schwartz functions 6 in place

of the Poisson kernel P. Many variations of (1.4) are known, see [2, 4, 9],

even with the L-P functions on both sides defined by using kernels 8X and Ö,.

However the generality of (1.4) with g*(f) on the dominant side seems to be

new.

2. Preliminaries

We now set up our notation and definitions. For x in R." , r > 0 and a > 0 ,

let

Bix,r) = {yeR": \x - y\ < r},

r(x, a) = {(y, t) e R"++l : \x-y\<at).

The symbol 6 will always be a Schwartz function with / 6 = 0. We will denote

the Poisson kernel Cnt/(t2 + |x|2)",+ l)/2 by PAx) [9], where the constant Cn

is chosen so that / P = 1 . The constant of the Fourier transform is chosen so

that P(C) =e~li] .
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EXPONENTIAL INTEGRABILITY AND ESTIMATES OF LITTLE-PALEY FUNCTIONS 187

1/2

Definition 1. Let g(f), S(f,a), and g*(f) be the same Littlewood-Paley

functions defined in Stein [9]. We define their generalizations as

/ f°° idt\ 1/2
g(f,e)(x)= (Jo  |/*ef(x)rTJ    ,

ff   i/*wi2^?)   .

^•(/•")w=(//Br(r+^)"''/*wi2^
where ß > 1 .

In our general formulas Tf will denote any one of the L-P functions men-

tioned in Definition 1. The functions Tf and T'f will be the same with the

integration of the t variable restricted to (0, r) and [r, oo), respectively. For

constants that do not depend upon the function / we shall use the letter C that

may change from line to line. We shall complete our preliminaries by listing a

standard result whose proof may be found in [6].

Lemma 1. Let f belong to BMO. Then

\Vxf*Pt(x)\2tdxdt   and   \f* 8t(x)\2 dxdt/t

are Carleson measures. In particular, for f in L°° , the constant is CWfW^ .

3.   BLO ESTIMATE

In this section we prove the first main result which we call Theorem 1. Our

argument will develop along lines similar to that of [7]. To control Tf we use

the decomposition (Tf) = (Trf) A- (T'rf)~. Our first lemma states (T'rf)" is

Lipschitzian.

Lemma 2. Let f belong to L°° . Then for x , z e R" ,

x - z
(3.2) \(T'l.f(x))2-(T'rf(z))2\<C\l,

Proof. The case when Tf is S(f, a) or S(f, 8, a) proceeds exactly as Lemma

3.1 of [7]. Easiest is the case when Tf is g(f) or g(f, 8).

\(g'r(f,e)(x))2-(gr(f,e)(z))2\

< j^\f*8lix)-f,d,iz)\\f,8tix)Arf*8liz)\^,

Clearly Tf = g(f) has the same proof.

Now consider Tf = g*(f, 8) and note that g*{f) will have the same proof.

<c\\f\r I   <^-^±dt = c\\f\\2'oo

\(g¡(f,d)(x)f-(g¡(f,6)(z))2\
(3.2)

<C\ '« Í • fJ R" Jr

up

t+x-v J        \t + \z-y

dtdy
M+X
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188 MARK LECKBAND

Observe that,

(3.3)

\x-z\(t + \x-y\V\z-y\)
1 \"M / 1 \"/'l lv        ».!/■<   i   l„       .,lwl.       ..IN"/*-1

? + lx-^iy     v^ + l^-v
<c-

(? + |x-y|r(/ + |z-y|)^     •

We do our estimates according to different cases.

I. First consider t > |x-y|v|z-y|. Using (3.3) over this region of integration,

we obtain

A<c\\fwi r fm
Jr       JR"n{y :   ol.v

x-z|r"''  ' dydt <        „2 \x- z\
,2np tn+\    —      "J I'oo

{y :   l>\x-y\y\z-y\} l t

II. Now consider \x - y\ > \y - z\ > t. Again using (3.3) we get

,2    f [\y-"\\x-z\\x-y\np-{t"ßdtdy
A„<C ■I I

jR"\Btx,r)uB(z,r) Jr
Ml — '-II-/ lloo  / / i „l^lv       7I"-"        <«+l    '

jR"\B(x,r)uB(z.r)Jr \X ~ y\     \y ~ Z\ t

For np> n we have,

-C|l/Il-A lx   'vli/'zl"^
jR"\B(x,r)UB(:,r)  \X ~ y\\y ~ Z\

< cufjx - z\ r\dp,
Jr       p

<c\\ffj-^.
It may be of interest to note that for I > n — n/i > 0 the same estimate can be

obtained.

III. Now we consider |x — y\ > t > \y - z\ which will complete the proof.

Using (3.3) we have

A    sr»f^   r f \x-z\\x-yr-xrdydt
si,,, s c

/ /Jr      J\y-:\<l

2     [°°\X-Z\tn

loo Jr tn+2

Lemma 3. Let f belong to L°° . Then

I. \x — y\nßt"/l /"+'

u < C\\ "

'B(z.r)

just

and more direct

/       (rr/(x))2^x<C||/||2x)|Zi(z,r)|,
JB(z.r)

Proof. We shall just do the case for Tf — g*(f, 6). The other cases are simpler

Ls^-UUÁt^Yv-w**?^
Bx A- Bxx + Bxxx

The above quantities are integrals where the y-integration is over |x - y\ <

t,t<\x-y\<r and r < \x — y\, respectively.
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EXPONENTIAL INTEGRABILITY AND ESTIMATES OF LITTLE-PALEY FUNCTIONS 189

For \x-y\<t we have t/(tA-\x-y\)<C. Thus with a change in the order

of the x and y integration, and then carrying out the x-integration, we have

BX<C [' [ \f,e,(y)\2^<C\\f\\
Jo   Jßtz.Cr) l

l\B(z,r)\,

where we have used Lemma 1 for the last inequality.

For t <\x-y\ < r we have t/(t + \x-y\) < Ct/\x-y\. Again after changing

the order of integration we have

*.i *C[[ r (') \f*8l{y)\2d^ < C\\f\t\B(z, r)\.
JO   JB(z,Cr) \t *       / t

The last inequality is by Lemma 1.

To do the last case, r < |x - y\, we begin by writing R"\Biz, r) = \JAk ,

where Ak   is the annulus centered at  z  with inside radius r2    and outside

radius r2+  , k = 0, 1,2, 3, ... . Using this decomposition and

Ct
<

JA-\x-y\J ~ rv|x- y\

then

.idydxdt
tn+\Bnx<CY,[ f        [   (|x    llvr^17*0^^0   JB(z.r) JAk   \\X — y\ V r)

<cY.-±-l i    ¡       r-"\f*8Ay)\2d-^^.

Using t"ß~" < r"''~" and Lemma 1 we derive

* C"/l|2 E {r''){r'l^yf+ly' á CII/IlL \B(z, r)|.

The proof is complete.

Now we come to the result of this section.

Theorem 1. Let f belong to L°° . Then

\\(Tf)2\\BLO<C\\f\t.

Proof. Observe that (Tf)2 = iTrf)2 + (T¡.f)2 and let Q be any cube of R"

Let z0 be the center of Q and let half the diagonal be r.

f (Tfix))2 - inHTf)2 dx <   i iT'jix))2 - inf{ff)2 dx
Jq Q Jq Q

+ [        (Trf{x))2dx,
JBl :„.r)

<C\\f\\2JQ\,

by Lemmas 2 and 3, respectively.
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190 MARK LECKBAND

4.  PoINTWISE ESTIMATE

In establishing the pointwise estimate (Theorem 2) we begin by proving two

fairly technical lemmas. The first lemma below is ultimately needed for decay

estimates on i* P{x), where r is a Schwartz function. Trouble arises since

P~ (Q = — e misses being a Schwartz function because of nondifferentiability

at 0.

Lemma 4. Let  \D\   be the operator defined by  (\D\r)~ (Q  =  |£|t~(£)> for

Schwartz functions t. Then for 0 < ß < 1,

I |Z>|t(jc)| <-e—rö.
"     '        n~  (lAr\x\)"+ß

Proof. We prove this lemma by modifying many of the ideas found on page

133 of Stein [9]. To begin

Id = -!_(47r2|C'2)'/2       . (1 + 47T2|C|2)'/2

2       2   1/2
The second factor (1 + 4n \Q ) maps Schwartz functions to Schwartz

functions and so we consider it no longer. We decompose the first factor using

(í-o^-i+EV.    ^ = (-if'1/:
m

That is
2 2    1/2

(4.1) {4n <<■' \ ]n = l+YAm(l+4n2\t;\2)-m
(l+47r2|C|2)1/2 ^

where G2m is the kernel of the Bessel potential [9]. Note that for large m , Ah

is of constant sign and

Y(m- 1 + 1/2) -3/2

r(w + i)

using Y im) ~ \j2nmmm e '" . We must obtain a decay estimate that does not

overpower the coefficients A . Note that we may restrict ourselves to \x\ > 1

by Lemma 2(i) of [9]. Also it is shown in [9] that G2m{x) - Oie~M/2), but

the constant increases too quickly with m . We begin anew with the following

identity.

roorOO 2

{An)  Y{m)G2m{x) =       (e S )e       Ô
Jo

The factor within the parenthesis equals exp{-|x|~7t/r5 - (a + «/2)ln(<5)} ,

and has a maximum value of

-i tt+n/2
(«+»/2) 2n .2

x
[(2a A-n
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EXPONENTIAL INTEGRABILITY AND ESTIMATES OF LITTLE-PALEY FUNCTIONS 191

that occurs at

27r|x|

(2a Arn) '

With |x| > 1 ,

(An)" V(m)G7m{x)     -^—— I
' A- \x\)"+2n Jo(1

—â/4n rm+a dSe      S    T

or

G2Jx) <
C„ T(m A- a)

(1 + 1*
\n+2n Y(m)

<
C,

(1 + 1*
\n+2a

m

Letting ß = 2a < 1  and the above applied to (4.1 ) gives us

C„
(4.2)

(4.2|C|2)1/2

(1+4tt/|C|V|2W2 (*)< (i+i*ir
Thus |Z)|t(x) is a Schwartz function convolved with (4.2). The lemma now

follows.

The next lemma is motivated by Lemmas 1.4 and 1.8 of Chanillo and Whee-

den [4] which in turn is a modification of the methods of Stromberg and

Torchinsky [10].

Lemma 5. Let a > 0 and M(large) > 0. Then for a Schwartz function f and

1 <n < (n + 2)/n,

(4.3)
f*es(y) < c hi.Jo    JR"

Vr(/*Z>,)(z)
(t/sY dzdt

\y-A\np.  tn+x(i + ^T" r

Proof. Our proof of this lemma begins as a repetition of the proof of Lemma

1.8 of [4]. To make what follows comprehensible we shall put in all the details

rather than just paraphrasing and jumping into the middle.

First, for 0 < e < S < a, there exists a n ~ (Q e C^° such that supp«~ is

contained in {e < |C| < S}, n~ > 0 and for Ç = 0

f°°   ~ dt
/    p   (tC)n   (tÇ)- = l.
Jo l

To see this, choose O(i) in C^° , O > 0, such that suppO is contained in the

interval (e, S). Set

-2tdt

yo <d(í)í>"2't

Since 0 does not belong to the support of <I> we have n~ with the desired

properties.

Given a > 0 define

dt
(4.4) h(Q = 1

/„'^o
P   (tQn   (tO-

t
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192 MARK LECKBAND

Then h is C°°, h - 1 near 0, and for Ç not 0,

h{Q= f
Ja

P~ (tQrT {tQ
dt

Moreover h has compact support since «~ does.

Now choose a C°° function t with suppr contained in the interval (s,S)

so that /0°° r(t)/tdt = 1 . Then

(4.5)
fa x(t)      ~       dt

h(Q = J   h(0-5^P   (tQ™.
P~(tQ

Combining (4.4) and (4.5) we have

ÍJo
P~(tQ rT(tQ +

h(Qr(t)
P~(tQ

dt

Set <7~ (C, t) = «~ (C) + h(Ç/t)r(t)/P~(0 ■
Using the above identity, we have

8~(sQ     8~(sc)

s

«      ras

fas    ~ dt
/    P   (tQo  (tC,t/s)^,
Jo l

"   ras i dt
J2       (^(10^,8-(sÇ)o~(tÇ,t/s)-,
~1Jo su t

«      ras

and so,

f*ejy) " ras     r

T~", Jo    Jr"

\.dy¡P'

dt
(07;. (/c,i/*)y,

y - z    t\ dzdt

dz
(f*P,)(z T

t fn+{

Mwhere 7p (f, /) = r (C/t)(Z,/t)/\C/t\  ■ [/T (Ç) + eMr(/)A(i/0] •
We now establish, for 0 < t < a , the estimate

\Tl(x,t)\<Cß-^-£^,        0</?<l,

where the dependence of /? arises from Lemma 4. Fix i and denote g~ (Ç/t) =

(CJt/lC/tl2) ■ 8~(Ç/t). Since (T(0) = 0 and tT is a Schwartz function, we

have that g~ is a Schwartz function. Using e    = cosh(|Ç|) + sinh(|£|), then

7f(i, t) = g~(Ç/t)n~iO + ¿T (Í/0cosh(|f|)t(/)Ä(f/r)

+ ICI (C/t)S-^P-r(t)h(C/t)
ICI

= A~(Ç,t)A-B~(Ç,t)Ar\Ç\C~(Ç,t).

First we have,

c x     -(C)
\D'(A~(Ç,t))\< -»^

fH(l + ICI/0'
0 < t < a.
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EXPONENTIAL INTEGRABILITY AND ESTIMATES OF LITTLE-PALEY FUNCTIONS 193

Using |C| > e > 0 in supp«~ , then

\D¡(A^(C,t))\<CtK-HX{¡ri<s}(0.

Hence \A(x, t)\ < Ct /(I A- \x\)N , where M and N can be taken as large as

desired.

To estimate B(x, t) observe that B~ (C, t) is a Schwartz function with re-

spect to the C variable and supp(t) is contained in the interval (e, S). Hence

\B(x,t)\<CtM/(l + \x\f.
Finally consider C (CO- The above statements about ß" (C, 0 also aPPly

to C~ (C, 0 • Thus by Lemma 4,

|[|C|C~(C,0]v«|<c/V(i + M)"+/?, o<ß< i

From these estimates we now have

I/* 0,001<cß[   ÍJ^J*pí
Jo   Jr"

(z)l
(t/s)

M
dz dt

(1 + J*=2l)"+'   t"+l

Decomposing n-\- ß = nfi/2 + [n + ß - np/2], we may choose a ß close enough

to 1 so that the conclusion of Lemma 5 is derived by using Schwartz's inequality.

The restriction of ß < 1 gives us the restriction of ¡x < (n + 2)/n in order to

do this last step.

We now come to the second result of this paper.

Theorem 2. Let 1 < ß < (n A- 2)/n . Then

Tf(x)<Cg*(f)(x),

where T is any one of the operators of Definition 1 with matching index ¡x when

Tf=gJt(f,d)(x).   '
Proof. The case when Tf = g(f, 8) is very easy using Lemma 5. The cases

when Tf = g(f) and S(f, a) are done in Stein [9]. The case when Tf =

S(f, 8, a) proceeds exactly as the final argument of Lemma 1.4 of [4]. Thus

we shall restrict ourselves to the case Tf — g*(f, 8),  1 < p. < (n + 2)/n .

Using Lemma 5 and reversing the order of integration of the 5 and t vari-

ables, we have

\g*u(f, 0)(x)\2

< CIIVz(f*P,)(z) ITJr" Jt/a

i.i   \M   \—n ,-
(t/S)    S        t

(i + ix=£i)"f'U + lx=ä)"i'
dsdy

dzdt
n-\

To complete the proof we must show [•■■]< [//(/ + |x - z|)]"''. To do this first

let u = x - z and the integral inside the brackets becomes less than or equal to

(4.6) Ci rJr" Jt/a

i,i   ,.\l   nii—n+\,np—2
(t/s)   S t

(S
ti/i ¡"t'Ut"''

A-\y\"'-)(t"" + \u
,nu ds dy.
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194 MARK LECKBAND

Observe

_1_
(s^ + lyD^ + lu-yD'

_1_

Now we have the following integrals with estimates.

/   wrn ,n,dy<C/s""-n   and     H'(t/sfst"^2 ds < Ct"1.
J    s      +\y\ Jt/a

Also

/,      _, ,-, ,.np — n ,        I      i,i   \M   nu-n+\ ,n—2  , ,->,np
fnp , ■—~mdy<C/t and    /    (t/s)   s t     ds < Ct ".
t      + \U - y\ Jtfa

Thus (4.6) is less than equal to [t/(t A- \u\)]"M and the proof is complete.
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