A Note on Extended Gaussian Quadrature Rules

By Giovanni Monegato*

Abstract

Extended Gaussian quadrature rules of the type first considered by Kronrod are examined. For a general nonnegative weight function, simple formulas for the computation of the weights are given, together with a condition for the positivity of the weights associated with the new nodes. Examples of nonexistence of these rules are exhibited for the weight functions $\left(1-x^{2}\right)^{\lambda-1 / 2}, e^{-x^{2}}$ and e^{-x}. Finally, two examples are given of quadrature rules which can be extended repeatedly.

1. Introduction. A quadrature rule of the type

$$
\begin{equation*}
\int_{a}^{b} w(x) f(x) d x=\sum_{i=1}^{n} A_{i}^{(n)} f\left(\xi_{i}^{(n)}\right)+\sum_{j=1}^{n+1} B_{j}^{(n)} f\left(x_{j}^{(n)}\right)+R_{n}(f), \tag{1.1}
\end{equation*}
$$

where $\xi_{i}^{(n)}, i=1, \ldots, n$, are the zeros of the n th-degree orthogonal polynomial $\pi_{n}(x)$ belonging to the nonnegative weight function $w(x)$, can always be made of polynomial degree $3 n+1$ by selecting as nodes $x_{j}^{(n)}, j=1,2, \ldots, n+1$, the zeros of the polynomial $p_{n+1}(x)$, of degree $n+1$, satisfying the orthogonality relation

$$
\begin{equation*}
\int_{a}^{b} w(x) \pi_{n}(x) p_{n+1}(x) x^{k} d x=0, \quad k=0,1, \ldots, n . \tag{1.2}
\end{equation*}
$$

The polynomial $p_{n+1}(x)$ is unique up to a normalization factor and can be constructed, for example, as described by Patterson [4]. Unfortunately, the zeros of $p_{n+1}(x)$ are not necessarily real, let alone contained in $[a, b]$. We call (1.1) an extended Gaussian quadrature rule, if the polynomial degree is $3 n+1$, and all nodes $x_{j}^{(n)}$ are real and contained in $[a, b]$.

The only known existence result relates to the weight function $w(x)=$ ($\left.1-x^{2}\right)^{\lambda-1 / 2},-a=b=1,0 \leqslant \lambda \leqslant 2$, for which Szegö [9] proves that the zeros of $p_{n+1}(x)$ are all real, distinct, inside $[-1,1]$, and interlaced with the zeros $\xi_{i}^{(n)}$ of the ultraspherical polynomial $\pi_{n}(x)$.

Kronrod [3] considers the case $\lambda=1 / 2$ and computes nodes and weights for the corresponding rule (1.1) up to $n=40$. For the same weight function, Piessens [6] constructs an automatic integration routine using a rule of type (1.1) with $n=10$. Further accounts of Kronrod rules, including computer programs, can be found in [8], [2].

Patterson [4] derives a sequence of quadrature formulas by successively iterating the process defined by (1.1) and (1.2). Starting with the 3-point Gauss-Legendre rule, he adds four new abscissas to obtain a 7-point rule, then eight new nodes to obtain a 15 -point rule and continues the process until he reaches a 127 -point rule. The procedure,

[^0]even carried one step further to include a 255 -point rule, is made the basis of an automatic numerical integration routine in [5].

Ramsky [7] constructs the polynomial $p_{n+1}(x)$ satisfying condition (1.2) for the Hermite weight function up to $n=10$ and notes that the zeros are all real only when $n=1,2,4$.

In all papers [3], [4] and [5], all weights are positive; however in [7], for $n=4$, two (symmetric) weights $A_{i}^{(n)}$ are negative.

We first study a rule of type (1.1) with polynomial degree at least $2 n$ and give simple formulas for the weights $A_{i}^{(n)}$ and $B_{j}^{(n)}$, together with a condition for the positivity of the weights $B_{j}^{(n)}$. We then construct the polynomial $p_{n+1}(x)$ in (1.2) for the weight functions $w(x)=\left(1-x^{2}\right)^{\lambda-1 / 2}$ on $[-1,1], \lambda=0(.5) 5,8, w(x)=e^{-x^{2}}$ on $[-\infty, \infty]$, and $w(x)=e^{-x}$ on $[0, \infty]$, in each case up to $n=20$, and give examples in which $p_{n+1}(x)$ has complex roots. We compute the extended Gaussian quadrature rules, whenever they exist, and give further examples of rules with negative weights $A_{i}^{(n)}$. Finally, we give two examples of quadrature rules which can be extended repeatedly.
2. The Weights $A_{i}^{(n)}$ and $B_{j}^{(n)}$. Let $k_{n}>0$ be the coefficient of x^{n} in $\pi_{n}(x)$, and $h_{n}=\int_{a}^{b} w(x) \pi_{n}^{2}(x) d x$. Consider a rule of type (1.1) with real nodes $x_{j}^{(n)}, j=1,2$, $\ldots, n+1$, and polynomial degree at least $2 n$. Let $q_{n+1}(x)=\Pi_{j=1}^{n+1}\left(x-x_{j}^{(n)}\right)$ and define $Q_{2 n+1}(x)=\pi_{n}(x) q_{n+1}(x)$. We assume the two sets of nodes $\left\{\xi_{i}^{(n)}\right\}_{i=1}^{n}$ and $\left\{x_{j}^{(n)}\right\}_{j=1}^{n+1}$ both ordered decreasingly.

Theorem 1. We have

$$
\begin{equation*}
B_{j}^{(n)}=\frac{h_{n}}{k_{n} Q_{2 n+1}^{\prime}\left(x_{j}^{(n)}\right)}, \quad j=1,2, \ldots, n+1 \tag{2.1}
\end{equation*}
$$

and all $B_{j}^{(n)}>0$ if and only if the nodes $x_{j}^{(n)}$ and $\xi_{i}^{(n)}$ interlace.
Proof. Applying (1.1) to $f_{k}(x)=\pi_{n}(x) q_{n+1}(x) /\left(x-x_{k}^{(n)}\right), k=1,2, \ldots, n+1$, we obtain

$$
\begin{equation*}
\int_{a}^{b} w(x) f_{k}(x) d x=B_{k}^{(n)} \pi_{n}\left(x_{k}^{(n)}\right) q_{n+1}^{\prime}\left(x_{k}^{(n)}\right)=B_{k}^{(n)} Q_{2 n+1}^{\prime}\left(x_{k}^{(n)}\right) \tag{2.2}
\end{equation*}
$$

Since $q_{n+1}(x) /\left(x-x_{k}^{(n)}\right)=x^{n}+t_{n-1}(x)$, where $t_{n-1}(x)$ is a polynomial of degree at most $n-1$, we have, by the orthogonality of $\pi_{n}(x)$,

$$
\begin{equation*}
\int_{a}^{b} w(x) f_{k}(x) d x=\int_{a}^{b} w(x) \pi_{n}(x) x^{n} d x=h_{n} / k_{n} \tag{2.3}
\end{equation*}
$$

Since $h_{n} / k_{n}>0$, we see that $Q_{2 n+1}^{\prime}\left(x_{k}^{(n)}\right) \neq 0$, and (2.1) follows from (2.2) and (2.3). Note in particular that the nodes $x_{j}^{(n)}$ are simple and distinct from the $\xi_{i}^{(n)}$.

Assume now that the nodes $x_{j}^{(n)}$ and $\xi_{i}^{(n)}$ interlace, i.e., $x_{n+1}^{(n)}<\xi_{n}^{(n)}<x_{n}^{(n)}<$ $\cdots<\xi_{1}^{(n)}<x_{1}^{(n)}$. Since the polynomial $Q_{2 n+1}$ vanishes precisely at the nodes $x_{j}^{(n)}$ and $\xi_{i}^{(n)}$, and by normalization, $Q_{2 n+1}(x)>0$ for $x>x_{1}^{(n)}$, it is clear that the derivative $Q_{2 n+1}^{\prime}$ will be alternately positive and negative at the nodes $x_{1}^{(n)}, \xi_{1}^{(n)}, x_{2}^{(n)}, \xi_{2}^{(n)}$, \ldots, hence, in particular; $Q_{2 n+1}^{\prime}\left(x_{j}^{(n)}\right)>0, j=1,2, \ldots, n+1$. By (2.1), therefore, $B_{j}^{(n)}>0$.

Vice versa, suppose the weights $B_{j}^{(n)}, j=1,2, \ldots, n+1$, are positive. Applying (1.1) to the function

$$
f_{i}(x)=\pi_{n}^{2}(x) /\left(\left(x-\xi_{i+1}^{(n)}\right)\left(x-\xi_{i}^{(n)}\right)\right), \quad i=1, \ldots, n-1
$$

we obtain

$$
\begin{equation*}
0=\int_{a}^{b} w(x) f_{i}(x) d x=\sum_{j=1}^{n+1} B_{j}^{(n)} f_{i}\left(x_{j}^{(n)}\right) \tag{2.4}
\end{equation*}
$$

Since all the nodes $x_{j}^{(n)}$ are distinct from any $\xi_{i}^{(n)}$, the sum in (2.4) can be zero only if at least one of the numbers $f_{i}\left(x_{j}^{(n)}\right)$ is negative. It follows that at least one node $x_{j}^{(n)}$, say $x_{j_{i}}^{(n)}$, satisfies the inequality

$$
\xi_{i+1}^{(n)}<x_{j_{i}}^{(n)}<\xi_{i}^{(n)}, \quad i=1, \ldots, n-1 .
$$

The existence of nodes $x_{1}^{(n)}>\xi_{1}^{(n)}$ and $x_{n+1}^{(n)}<\xi_{n}^{(n)}$ follows similarly by considering $f_{0}(x)=\pi_{n}^{2}(x) /\left(\xi_{1}^{(n)}-x\right)$ and $f_{n}(x)=\pi_{n}^{2}(x) /\left(x-\xi_{n}^{(n)}\right)$, respectively. Having thus accounted for at least $n+1$, hence exactly $n+1$, nodes $x_{j}^{(n)}$, the interlacing property is established.

Theorem 2. We have

$$
\begin{equation*}
A_{i}^{(n)}=H_{i}^{(n)}+\frac{h_{n}}{k_{n} Q_{2 n+1}^{\prime}\left(\xi_{i}^{(n)}\right)}, \quad i=1, \ldots, n \tag{2.5}
\end{equation*}
$$

where $H_{i}^{(n)}$ are the Christoffel numbers for the weight function $w(x)$. The inequalities

$$
\begin{equation*}
A_{i}^{(n)}<H_{i}^{(n)}, \quad i=1, \ldots, n \tag{2.6}
\end{equation*}
$$

hold if and only if the nodes $x_{j}^{(n)}$ and $\xi_{i}^{(n)}$ interlace.
Proof. Letting

$$
f_{i}(x)=q_{n+1}(x) \pi_{n}(x) /\left(x-\xi_{i}^{(n)}\right), \quad i=1, \ldots, n
$$

in (1.1), we have

$$
\begin{equation*}
\int_{a}^{b} w(x) f_{i}(x) d x=A_{i}^{(n)} Q_{2 n+1}^{\prime}\left(\xi_{i}^{(n)}\right) \tag{2.7}
\end{equation*}
$$

Applying the n-point Gaussian rule to f_{i}, and noting that the remainder is

$$
\frac{f_{i}^{(2 n)}(\xi)}{(2 n)!k_{n}^{2}} \int_{a}^{b} w(x) \pi_{n}^{2}(x) d x=\frac{h_{n}}{k_{n}}
$$

we find that

$$
\begin{equation*}
\int_{a}^{b} w(x) f_{i}(x) d x=H_{i}^{(n)} Q_{2 n+1}^{\prime}\left(\xi_{i}^{(n)}\right)+h_{n} / k_{n} . \tag{2.8}
\end{equation*}
$$

From the last two relations, (2.5) follows, since again, $Q_{2 n+1}^{\prime}\left(\xi_{i}^{(n)}\right) \neq 0$.
If the nodes $x_{j}^{(n)}$ and $\xi_{i}^{(n)}$ interlace, then $Q_{2 n+1}^{\prime}\left(\xi_{i}^{(n)}\right)<0$ for all i, proving
(2.6). Vice versa, if (2.6) holds, consider

$$
f_{j}(x)=q_{n+1}^{2}(x) /\left(\left(x-x_{j+1}^{(n)}\right)\left(x-x_{j}^{(n)}\right)\right), \quad j=1, \ldots, n .
$$

By applying (1.1) we have

$$
\begin{equation*}
\int_{a}^{b} w(x) f_{j}(x) d x=\sum_{i=1}^{n} A_{i}^{(n)} f_{j}\left(\xi_{i}^{(n)}\right) \tag{2.9}
\end{equation*}
$$

and from the n-point Gaussian rule, with remainder, similarly as above,

$$
\begin{equation*}
\int_{a}^{b} w(x) f_{j}(x) d x=\sum_{i=1}^{n} H_{i}^{(n)} f_{j}\left(\xi_{i}^{(n)}\right)+h_{n} / k_{n}^{2} \tag{2.10}
\end{equation*}
$$

By subtracting (2.9) from (2.10) we obtain

$$
\begin{equation*}
\sum_{i=1}^{n}\left(H_{i}^{(n)}-A_{i}^{(n)}\right) f_{j}\left(\xi_{i}^{(n)}\right)=-h_{n} / k_{n}^{2}<0 \tag{2.11}
\end{equation*}
$$

Since $H_{i}^{(n)}-A_{i}^{(n)}>0, i=1, \ldots, n$, inequality (2.11) is possible only if at least one of the numbers $f_{j}\left(\xi_{i}^{(n)}\right)$ is negative. This means that at least one $\xi_{i}^{(n)}$, say $\xi_{i_{j}}^{(n)}$, satisfies the inequality

$$
x_{j+1}^{(n)}<\xi_{i_{j}}^{(n)}<x_{j}^{(n)}, \quad j=1, \ldots, n
$$

which, as before, implies the interlacing property.
Clearly, Theorems 1 and 2 both apply to the extended Gaussian quadrature rules, if one chooses $q_{n+1}(x)=p_{n+1}(x)$.
3. Numerical Results. We have constructed the polynomial $p_{n+1}(x)$ satisfying condition (1.2) for $w(x)=\left(1-x^{2}\right)^{\lambda-1 / 2}, \lambda=0(.5) 5,8$, up to $n=20$, by using an algorithm similar to the one described in [4]. When the zeros of these polynomials are all real, the corresponding weights $A_{i}^{(n)}$ and $B_{j}^{(n)}$ were computed by means of (2.1) and (2.5). For all rules thus obtained, the nodes always satisfy the interlacing property; nevertheless, in some cases we find negative weights $A_{i}^{(n)}$. Cases of complex zeros also occur. A brief list of the values of λ and n, for which negative weights and complex zeros were observed, is reported in the following table (where $k(i) l$ denotes the sequence of integers $k, k+i, k+2 i, \ldots, l)$.

λ	$n\left(A_{i}^{(n)}<0\right)$	n (complex zeros)
4	13,15	-
4.5	$7(2) 13,16$	$15,17,19$
5	$7,9,14,16$	$11(2) 19,20$
8	$3,5,6,8$	$7,9(1) 20$

Similarly, we examined $w(x)=e^{-x^{2}}$ and $w(x)=e^{-x}$, again up to $n=20$. In the first case, studied already in [7] up to $n=10$, we have confirmed that extended Gaussian rules exist only for $n=1,2,4$. For the second weight function, when $n=1$, the zeros of $p_{2}(x)$ are real, but one is negative, while for $2 \leqslant n \leqslant 20$ some of the zeros are complex.
4. Extended Gauss-Chebyshev Rules. The extension of Gauss-Chebyshev rules can be carried out explicitly by virtue of the identity

$$
\begin{equation*}
2 T_{n}(x) U_{n-1}(x)=U_{2 n-1}(x) \tag{4.1}
\end{equation*}
$$

where $T_{n}(x)$ and $U_{n}(x)$ are the n th-degree Chebyshev polynomials of first and second kind, respectively.

When $w(x)=\left(1-x^{2}\right)^{-1 / 2}$ we may choose $p_{n+1}(x)=2^{-n+1}\left(x^{2}-1\right) U_{n-1}(x)$, $n \geqslant 2$, and (1.1) becomes the Gauss-Chebyshev rule of closed type (see for example [1])

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{-1 / 2} f(x) d x=\frac{\pi}{2 n}\left[\sum_{i=1}^{2 n-1} f\left(x_{i}^{(n)}\right)+\frac{1}{2} f(-1)+\frac{1}{2} f(1)\right]+R_{n}(f) \tag{4.2}
\end{equation*}
$$

$$
n \geqslant 2
$$

where

$$
x_{i}^{(n)}=\cos \frac{i \pi}{2 n}, \quad i=1,2, \ldots, 2 n-1
$$

$p_{n+1}(x)$ satisfies the required orthogonality condition (1.2) by virtue of (4.1). As a matter of fact, (1.2) holds for all $k \leqslant 2 n-2, n \geqslant 2$. Since the coefficients $A_{i}^{(n)}$, $B_{j}^{(n)}$ are uniquely determined, they must be as in (4.2), which is known to have not only degree $3 n+1$, but in fact degree $4 n-1$. For $n=1$ we have $p_{2}(x)=x^{2}-3 / 4$ and (1.1) coincides with the 3 -point Gauss-Chebyshev rule.

A natural way of iterating the process is to add $2 n$ new nodes, namely the zeros of $T_{2 n}(x)$, so that, by virtue of (4.1), the new rule will have as nodes the zeros of $\left(x^{2}-1\right) U_{4 n-1}(x)$ and polynomial degree $8 n-1$. In general, after p extensions, having reached a rule with $2^{p} n+1$ nodes, we add $2^{p} n$ new nodes, namely the zeros of $T_{2 p_{n}}(x)$, to get a rule of the type (4.2) with $2^{p+1} n+1$ nodes and polynomial degree $2^{p+2} n-1$.

In a similar way we may extend the Gaussian quadrature rule for the weight function $w(x)=\left(1-x^{2}\right)^{1 / 2}$. Recalling again (4.1), we choose $p_{n+1}(x)=2^{-n} T_{n+1}(x)$, and obtain

$$
\begin{equation*}
\int_{-1}^{1}\left(1-x^{2}\right)^{1 / 2} f(x) d x=\frac{\pi}{2(n+1)} \sum_{i=1}^{2 n+1}\left(1-\left[x_{i}^{(n)}\right]^{2}\right) f\left(x_{i}^{(n)}\right)+R_{n}(f) \tag{4.3}
\end{equation*}
$$

the Gaussian rule constructed over the $2 n+1$ zeros

$$
x_{i}^{(n)}=\cos \frac{i \pi}{2(n+1)}, \quad i=1,2, \ldots, 2 n+1
$$

of the polynomial $U_{2 n+1}(x)$. It has polynomial degree $4 n+1$. As before, the process may be iterated.

Acknowledgement. I am grateful to Professor Walter Gautschi for many constructive suggestions and constant guidance during this work.

Department of Computer Sciences
 Purdue University
 West Lafayette, Indiana 47907

[^1]3. A. S. KRONROD, Nodes and Weights for Quadrature Formulae. Sixteen-Place Tables, "Nauka", Moscow, 1964; English transl., Consultants Bureau, New York, 1965. MR 32 \#597, \#598.
4. T. N. L. PATTERSON, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1968, pp. 847-856; Addendum, ibid., v. 22, 1968, no. 104, loose microfiche suppl. C1-C11. MR 39 \#3701.
5. T. N. L. PATTERSON, "Algorithm 468-Algorithm for automatic numerical integration over a finite interval," Comm. ACM, v. 16, 1973, pp. 694-699.
6. R. PIESSENS, "An algorithm for automatic integration," Angewandte Informatik, v. 9, 1973, pp. 399-401.
7. Ju. S. RAMSKIII, "The improvement of a certain quadrature formula of Gauss type," Vy̌isl. Prikl. Mat. (Kiev), Vyp. 22, 1974, pp. 143-146. (Russian) MR 50 \#6121.
8. W. SQUIRE, Integration for Engineers and Scientists, American Elsevier, New York, 1970.
9. G. SZEGÖ, "Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," Math. Ann., v. 110, 1934, pp. 501-513.

[^0]: Received December 2, 1975.
 AMS (MOS) subject classifications (1970). Primary 65D30; Secondary 33A65.
 *Work performed while the author held a fellowship from the Consiglio Nazionale delle Ricerche, Italy.

[^1]: 1. M. M. CHAWLA, "Error bounds for the Gauss-Chebyshev quadrature formula of the closed type," Math. Comp., v. 22, 1968, pp. 889-891. MR 39 \#1113.
 2. P. J. DAVIS \& P. RABINOWITZ, Methods of Numerical Integration, Academic Press, New York, 1975.
