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TECHNICAL NOTE

A NOTE ON FITTING HERRNSTEIN'S EQUATION

Herrnstein (1970, 1974) has described an equation that
relates response strength to reinforcement rate. The
equation contains two free parameters, and Cohen
(1973) has described a simple method for estimating
the value of these parameters. Using Cohen's method
we have obtained some parameter values that are far
from the best fit of Herrnstein's equation to the data.
This note examines some problems surrounding the use
of Cohen's method and describes two alternative meth-
ods.

Herrnstein's equation is a hyperbolic function of the
form

R +r (1)
where R denotes the measure of response strength, r
denotes the rate of reinforcement of the measured re-
sponse, r, denotes all sources of reinforcement other
than r, and k denotes the maximal value of R when
r, approaches zero with r greater than zero.

Cohen's Double-Reciprocal Method
Cohen's method for determining the value of the

parameters k and r, involves taking the reciprocal of
b)oth sides of Equation 1, thereby reducing the problem
to a linear least-squares fit in I/R and l/r:

11I+ r, (l\ (2)
R k+k(r) 2

Once 1/k and r./k are known, it is a simple matter
to find values for k and r*.
We have applied Cohen's double-reciprocal method

to numerous sets of data obtained from measuring
schledule-induced drinking as a function of the rate of
food delivery (see Wetherington, 1979). Despite the fact
that the obtained data points yielded negatively ac-
celerated fuinctions, many of the functions produced by
the double-reciprocal method were actually positively
accelerated. In general, the fits yielded very high
parameter estimates and accounted for very little of
the data variance. Panel A in Figure 1 illustrates three
representative instances in which Cohen's method
failed to produce satisfactory fits to the data. All data
points were obtained from a single rat engaging in
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schedule-induced drinking (Rat J-7, Wetherington,
1979). The three graphs, respectively, show ingestion
rate (R), lick rate (R), and relative time spent drinking
(R) as functions of rate of food presentation (r). The
smooth curves were obtained from Equation 1 by
deriving the values of k and r, from the linear least-
squares solution of Equation 2. The three numbers near
each curve represent the values of k, r,, and the per-
centage of the variance (v) accounted for by Equation
1. For each data set the first four points fall on or
near the curve. However, note the poorness of the fit
for the last data point. This aberrant point contributes
heavily to the failure of the functions to account for a
significant portion of the data variance.
The parameter estimates for the hyperbolic fits are

also unacceptable for theoretical reasons. First, the
k value for relative time is 4.8 whereas theoretically
this value should not exceed 1.0. Second, for ingestion
rate and lick rate, the values of k and r, are negative
which makes them difficult to interpret theoretically.
Moreover, these negative values result in a positively
accelerated hyperbolic function though visual inspec-
tion of the data points clearly suggests a negatively
accelerated function.

Panel B shows the data from Panel A replotted in
the reciprocals of R and r. Here, the straight line is
indeed the optimum least-squares fit to the reciprocal
data. For all three measures the double-reciprocal
function provides a reasonably good fit to the data,
accounting for 99.3%, 96.8%, and 95.7%, respectively,
of the data variance. Thus, a good fit of Equation 2
can yield an extremely poor fit of Equation 1.
As noted both by Dowd and Riggs (1965) and Cohen

(1973), the direct use of Equation 2 tends to assign an
inordinately important role to the low rates of response
and/or reinforcement in determining the values of
k and r,. This phenomenon can be explained in the
following manner. In the straight line fit of Equation
2, the values of the reciprocals of R and r are highly
correlated (ideally, they are on a straight line with
positive slope) so that the data poinits corresponding to
large R are clustered near the origin whereas the data
poinits for small R are spread out (see Panel B). As-
suming that all values of R contain at least some
minimal measurement error, then clearly measurement
errors for small numbers have relatively larger effects
on their reciprocals than measurement error for large
numbers. Stated differently, perturbations in low
values of R produce much greater effects on I/R than
do perturbations in high values of R. Thus, the spread
out values of 1 /R contain more measurement error
than the clustered values of 1/R, thereby serving to

199

1980, 34, 199-206 NUMBER 2 (sEprEmBER)



200

A. DOUBLE-RECIPROCAL METHOD

TECHNICAL NOTE

k =-8.9
r.= -792.9
v= 71.7 0

0

30 60 90

z
2 200
*,)
IC)
:5100

120

I k = -30.1
r.= -1248.3
v = 15.4

0

0

30 60 90 120
FOOD PELLETS PER HOUR

1.0

I" .8

u .6

!s .4

.2

k = 4.8
*r.= 42.6
v = 50.5

0

0

30 9

30 60 90 120

B. LEAST-SQUARES DOUBLE-RECIPROCAL METHOD

v = 99.3

50 100 150

- 80
x

- 60

(A)2d40

_. 20

v = 96.8

C. DOUBLE-RECIPROCAL METHOD WITH WEIGHTING

I. k = 2.3
r.= 121.6
v = 98.5

30 s0 90 120

z
200

cnCle
C.)

-100 1.

k = 279.0
r.= 52.5
v = 96.5

30 60 90 120
FOOD PELLETS PER HOUR

1.0

I--

.6

.4

.2

k = .89
r. = 47.4
v = 97.5

30 60 90 120

D. NONLINEAR LEAST-SQUARES METHOD

300

z
5 200
Cl)

IC.
lJi iwO

k = 312.1
r.= 70.0
v = 97.3

p -~~~~00

30 60 90 120
FOOD PELLETS PER HOUR

I
1.0

.8

.6

.4

.2

k a .98
n67.7

V = 90.9

30' 60 60 13

Fig. 1. Panel A: Ingestion rate (first column), lick rate (second column), and relative time spent drinking
(third column) as functions of the rate of food delivery for Rat J-7 from Wetherington (1979). The smooth curves
indicate the hyperbolic fit to the data provided by the double-reciprocal method. Panel B: The data from Panel A
are plotted as reciprocals. The straight lines indicate the least-squares fit to the data. Panel C: Data points are
the same as in Panel A. The smooth curves indicate the hyperbolic fit to the data provided by the double-recip-
rocal method with weighting. Panel D: Data points are the same as in Panel A. The smooth curves indicate the
hyperbolic fit to the data provided by the nonlinear least-squares method.

1.5

1.01z

.5

141

0

x

-i

10

6

2

>
u

I-

,
50 100 150

1/(FOOD PELLETS PER HOUR) x 10-'

1.5

1.0zI

i1
.5

z

-5

- k = 2.6
r. = 151.8
v = 98.7

-

-

30 60 90 120

.8

1.5

1.0

.5



TECHNICAL NOTE

make the estimates of k and r, overly dependent on
low rates of response. For example, if the lowest values
of R are badly underestimated, their reciprocals will
be highly overestimated which effectively rotates the
least-squares line counter clockwise, possibly leading
to physically meaningless negative values of k and r.
as seen in Panel A. Likewise, if the lowest value of R
is badly overestimated, its reciprocal will be highly
underestimated which effectively rotates the least-
squares line clockwise, generating parameter estimates
which produce a hyperbolic curve that underestimates
the high values of R.
Cohen (1973) pointed out that in enzyme reaction

research a hyperbolic function has been used to relate
the initial velocity of an enzyme reaction to the con-
centration of the substrate (Dowd & Riggs, 1965). Dowd
and Riggs reported that the standard procedure for
estimating the value of the two free parameters had
been to use any of three linear transformations of the
hyperbolic function, the most popular being the
double-reciprocal transformation. They compared the
parameter estimates provided by the three linear
transformation methods and found that the double-
reciprocal method provided parameter estimates which
were "excessively large, or even negative" (p. 865) and
were the least reliable. Dowd and Riggs concluded that
the double-reciprocal method had received "undeserved
popularity" and "should be abandoned" (p. 869).

The Double-Reciprocal Method with Weighting
Dowd and Riggs (1965) pointed out that proper

weighting of the data points could partially correct
for the effects of the double-reciprocal transformation
on measurement errors. They suggested weighting each
data point by the measured value of the dependent
variable raised to the second power if the measurement
error is a proportionate one and raising it to the
fourth power if the measurement error is a constant
one. In practice, of course, one often does not know
the nature of the measurement errors. Using the three
data sets in Panel A, we have applied the double-
reciprocal method using various integer powers and
found the fourth power to yield the best fit to Equation
1. The resulting curves are shown in Panel C. In all
cases the curves are negatively accelerated, provide
excellent fits to the data, and yield theoretically ac-
ceptable parameter estimates. These outcomes stand in
marked contrast to those produced by the double-
reciprocal method without weighting (Panel A). It is
worthwhile noting that for other rats from the same
experiment other powers yielded the best fit. We now
describe an exact approach which removes all of the
difficulties of the above approximate methods.

The Notnlinear Least-Squares Method
as Applied to Herrnstein's Equation

Since any method that transforms Equation 1 will
give free parameter estimates for the transformed
equation instead of Equation 1, a method that fits
Equation 1 directly is desirable. The great advantage
of a linear transformation method, with or without
weights, is that it results in a linear least-squares
problem which simply leads to solving two linear al-
gebraic equations. Equation 1 leads to a nonlinear
least-squares problem: find k and r, so as to minimize
the expression

1 R(- k,

+ Te
i= 1

(3)

This expression leads (by computing partial derivatives
with respect to k and r,) to a system of two nonlinear
equations in k and r,:

2
R4r4 r___

E.r, + r, -k (r4 + r,.)2
and

R4r4 2___=__

E(r4+ r,)2 (r + r)=
which may be written as

R4r4 k rg2

R4r4 r42
R k(ri + r.)'

(4)

(5)

(6)

Thus, cancelling the k's and cross-multiplying gives
a single nonlinear equation in the remaining param-
eter r,:

R,r, r,2 R+sr2
v

R4r4 v r,_ =_--___,_____ _ r,__Ir4 + r, Xf (r, + r,) 2. (r, + r.) X (r4 + r,)
(7)

Now an exact fit of Equaion 1 can be found by solving
Equation 7 for r. and then solving for k by using

k= I r+r..
Rr,

(r, + r.)i
(8)

derived from Equation 4.
We have used an effective variant of the Newton-

Ralphson method known as the secant method (Conte
& deBoor, 1972, p. 59) in our FORTRAN code for
solving the nonlinear Equation 7 to near machine ac-
curacy (see Appendix). For starting values for r. we
use zero and the negative of the minimum of r, divided
by two. If the iterative procedure fails to converge, we
restart with values of r. slightly less than the negative
of the maximum of r,. This procedure includes the case
of a positively accelerated curve, although this is not
anticipated.
The resulting hyperbolic functions fitted to the data

sets in Panel A are shown in Panel D. A comparison
of these data with those in Panel C reveals that in all
cases slightly more of the data variance is accounted
for by this method. It should be stressed that this
approach gives the exact fit of Equation 1 in the
least-squares sense, whereas all other methods, includ-
ing the weighted double-reciprocal transformation,
merely estimate the optimum parameter values by
fitting exactly a different equation.

Figure 2 further illustrates comparison of the double-
reciprocal methods and the nonlinear method by show-
ing rate of keypecking by pigeons exposed to variable-
interval (VI) schedules of food reinforcement. Data in
the first column were obtained from Bird 117 in an
experiment by Catania (1963) in which reinforcement
rate on two concurrent VI schedules was varied from
0 to 40 reinforcements per hour while holding the over-
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Fig. 2. Panel A: Key pecking rate as a function of reinforcement rate for Bird 117 from Catania (1963), first
column; Bird 5 from Findley (1958), second column; Bird 121 from Catania and Reynolds (1968), third column.
The smooth curves indicate the hyperbolic fit to the data provided by the double-reciprocal method. Panel B:
The data from Panel A are plotted as reciprocals. The straight lines indicate the least-squares fit to the data.
Panel C: Data points are the same as in Panel A. The smooth curves indicate the hyperbolic fit to the data pro-
vided by the double-reciprocal method with weighting. Panel D: Data points are the same as in Panel A. The
smooth curves indicate the hyperbolic fit to the data provided by the nonlinear least-squares method.

all rate constant at 40 reinforcements per hour. Data
points are from both schedules. The second column
shows data for Bird 5 from an experiment by Findley
(1958) in which reinforcement rate on one of two con-

current VI schedules was varied from 3 to 30 rein-
forcements per hour while the reinforcement rate pro-
vided by the other schedule remained at 6 reinforce-
nients per hour. Data points are from the variable
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schedule. The third column shows data for Bird 121
from an experiment by Catania and Reynolds (1968)
in which VI schedules provided reinforcement rates
ranging from 33.3 to 300 per hour. As in Figure 1,
Panel A of Figure 2 shows the hyperbolic curve gen-
erated via the double-reciprocal method, Panel B
shows the double-reciprocal plot of the data points,
Panel C shows the hyperbolic curve generated via the
double-reciprocal method with weighting, and Panel
D shows the hyperbolic curve generated via the non-
linear least-squares method.

In all three cases the curves produced via the double-
reciprocal mnethod (Panel A) underestimated the highest
data point. In fact, in 15 of 18 data sets in the 3
studies, the double-reciprocal parameter estimates
were less than the nonlinear least-squares estimates.
The data sets in Figure 2 represent the case from each
study in which the discrepancy was the greatest. The
underestimates provided by the double-reciprocal plots
indicate the existence of measurement errors which in-
flate lower values of R thus leading to values of IIR
that are too small. This is clearly indicated in both
Panel A where the R values at the lowest reinforce-
inent rate appear high relative to other values and in
Panel B where the corresponding I/R values at the
highest l/r value appear accordingly low. These 1/R
values have the effect of reducing the slope of the
regression line thereby reducing the parameter esti-
mates and producing a curve that is lower than the
highest R value. Note that in Panel C, the use of the
double-reciprocal method with weighting produces
curves quite similar to those produced by the non-
linear least-squares method (Panel D). The powers
used in the double-reciprocal method with weighting
were five, six, and nine, for the three birds, respectively.
While we are illustrating the procedure of systemati-
cally determining the power of the weighting function,
this is not an approach we advocate, as it has no theo-
retical basis and is not so satisfactory as the nonlinear
least-squares approach.

In summary, we have examined three methods for
estimating the free parameters of Herrnstein's equation.
One of these methods, the popular double-reciprocal
method, although recommended by Cohen (1973), has
been previously evaluated by Dowd and Riggs (1965)
and found to be inadequate. Our findings are in agree-
ment with theirs. We found that a weighting provided
a better fit to the data as was also reported by Dowd

and Riggs. We now have described a third method, the
nonlinear least-squares method, and have developed
a simple method of implementing it. When used with
a computer, it can provide the best fit of Herrnstein's
equation to almost machine accuracy. If one wishes to
find the best fit of Ilerrnstein's equation to a data set
and has access to a computer, the nonlinear least-squares
method is clearly the preferred method.

CORA LEE WETHERINGTON
THOMAS R. LucAs
University of North Carolina
at Charlotte
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APPENDIX

A FORTRAN CODE FOR THE NONLINEAR
LEAST-SQUARES METHOD

Below is a 140 statement FORTRAN program im-
plementing the nonlinear least squares method de-
scribed above. The code is designed for conversational
use over a terminal, in which data may be entered,
corrected, and analysed, after which data pairs may be
added or deleted and then reanalysed. The program
may also be used in batch mode. The program includes
a feature where it determines a convergence criterion
appropriate to the particular computer on which the

code is being used. It is required that all data pairs
be positive numbers. The program gives instructions
for entering data as it is used. It is recommended that
all read statements be modified to the local version of
free format. For checkout purposes the data (7.5,15.42),
(15.,43.13),(30.,106.10),(60.,150.31) and (120.,192.29) gives
RE=69.9713971, K=312.0993807, and 97.30% of the
variance is explained. Total run time was .6 seconds on
a Burroughs 6700.
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C- DRIVER FOR THE NONLINEAR LEAS.T-SQUARES METHOD
COMMON N,R(100),R1(100),XK
DIMENSION RlR(100) ,RR(100) ,W(100 )

500 FORMAT(I2)
510 FORMAT(2F10.0)
520 FORMAT(I1)
530 FORMAT(Al,Tl,2F10.0)
600 FORMAT (" OPTION LIST:'"//" 1 RECALL OPTION LIST"/

* 2 ENTFR OR ADD DATA PAIRS"/" 3 CORRECT DATA PAIRS"/
*U 4 DELETE DATA PAIRS"/" 5 LIST DATA PAIRS"/
*N 6 STOP"!" 7 SOLVE FOR RE AND K"/)

610 FORMAT' (, ENTER DESIRED OPTION IN COL 1"/)
620 FORMAT(" GIVE DATA POINTS X AND Y IN PAIRS. (COL 1-10-,11-20) "/

*i" ENTER + IN COL 1 WHEN FINISHED."/)
630 FORMAT(2G20.10/)
640 FORMAT( 'DO YOU WANT TO CORRECT ANY DATA PAIRS? ENTER 0 FOR NO, "

* /" OR DATA PAIR NUMBER IN COL 1-2 FOR A CORRECTION."!)
650 FORMAT( " ENTER NEW VALUES FOR ",12,"TH DATA PAIR."/)
660 FORKAT(l5,2G15.5)
680 FORMAT(/" RESULTS BY THE NONLINEAR LEAST SQUARES METHOD (PASS$"

* ,I2, "):."/" RE . H",G20.10,`" K n,G20.10)
690 FORMAT(" ANALYSIS OF RESULTS:" //.4X,

"*"UNEXPLAINED VARIANCE a ",G20.10/" TOTAL VARIANCE ",G20.10/
* "1 VARIiNCE EXPLAINED BY HERRNSTEIN'S EQUATION a a ,F6.2"%- )

700 FORMAT(" SUSPICIOUS VALUES: RESTART ACTIVATED"//)
740 FORMAT(" METHOD EITHER FAILED TO CONVERGE, OR FIT REMOVES"/

* " LESS ThEN 10% OF THE VARIANCE. RUN TERMIKATED.")
750 FORMAT(4X,"#" ,9X,"Rl1",14X,'"R")
760 FORMAT(".ENTER NUMBER OF DATA PAIR TO BE DELETED IN COL 1-2.8"!)
770 FORMAT(` DATA POINTS "I3" DELETED."I4" DATA POINTS REMAINING.")
780 FORMAT(" INDEX - "I3" IS OUT OF RANGE: REENTERI" )

C- DATA INPUT SECTION. ALL READS MAY BE CHANGED TO FREE FORMAT.
N - 0

110 WRITE(6,600)
50 WRITE(6,610)

READ(5,520) IOP
GO TO (110,120,130-,140,-150,160,170O),IOP

120 WRITE(6,620)
122 NPI - N + I

READ(5,530) AA,R1(NP1),R(NP1)
IF (AA .EQ. "+"-)' GO TO 50

125- N - NP1
WR`ITE(-6#630)--R(N) ,R(N)
GO TO 122

130 WRITE(6,640)
READ (5,500) NCORR
IF (NCORR) 50,50,135

135 WRITE (6,650) NCORR
READ (5,510) R1(NCORR),R(NCORR)
WRITE (6,630) R1(NCORR),R(NCORR)
GO TO 130

140 WRITE (6,760)-
READ(5,500) NDEL
IF (-NDEL .LE. N) GO TO 145
WRITE (6,780) NDEL
GO TO 140

145 R1(NDEL) - R1(N)
R(NDEL) - R(N)
N N -1
WRITE (.6,770) NDEL,N
GO TO 50

150 WRITE (6,750)
DO 155 I - 1,N
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155 WRITE (6,660) I,R1(I),R(I)
GO TO 50

157 WRITE (6,740)
160 STOP
170 XMIN - 1.E20

DO 180 I - 1,N.
180 XMIN - AMINl(XMIN,Rl(I))

XR - 0.
XL - -XMIN/2.
IGO -, 1
CALL SECANT(tXL ,XR,RE, IFLAG)
IF (IFLAG .EQ. 0) GO TO 800

350 XMAX - 0.
DO 360 I - 1,N

360 XMAX - AMAX1(XMAX,Rl(I))
XR -XMAX s. 01
XL XR - .01
IGO - 2
CALL SECANT (XL,XR,RE,IFLAG)
IF (IFLAG .NE. 0) GO TO 157

800 WRITE (6,680) IGO,RE,XK
SUM - 0.
DQ 810 I m 1,N

810 SUM = SUM +(R(I)-XK*Rl(I)/(R]AI)+RE))**2
SY 0.
SY2 - 0.
DO 820 I = 1,N

SY - SY + R(I)
820 SY2 - SY2 + R(I)*R(I)

VAR SY2-SY*SY/FLOAT(N))
ETA2 - (VAR-SUM)/VAR
ETAPER - ETA2 * 100.
WRITE (6,690) SUM,VAR,ETAPER
IF (XMMI .LT. -RE .AND..--RE .LT. XMAX) GO TO 830
IF (ETA2 ..GE. .1) GO_!TO 50

830 WRITE (6,700)
GO TO (350,157) IGO
END
SUBROUTINE SECANT(XL,XR,X, IFLAG)
IFLAG - 0

C- COMPUTE A MACHINE DEPENDENT STOPPING TOLERANCE, EPSILON.
EPS - 1.

10 EPS - EPS/2.
IF (1.+EPS .NE. 1.) GO TO 10
EPS - EPS*100.
FL F(XL)
FR n F(XR)
DO 20.I - 1,60

IF (I .EQ. 30 .AND. ABS(XR-XL) .GT. 100.) GO TO 30
X - XL - FL * (XR-XL)/(FR-FL)
FR - FL
FL - F(X)
IF(ABS(X-XL) .LE. EPS * (1.+ABS(X)) .AND. ABS(FL).LE. .5)RETURN
XR - XL

20 XL - X
30 IFLAGt a -1

RETURN
END
FUNCTION F(RE)
COMMON N,R(100),R1(-100),XK
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DOUBLE PRECISION S1,S2,S3,S4,SUM,T1,T2
S10 .
S2-0.
S3=0.
S4=0.
DO 100 I1,N

SUM - DBLE(R1(I)) + DBLE(RE;
Ti = DBLE(R(I) ) * DBLE(R1(I)) / SUM
TZ - DBLE(Rl(I))**2 / SUM**2
Si - $1 + Ti
S2 - S2 + T2 / SUM
S3 - S3 + T2

100 S4 - S4 + T/ SUM
F - S4 - SI * S2 / S3
XK a Si / S3
RETURN
END


