A Note on Finite Groups Having Perfect Order Subsets ${ }^{1}$

Rulin Shen
Department of Mathematics
Hubei University for Nationalities
Enshi, Hubei, P.R. China, 445000
shenrulin@hotmail.com

Abstract

A group G is said to be a POS-group if for each x in G the cardinality of the set $\{y \in G \mid o(y)=o(x)\}$ is a divisor of the order of G. In this paper we study the structure of POS-groups of order $2 m$ with $(2, m)=1$, and confirm a conjecture of Das's.

Mathematics Subject Classification: 20D60, 20D06
Keywords: perfect order subsets, POS-groups, Frobenius groups

Throughout this paper G denotes a finite group, $o(x)$ the order of a group element x, and $|X|$ the cardinality of a set X. Denote by $\pi(G)=\{p \mid p$ is a prime divisor of $|G|\}$. As in [2], the order subset (or, order class) of G determined by an element $x \in G$ is defined to be the set $O S(x)=\{y \in G \mid o(y)=o(x)\}$. Clearly, for every $x \in G, O S(x)$ is a disjoint union of some of the conjugacy classes in G. The group G is said to have perfect order subsets (in short, G is called a POS-group) if $|O S(x)|$ is a divisor of $|G|$ for all $x \in G$. In the paper [2], Finch and Jones first classified the Abelian POS-groups. Afterwards they continued the study of nonabelian POS-groups (see [3],[4]). Recently, Das gave some properties of POS-groups and listed some examples of nonablian POSgroups in his paper [1]. In this note we study the structure of POS-groups of order $2 m$ with $(2, m)=1$. Firstly we cite some lemmas.

[^0]Lemma 1. (Theorem 1, [6]) If every order of element of finite group G is a power of prime, then $|\pi(G)| \leq 3$. Moreover, if G is solvable, then $|\pi(G)| \leq 2$.

Recall that a 2-Frobenius group G is $A B C$, where A and $A B$ are normal subgroups of $G, A B$ and $B C$ are Frobenius group with kernel A, B and complements B, C respectively. The following lemma is due to Gruenberg and Kegel (see [7]).

Lemma 2. If $\pi(G)=\{p, q\}$ with p, q both odd primes, and G has no element of order $p q$, then G is a Frobenius group or 2-Frobenius.

Lemma 3. (Theorem 3, [8]) Let G be a finite group. Then the number of elements whose orders are multiples of n is either zero, or a multiple of the greatest divisor of $|G|$ that is prims to n.

Now we give the main result of the structure of POS-groups of order $2 m$ with $(2, m)=1$. The following integers n and l are positive.

Theorem 4. If G is a POS-group of order $2 m$ with $(2, m)=1$, then G is one of the following groups:
(a) the cyclic group Z_{2} of order 2.
(b) dihedral groups $D_{2 \cdot 3^{n}}$.
(c) $Z_{2} \times Z_{3^{n}}$.
(d) POS-groups $F: Z_{2}$, where F is a Frobenius group which kernel is a p-group and complement a cyclic 3 -group, and $p=2 \cdot 3^{k}+1$ a prime.

Proof. Since $|G|=2 m$ with $(2, m)=1$, there exists a normal subgroup M of order m. Clearly, G is solvable. We can assume that $M>1$. Let s_{m} be the number of elements of order m in G. Suppose that $p, q \in \pi(M)$ and $p \neq q$. Then M has no element of order $p q$. In fact, otherwise $(p-1)(q-$ $1)=\phi(p q)\left|s_{p q}\right||G|$, where ϕ is Euler totient function, we have $4||G|$, a contradiction. Thus every order of element of M is a power of prime. Then we have $|\pi(M)| \leq 2$ by Lemma 1 . We divide into two cases:

Case 1. $|\pi(M)|=1$. Suppose that $\pi(G)=\{2, p\}$ and $|G|=2 \cdot p^{n}$. Since $p-1=\phi(p)| | G \mid=2 \cdot p^{n}$, we have $p-1 \mid 2$, and hence $p=3$. So $|G|=2 \cdot 3^{n}$. By Proposition 2.8 of the article [1], the Sylow 3 -subgroup M of G is cyclic. Since $M \triangleleft G$, every element u of order 2 of G is an automorphism of M, and thus u maps the generated element c of M to c or c^{-1}. So we have G is $Z_{2} \times Z_{3^{n}}$ or dihedral groups $D_{2 \cdot 3^{n}}$.

Case 2. $|\pi(M)|=2$. Similarly, suppose that $\pi(G)=\{2, q, p\}$ and $|G|=$ $2 \cdot q^{n} \cdot p^{l}$. Without loss of generalities, we assume that $q<p$. If $q>3$, then $q-1| | G \mid$, and thus $q-1 \mid 2$, i.e., $q=3$, a contradiction. Therefore, we have $q=3$. Similarly, since $p-1 \mid 2 \cdot 3^{n}$, we have $p=2 \cdot 3^{k}+1$, where $1 \leq k \leq n$.

Since M has no element of order $p q, M$ is a Frobenius group or 2-Frobenius group by Lemma 2.
(I.) M is a Frobenius group. Let $M=K: H$, where K and H are kernel and complement, respectively. If $|K|=3^{n}$ and $|H|=p^{l}$, then H is cyclic and the intersection of every two subgroups of order p^{l} is trivial. So the number of cyclic subgroups of order p^{l} in M is $\left|M: N_{M}(H)\right|=3^{n}$. Since $(|M|,|G / M|)=1$, the number of ones in G is also 3^{n}. Then the number of elements of order p^{l} of G is $2 \cdot 3^{k} \cdot p^{l-1} \cdot 3^{n}$, which is a divisor of $|G|=2 \cdot 3^{n} \cdot p^{l}$. So $k=0$, which contradicts the fact that $k \geq 1$. If $|K|=p^{l}$ and $|H|=3^{n}$, obviously, H is cyclic. Suppose that $\Omega=\{x \in G \mid o(x)=2\}$ and K acts on the set Ω. Then $|\Omega| \equiv\left|C_{\Omega}(K)\right|(\bmod p)$. Now since $s_{2} \mid 3^{n} p^{l}=3^{n}\left(2 \cdot 3^{k}+1\right)^{l}$, we have $\left|C_{\Omega}(K)\right| \geq 1$
(II.) M is a 2-Frobenius group. Let $M=K H K_{0}$, where $K H$ and $H K_{0}$ are Frobenius group with kernel K, H and complements H, H_{0} respectively. Suppose that $\exp \left(K K_{0}\right)=p^{e}$. If $|K|=p^{l_{1}},|H|=3^{n}$ and $\left|K_{0}\right|=p^{l_{2}}$, where $l_{1}+l_{2}=l$, then

$$
3^{n} \mid s_{p^{e}}, s_{p^{e-1}}+s_{p^{e}}, \cdots, s_{p}+s_{p^{2}}+\cdots+s_{p^{e}}
$$

by Lemma 3, and hence $3^{n} \mid s_{p}$. While $s_{p}=2 \cdot 3^{k} \cdot c_{p}$ with c_{p} the number of cyclic subgroups of order p, and $s_{p} \mid 2 \cdot 3^{n} \cdot p^{l}$, we have $s_{p}=2 \cdot 3^{n}$ since $c_{p} \equiv 1(\bmod p)$. Since there exists just $(p-1) \cdot 3^{n}$ elements of order p in $H K_{0}, s_{p}>(p-1) \cdot 3^{n}$, a contradiction. Similarly, if $|K|=3^{n_{1}},|H|=p^{l}$ and $\left|K_{0}\right|=3^{n_{2}}$, where $n_{1}+n_{2}=n$, then $s_{3}=2 \cdot p^{l}$. But $H K_{0}$ has just $2 \cdot p^{l}$ elements of order 3 , so $s_{3}>2 \cdot p^{l}$, it is impossible.

Unfortunately, the item (d) above is not classified completely. By use of the GAP software [5], it seems that the kernel of F is cyclic. We have the following conjecture.

Conjecture 5. The kernel of F of the item (d) of above Theorem 4 is cyclic.

In Das's paper [1], he posed a conjecture (see 5.2). Using Theorem 4, we can give a positive answer directly as follows.

Corollary 6. If G is a POS-group and $|G|=42 \cdot m$ with $(42, m)=1$, then $|G|=42$.

References

[1] Ashish Kumar Das, On Finite Groups Having Perfect Order Subsets, International Journal of Algebra, Vol. 3, 2009, no. 13, 629-637.
[2] C. E. Finch and L. Jones, A curious connection between Fermat numbers and finite groups, Amer. Math. Monthly 109 (2002), 517-524.
[3] C.E. Finch and L. Jones, Nonabelian groups with perfect order subsets, JP J. Algebra Number Theory Appl. 3(1)(2003), 13-26.
[4] C.E. Finch and L. Jones, Corrigendum to: "Nonabelian groups with perfect order subsets", JP J.Algra Number Theory Appl. 4(2)(2004), 413-416.
[5] GAP software, http://www.gap-system.org/.
[6] G. Higman, Finite groups in which every element has prime power order, Journal of the London Mathematical Society 1957 s1-32(3): 335-342.
[7] J.S. Williams, Prime Graph Components of Finite Groups, J.Alg., 1981, 69: 487-513.
[8] L. Weisne, On the number of elements of a group, which have a power in a given conjugate set, Bull. Amer. Math. Soc. 31,(1925), 492-496.

Received: January, 2010

[^0]: ${ }^{1}$ Project supported by the foundation of Educational Department of Hubei Province in China (Grant No. Q20092905) and the doctoral foundation of Hubei University for Nationalities(No.MY2009B006).

