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Abstract

A group G is said to be a POS-group if for each x in G the cardinality
of the set {y ∈ G|o(y) = o(x)} is a divisor of the order of G. In this paper
we study the structure of POS-groups of order 2m with (2,m) = 1, and
confirm a conjecture of Das’s.
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Throughout this paper G denotes a finite group, o(x) the order of a group
element x, and |X | the cardinality of a set X. Denote by π(G) = {p|p is a prime
divisor of |G|}. As in [2], the order subset (or, order class) of G determined
by an element x ∈ G is defined to be the set OS(x) = {y ∈ G|o(y) = o(x)}.
Clearly, for every x ∈ G, OS(x) is a disjoint union of some of the conjugacy
classes in G. The group G is said to have perfect order subsets (in short, G is
called a POS-group) if |OS(x)| is a divisor of |G| for all x ∈ G. In the paper
[2], Finch and Jones first classified the Abelian POS-groups. Afterwards they
continued the study of nonabelian POS-groups (see [3],[4]). Recently, Das gave
some properties of POS-groups and listed some examples of nonablian POS-
groups in his paper [1]. In this note we study the structure of POS-groups of
order 2m with (2, m) = 1. Firstly we cite some lemmas.
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Lemma 1. (Theorem 1, [6]) If every order of element of finite group G is
a power of prime, then |π(G)| ≤ 3. Moreover, if G is solvable, then |π(G)| ≤ 2.

Recall that a 2-Frobenius group G is ABC, where A and AB are normal
subgroups of G, AB and BC are Frobenius group with kernel A, B and com-
plements B, C respectively. The following lemma is due to Gruenberg and
Kegel (see [7]).

Lemma 2. If π(G) = {p, q} with p, q both odd primes, and G has no
element of order pq, then G is a Frobenius group or 2-Frobenius.

Lemma 3. (Theorem 3, [8]) Let G be a finite group. Then the number
of elements whose orders are multiples of n is either zero, or a multiple of the
greatest divisor of |G| that is prims to n.

Now we give the main result of the structure of POS-groups of order 2m
with (2, m) = 1. The following integers n and l are positive.

Theorem 4. If G is a POS-group of order 2m with (2, m) = 1, then G is
one of the following groups:

(a) the cyclic group Z2 of order 2.

(b) dihedral groups D2·3n .

(c) Z2 × Z3n.

(d) POS-groups F : Z2, where F is a Frobenius group which kernel is a
p-group and complement a cyclic 3-group, and p = 2 · 3k + 1 a prime.

Proof. Since |G| = 2m with (2, m) = 1, there exists a normal subgroup
M of order m. Clearly, G is solvable. We can assume that M > 1. Let sm

be the number of elements of order m in G. Suppose that p, q ∈ π(M) and
p �= q. Then M has no element of order pq. In fact, otherwise (p − 1)(q −
1) = φ(pq) | spq | |G|, where φ is Euler totient function, we have 4 | |G|, a
contradiction. Thus every order of element of M is a power of prime. Then
we have |π(M)| ≤ 2 by Lemma 1. We divide into two cases:

Case 1. |π(M)| = 1. Suppose that π(G) = {2, p} and |G| = 2 · pn. Since
p−1 = φ(p) | |G| = 2 ·pn, we have p−1|2, and hence p = 3. So |G| = 2 ·3n. By
Proposition 2.8 of the article [1], the Sylow 3-subgroup M of G is cyclic. Since
M � G, every element u of order 2 of G is an automorphism of M , and thus u
maps the generated element c of M to c or c−1. So we have G is Z2 × Z3n or
dihedral groups D2·3n .

Case 2. |π(M)| = 2. Similarly, suppose that π(G) = {2, q, p} and |G| =
2 · qn · pl. Without loss of generalities, we assume that q < p. If q > 3, then
q − 1 | |G|, and thus q − 1 | 2, i.e., q = 3, a contradiction. Therefore, we have
q = 3. Similarly, since p − 1 | 2 · 3n, we have p = 2 · 3k + 1, where 1 ≤ k ≤ n.
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Since M has no element of order pq, M is a Frobenius group or 2-Frobenius
group by Lemma 2.

(I.) M is a Frobenius group. Let M = K : H , where K and H are
kernel and complement, respectively. If |K| = 3n and |H | = pl, then H is
cyclic and the intersection of every two subgroups of order pl is trivial. So
the number of cyclic subgroups of order pl in M is |M : NM(H)| = 3n. Since
(|M |, |G/M |) = 1, the number of ones in G is also 3n. Then the number of
elements of order pl of G is 2 · 3k · pl−1 · 3n, which is a divisor of |G| = 2 · 3n · pl.
So k = 0, which contradicts the fact that k ≥ 1. If |K| = pl and |H | = 3n,
obviously, H is cyclic. Suppose that Ω = {x ∈ G | o(x) = 2} and K acts on
the set Ω. Then |Ω| ≡ |CΩ(K)|(mod p). Now since s2 | 3npl = 3n(2 · 3k + 1)l,
we have |CΩ(K)| ≥ 1

(II.) M is a 2-Frobenius group. Let M = KHK0, where KH and HK0

are Frobenius group with kernel K, H and complements H , H0 respectively.
Suppose that exp(KK0) = pe. If |K| = pl1 , |H | = 3n and |K0| = pl2 , where
l1 + l2 = l, then

3n | spe, spe−1 + spe, · · · , sp + sp2 + · · · + spe

by Lemma 3, and hence 3n | sp. While sp = 2 · 3k · cp with cp the number
of cyclic subgroups of order p, and sp | 2 · 3n · pl, we have sp = 2 · 3n since
cp ≡ 1(mod p). Since there exists just (p − 1) · 3n elements of order p in
HK0, sp > (p − 1) · 3n, a contradiction. Similarly, if |K| = 3n1, |H | = pl and
|K0| = 3n2 , where n1+n2 = n, then s3 = 2·pl. But HK0 has just 2·pl elements
of order 3, so s3 > 2 · pl, it is impossible. �

Unfortunately, the item (d) above is not classified completely. By use of
the GAP software [5], it seems that the kernel of F is cyclic. We have the
following conjecture.

Conjecture 5. The kernel of F of the item (d) of above Theorem 4 is
cyclic.

In Das’s paper [1], he posed a conjecture (see 5.2). Using Theorem 4, we
can give a positive answer directly as follows.

Corollary 6. If G is a POS-group and |G| = 42 · m with (42, m) = 1,
then |G| = 42.
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