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Abstract. In this paper, we borrowed some ideas from general relativity and
find a Robinson-type identity for the overdetermined system of partial differ-
ential equations in the Fischer-Marsden conjecture. We proved that if there
is a nontrivial solution for such an overdetermined system on a 3-dimensional,
closed manifold with positive scalar curvature, then the manifold contains a
totally geodesic 2-sphere.

LetM denote the set of smooth Riemannian metrics on an n-dimensional closed
manifold M whose derivatives are L2-integrable. Then for any g ∈ M, its scalar
curvature Rg is an element in the space W of C∞ functions. From the formula for
Rg in local coordinates, we see that the scalar curvature map fromM toW defines
a quasi-linear differential operator of second order. The derivative R′g at g ∈ M is
given by

R′g(h) = −∆g(trgh) + δ∗gδg(h)− g(Ricg, h)(1)

where δ is the divergence operator on the symmetric p-tensor on M , Ricg is the
Ricci curvature tensor of g, ∆ is the Laplacian, and δ∗ is the formal adjoint of δ. In
the Riemannian case, if {ei}ni=1 is a local orthonormal basis of vector fields, then

(δα)(e1, · · ·, ep) = −
n∑
i=1

(Deiα)(ei, e1, · · ·, ep).

In particular, for any one-form α, we have

δ∗α =
1

2
Lα̂g(2)

where Lα̂ is the Lie derivative of the vector field α̂ and α̂ is the dual of α.
It is easy to compute that the L2-adjoint operator of R′g is

R
′ ∗
g (f) = −(∆f)g +Dgd(f)− fRicg.(3)

Since we can regard R′g as a linear map from the space of symmetric tensors to
the space of functions, so it is known that the following decompositions are true
[Be-Eb]:

(Im(R
′

g))
⊥ = ker(R

′ ∗
g )

or

W = Im(R′g)⊕ ker(R
′ ∗
g ).(4)

Received by the editors June 12, 1995.
1991 Mathematics Subject Classification. Primary 53C21, 53C42.

c©1997 American Mathematical Society

901

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



902 YING SHEN

Definition 1. We say that the metric g is singular if R′g is not a surjective map.

A natural question is: What can we say about the singular metric g on a closed
manifold M?

From the decomposition (4), we know that g being singular is the same as the
existence of a nontrivial solution to the following equation:

Dgd(v) = v Ricg + (∆v)g.(5)

Now we see that equation (5) is an overdetermined system, so the existence of a
nontrivial solution should provide us with some information on the geometry of the
underlying manifold M . Actually, Bourguignon [Bo] and Fischer-Marsden [F-M]
proved the following:

Lemma 1. Let (M, g) be a closed Riemannian manifold admitting a nontrivial

solution to equation (5). Then either (M, g) is Ricci-flat and Ker(R
′ ∗
g ) = W, or

Rg is a positive constant.

Based on this lemma, Fischer-Marsden made the following conjecture:

Conjecture 1. (M, g) must be an Einstein manifold if g is a singular metric.

We can easily rewrite (5) as:

Dgdv +
Rg

n(n− 1)
vg = vTg(6)

or

vij + v
Rg

n(n− 1)
gij = vTij(7)

where Tg and Tij are the traceless-Ricci tensors.
In order to prove the Conjecture, one only needs to show that (M, g) is Einstein

if Rg is a positive constant. Now if (M, g) is an Einstein manifold with positive
scalar curvature, then a theorem of Obata [Ob] tells us that (M, g) must be a round
sphere. So the Fischer-Marsden Conjecture can be rephrased as the following:

Conjecture 2. If g is a singular metric on a Riemannian manifold M such that
its scalar curvature is positive, then the existence of a nontrivial solution of the
overdetermined system (5) implies that (M, g) is a round sphere.

The counterexample of the Fischer-Marsden Conjecture was provided by
O. Kobayashi [Ko] and J. Lafontaine [Laf] independently. They proved that if
we assume further that (M, g) is conformally flat, then (M, g) must be isometric to
one of the following:

(a) Euclidean sphere Sn.
(b) Finite quotient of (S1, dt2)× (Sn−1, g0), g0 is the canonical metric.
(c) Finite quotient of a product torus (S1 × Sn−1, dt2 + h2(t)g0).
By looking at the examples listed above, one observes that (M, g) always contains

a totally geodesic (n− 1)-sphere if (M, g) is conformally flat. So it is interesting to
know whether this is a general phenomenon without assuming that (M, g) is confor-
mally flat. The present note gives a positive answer to the question if dimM = 3.

Theorem 1. If g is a singular metric on a 3-dimensional closed Riemannian man-
ifold M such that its scalar curvature Rg is positive, then (M , g) contains a totally
geodesic 2-sphere.
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The idea of the proof is borrowed from general relativity.

Recall that a geodesically complete spacetime (N,
4
g) is called static if and only

if there is an orientable, spacelike, 3-manifold (Σ, g) such that N is diffeomorphic
to Σ× R, and

4
g= −U2dt2 + g

where U is called the gravitational scalar potential of the static field.
The Einstein equations for a static perfect fluid with mass-energy density ρ and

pressure p can be decomposed into:

Ric(g)ij = U−1U;ij + 4π(ρ− p)gij ,(8)

∆U = 4πU(ρ+ 3p).(9)

Therefore, we know that our equation (5) is the equation for static perfect fluid.
There has been active research among relativists for the proof of the spherical
symmetries for steller models. We only provide the interested readers with a short
list of papers: [Rob], [B-Mas], [I], [K], [Mas], [Lind]. The essential step in proving
the spherical symmetry is to find some nice Robinson type identity that generally
has the form that “ divergence equals positive quantity”.

Proof of the Theorem. We are going to construct a Robinson type identity first and
then prove the theorem.

We may assume, without loss of generality, that Rg = n(n− 1). Hence equation
(6) becomes

Dgdv + vg = vTg(10)

and

∆v + nv = 0.(11)

It is easy to see that {x ∈ M |v(x) 6= 0} is dense in M (see [Bo] or [F-M]). Let
M0 be a connected component of {x ∈M |v(x) > 0} such that dv 6= 0 on Σ = ∂M0.

Define W = |∇v|2 and W0 = 1 − v2. Since the scalar curvature is constant on
∂M0, we can construct the Robinson type identity for the system (10):

∇a[v−1∇a(W −W0)] = 2v|T |2.(12)

Equation (12) can be easily verified by straightforward computation.
From equation (10), it is easy to check that

|W | = constant

on Σ. When restricted to Σ, we know that vij = 0. It is straightforward to check
that Σ is totally geodesic and − ∇v

W
1
2

is a unit outward normal vector field to Σ. We

let e1, e2, e3 be an orthonormal basis such that along Σ,

e3 =
∇v
W

1
2

.

We remark that although {e1, e2, e3} is a local frame, e3 is globally defined on
Σ due to the embeddedness of Σ. The Gauss equation tells us that

R1212 = K(13)

where Rijkl is the full curvature tensor of (M, g) and K is the Gaussian curvature
of Σ with the induced metric.
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Integrating equation (12) and using Stoke’s formula, we obtain∫
Σ

W−
1
2Rabv;av;b − 2W

1
2S0 = −

∫
M0

v|T |2(14)

where S0 is the area of Σ.
By using the facts

R11 = R1313 +K,(15)

R22 = R2323 +K,(16)

R33 = R1313 +R2323,(17)

R11 +R22 +R33 = 6,(18)

we know that ∫
Σ

W−
1
2Rabv;av;b = 3W

1
2S0 −W

1
2

∫
Σ

K.(19)

Therefore we get ∫
Σ

K ≥ S0 > 0,(20)

and the Gauss-Bonnet theorem immediately implies that Σ is a 2-sphere.

Remark. The area of the sphere Σ, S0, is in general less than or equal to 4π. In case
S0 = 4π, then it is easy to see that (M0, g) is isometric to the canonical 3-sphere
since the manifold is Einstein.
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