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(Communicated by Xiao-Jun YANG)

Abstract. This paper deals with the asymptotic analysis of a queueing sys-

tem model consisting of two orbits, ct servers, t ≥ 0, abandoned and feedback
customers. Two independent Poisson streams of customers arrive to the sys-

tem, an arriving one of type i, i = 1, 2 is handled by an available server, if

there is any; otherwise, he waits in an infinite buffer queue. A waiting cus-
tomer of type i who did not get connected to a server will lose his patience and

abandon after an exponentially distributed amount of time, the abandoned one

may leave the system (loss customer) or move to the orbit depending of its
type, from which he makes a new attempts to reach the primary queue, this

latter may lose his patience and leave the system definitively (from the orbit)

after an exponentially distributed amount of time. When a customer finishes
his conversation with a server, he may comeback to the system for another

service.

1. Introduction

During the past few decades, there has been increasing interest in studying re-
trial queueing systems because they are widely used in performance analysis of
many practical systems, retrial queues have been investigated extensively because
of their applications in telephone switching systems, telecommunication networks
and computer systems for competing to gain service from a central processing unit
and so on. Moreover, retrial queues are also used as mathematical models for sev-
eral computer systems: packet switching networks, shared bus local area networks
operating under the carrier-sense multiple access protocol and collision avoidance
star local area networks, etc. Retrial queueing systems are characterized by the
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feature that a blocked customer (a customer who finds the server unavailable) may
leave the service area temporarily and join a retrial group in order to retry his
request after some random time. For excellent bibliography on retrial queues, the
readers are referred to [15, 19, 16, 12, 29, 42, 8] and references therein.

Behavioral psychology concerning the use of service offered by mobile cellular
networks includes repeated attempts and abandonments. Both phenomena reflect
the impatience of subscribers when all channels are occupied. Following the arrival
of a call, if all the available channels are occupied, a call is not be admitted into
a network. Later, a subscriber initiates a repeated attempt for the admission of a
call. An abandonment happens when a subscriber’s call becomes rejected and the
subscriber gets impatient and gives up after a certain time without getting service.

In feedback queueing model, if the service of the job is unsuccessful, it may try
again and again until a successful service is completed. Takacs [40] was the first to
study feedback queueing model. Studies on queue length, the total sojourn time
and the waiting time for an M/G/1 queue with Bernoulli feedback were provided by
Vanden Berg and Boxma [41]. Choudhury and Paul [9] derived the queue size distri-
bution at random epoch and at a service completion epoch for M/G/1 queue with
two phases of heterogeneous services and Bernoulli feedback system, Krishna Ku-
mar et al.[25] considered a generalized M/G/1 feedback queue in which customers
are either ”positive” or ”negative”. In [17] Fayolle treated a simple telephone ex-
change with delayed feedback, Choi [8] considered an M/M/c retrial queues with
geometric loss and feedback when c = 1, 2.

A queueing system with two orbits and two exogenous streams of different type
serves as a model for two competing job streams in a carrier sensing multiple access
system, where the jobs, after a failed attempt to network access, wait in an orbit
queue [34, 39]. An example of carrier sensing multiple access system is a local
area computer network with bus architecture. The two types of customers can be
interpreted as customers with different priority requirements.

A two-class retrial system with a single- server, no waiting room, batch arrivals
and classical retrial scheme was introduced and analyzed in [26]. Then, in [14]
author extended the analysis of the model in [26] to the multi-class setting with
arbitrary number of classes. In [20] author has established equivalence between
the multi-class batch arrival retrial queues with classical retrial policy and branch-
ing processes with immigration. In [33] a non-preemptive priority mechanism was
added to the model of [14, 26]. In [28] authors have considered a multi-class retrial
system where retrial classes are associated with different phases of service. Retrial
queueing model MMAP/M2/1 with two orbits was studied in [5], authors consid-
ered a retrial single-server queueing model with two types of customers. In case of
the server occupancy at the arrival epoch, the customer moves to the orbit depend-
ing on the type of the customer, one orbit is infinite while the second one is a finite.
Joint distribution of the number of customers in the orbits and some performance
measures are computed. In [7] authors considered two retrial queueing system with
balking and feedback, the joint generating function of the number of busy server
and the queue length was found by solving Kummer differential equation, and by
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the method of series solution.

Call centers have become the central focus of many companies, as these cen-
ters stay in direct contact with the form’s customers and form an integral part of
their customer relationship management. So, at the present time, call centers are
becoming an important means of communication with the customer. Therefore,
the response-time performance of call centers is essential for the customer satis-
faction. For call center managers, making the right staffing decisions is essential
to the costs and the performances of call centers. Various models have been de-
veloped in order to decide on the right number of agents, see [18, 21], and the
references therein. Thus, considering customer retrial behaviors in call centers is
quite significant [18, 2, 38, 11] and reference therein.

Fluid models for call centers have been extensively studied, for instance see
[43, 32]. In [31] the fluid and the diffusion approximation for time varying multi-
server queue with abandonment and retrials as studied, it was shown that the fluid
and the diffusion approximation can both be obtained by solving sets of non-linear
differential equations. In [30] more general theoretical results for the fluid and
diffusion approximation for Markovian service networks was given. In [1] authors
extended the model by allowing customer balking behavior. Fluid models have also
been applied in delay announcement of customers in call centers [22, 23].
And recently, in [10] authors study call centers with one redial and one orbit, using
fluid limit they calculate the expected total arrival rate, which is then given as
an input to the Erlang A model for the purpose of calculating service levels and
abandonment rates. The performance of such a procedure is validated in the case
of single intervals as well as multiple intervals with changing parameters.

In the present paper, an analysis of Mt/Mt/ct retrial queueing model with aban-
donment and feedback; a system with two orbits and two exogenous streams of
different types is carried out.

The layout of the paper is given as follows. After the introduction, in section
2, we describe the mathematical model in more details and give the notations,
assumptions and some results that will be used and useful throughput this paper.
In section 3, our main result is given; an asymptotic analysis of the considered
model is presented.

2. The mathematical model

Consider retrial queueing network with time dependent parameters, state de-
pendent routing, abandonment and feedback (figure 1). The Mt/Mt/ct queue has
a (time in homogeneous) Poisson arrival process with rate λit , a service rate (per
server) with mean 1

µit
, i = 1, 2 and ct servers, for all t > 0.

Two independent Poisson streams of customers flow into c servers. An arriving
customer of type i, i = 1, 2 is handled by an available server in FIFO manner, if
there is any; otherwise, he waits in an infinite buffer queue. The customers are
handled in the order of arrival. A waiting customer of type i who did not get
connected to a server will lose his patience and abandon after an exponentially
distributed amount of time at rate δit , the abandoned one may leave the entire
network (loss customer) with probability φt or move into one of the orbits with
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Figure 1. A retrial queueing model with two orbits, abandonment
and feedback.

probability 1 − φt, from which he makes a new attempts to reach the primary
queue at rate αit . Each customer waiting in the retrial pool may leave his patience
and thus abandon the whole system at rate θit if at some moment he beholds
that the queue length i is greater than kit with 0 < kit < Q1(t), so after an
exponentially distributed amount of time he have to decide either he still waiting
for a new attempts or give up. An abandoning customer leave the system from the
orbit with some probability ρit . When a customer finishes his conversation with a
server or if the service of the job is unsuccessful, the customer may comeback to the
system to the retrial pools depending on its type for another service or try again
and again for a successful service at rate ωit . Let’s note that all the arrival and
service processes are constructed from mutually independent Poisson processes.

After the description of the considered model let us introduce some notations
and results helpful in our study.

Let {Πi(·)}i∈I a sequence of mutually independent, standard (rate 1) Poisson
processes, indexed by a set I which is at most countably infinite; a separable Banach
space V, with norm | · |; a sequence of jump vectors {vi ∈ V|i ∈ I} with

(2.1)
∑
i∈I

vi <∞

a random initial state vector Q(0) in V that is assumed to be independent of
the sequence of Poisson processes {Π(·)}i∈I ; and a collection of real-valued, non-
negative Lipschitz rate functions on V,

(2.2) {νt(·, i)|t ≥ 0, i ∈ I},
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that together satisfy

(2.3) ‖νt(·, i)‖ ≤ ξtϑ(i),

with ξt, a locally integrable function, and {ϑ(i)|i ∈ I}, a sequence of real numbers;
with ‖ · ‖ a Lipschitz norm for real-valued functions on V. In all what follows the
number of elements in I is finite, V = RN , 1 ≤ N < ∞ and | · | the standard
Euclidean norm on RN .

Let the Markovian service network {Q(t)|t ≥ 0}, be the V-valued stochastic
process whose sample paths are uniquely determined by Q(0) and the functional
equations

Q(t) = Q(0) +
∑
i∈I

Πi

(∫ t

0

νs(Q(s), i)ds

)
vi, for all t ≥ 0.

Let {Qη|η > 0} be the rescaled procees such that

(2.4) Qη(t) = Qη(0) +
∑
i∈I

Πi

(
η

∫ t

0

νs

(
Qη(s)

η
, i

)
ds

)
vi,

The asymptotic analysis described above was carried out in [27] for the special case
of rate functions having no explicit time dependence and state dependence that is
continuously differentiable. The analysis was extend to the following general class
of processes [30].

(2.5) Qη(t) = Qη(0) +
∑
i∈I

Πi

(∫ t

0

νηs

(
Qη(s)

η
, i

)
ds

)
vi,

with

(2.6) ‖νηt (·, i)‖ ≤ ηξtϑ(i).

In this extension, we permit the following hypotheses:

(H1) The rate functions νηt (·, i) are functions of time as well as state.

(H2) The rate functions, indexed by the parameter η, are such that for each
i ∈ I, νηt (·, i) has the following asymptotic expansion as η →∞;

(2.7) νηt (·, i) = ην
(0)
t (·, i) +

√
ην

(1)
t (·, i) + 0(

√
η).

(H3) The rate functions, as a function of the state space V, have a more general
type of differentiability that include functions on the real line that are everywhere
left and right differentiable.

These conditions allow to apply the limit theorems to a wider class of Markov
processes that arise in the study of queueing networks with large numbers of servers.
Now, let’s introduce the first result where the sample path representation (2.5) of
{Qη|η > 0} is strongly presented;

Theorem 2.1. [30] Assume that (2.1) and (2.6) hold. Moreover, assume that

(2.8) lim
n→∞

∑
i∈I

(∫ t

0

∥∥∥∥νηt (·, i)
η

− ν(0)t (·, i)
∥∥∥∥) ds = 0,
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for all t ≥ 0. If {Qη(0)|η > 0} is any family of random initial state vectors in V,
then

(2.9)
Qη(0)

η
= Q(0)(0), a.s implies

Qη(t)

η
= Q(0)(t) a.s

where the convergence is uniform on compact sets in t, and Q(0) is the unique
deterministic process {Q(0)(t)|t ≥ 0} that solves the integral equation

(2.10) Q(0)(t) = Q(0)(0) +

∫ t

0

ν(0)s (Q(0)(s))ds, t ≥ 0.

Here ν
(0)
t , given by

(2.11) ν
(0)
t (x) =

∑
i∈I

ν
(0)
t (x, i)vi, x ∈ V,

is a Lipschitz mapping of V into itself and its Lipschitz norm ‖ν(0)t ‖, is a locally
integrable function of t.
We call Q(0) the fluid approximation associated with the family {Qη(t)|t ≥ 0}. It
gives rise to first-order macroscopic fluid approximations of the form

(2.12) Qη(t, ω) = ηQ(0)(t) + o(η) a.s., t ≥ 0.

We can now state the functional central limit theorem

Theorem 2.2. [30] Assume that (2.1) and (2.6) hold. Moreover, assume that

(2.13)
∑
i∈I

limη→∞

∫ t

0

∥∥∥∥√η(νηt (·, i)
η

− ν(0)t (·, i)
)∥∥∥∥ ds <∞,

and

(2.14) lim
η→∞

∑
i∈I

∫ t

0

∥∥∥∥√η(νηt (·, i)
η

− ν(0)t (·, i)
)
− ν(1)t (·, i)

∥∥∥∥ ds = 0.

It follows that ν
(0)
t , given by (2.11), and ν

(1)
t , given by

(2.15) ν
(1)
t (x) =

∑
i∈I

ν
(1)
t (x, i)vi, x ∈ V,

are both Lipschitz mappings of V into itself, and their Lipschitz norms are locally
integrable functions of t.

Moreover, if we assume that ν
(0)
t (·) has a scalable Lipschitz derivative ∧ν(0)t (Q(0)(t); ·)

and we have a family of random initial state vectors {Qη(0)|η > 0} in V, then for
all random vectors Q(0)(0) and Q(1)(0) in V, it follows that

(2.16) lim
η→∞

√
η

(
Qη(0)

η
−Q(0)(0)

)
=d Q(1)(0),

implies

(2.17) lim
η→∞

√
η

(
Qη(t)

η
−Q(0)(t)

)
=d Q(1)(t),

the convergence being weak-convergence in DV[0,∞), the space of V-valued functions
that are right-continuous with left-limits, equipped with the Skorohod J1 topology.
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Finally, the limit Q(1) ≡ {Q(1)(t)|t ≥ 0} is the unique stochastic process that solves
the stochastic integral equation

(2.18)

Q(1)(t) = Q(1)(0) +

∫ t

0

((
∧ν(0)s (Q(0)(s), Q(1)(s))

)
+ ν(1)s (Q(0)(s))

)
ds

+
∑
i∈I

Ωi

(∫ t

0

ν(0)s (Q(0)(s), i)ds

)
vi, t ≥ 0,

where the {Ωi|i ∈ I} are a family of mutually independent, standard Brownian
motions.
We call Q(1) the diffusion approximation associated with the family {Qη(t)|t ≥ 0}.
It quantifies deviations from the fluid approximations, and it gives rise to second-
order mesoscopic diffusion approximations of the form

(2.19) Qη(t) =d ηQ(0)(t) +
√
ηQ(1)(t) + o(

√
η),

as η →∞ for all t ≥ 0, with the approximation being in distribution

Now consider the case of V being either a finite dimensional vector space or a
Banach space that can be embedded into its own dual space (like a Hilbert space),
so that the notion of a transpose can be defined, denoted by a superscript ”>” ( for
V = RN , this corresponds to the standard transpose of a matrix). One consequence
of the diffusion limit is an associated set of differential equations that become useful
in the computation of its mean and covariance matrix.

Theorem 2.3. [30] If conditions (2.1), (2.6), (2.13), and (2.14) all hold, then the
mean vector and covariance matrix for Q(1)(t) solve the following set of differential
equations:

(2.20)
d

dt
E(Q(1)(t)) = E(∧ν(0)t (Q(0)(t), Q(1)(t))) + ν

(1)
t (Q(0)(t)).

(2.21)

d
dtCov(Q(1)(t), Q(1)(t)) =

(
Cov(Q(1)(t),∧ν(0)t (Q(0)(t), Q(1)(t)))

)
+
∑
i∈I

ν
(0)
t (Q(0)(t), i)v>i · vi.

for almost all t, where

(2.22) Cov(Q(1)(t), Q(1)(t)) ≡ E
(

(Q(1)(t))T ·Q(1)(t)
)
− E(Q(1)(t))> · E(Q(1)(t)),

and for all operators A on V,

(2.23) {A} ≡ A+A>.

Moreover, if ∧ν(0)t (Q(0)(t), ·) is a linear operator for almost all t, then E[Q(1)(t)]
is the unique solution for (2.20) and Cov[Q(1)(t), Q(1)(t)] is the unique solution for
(2.21). Finally, for all s < t, Cov[Q(1)(s), Q(1)(t)] solves the same set of differential
equations in t as does E[Q(1)(t)], but with a different set of initial conditions. Now,
and after having stated all these results, we are able to give our main result.
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3. Main result

Consider our queueing model presented in figure 1. The Mt/Mt/ct queue has
a (time inhomogeneous) Poisson arrival process with external arrival rates λit , a
service rates (per server) of µit , feedback rates ωit , abandonment rates from the
primary queue δit , abandonment rates from retrial pool i ωit , i = 1, 2 and ct servers,
for all t > 0, ct = 1, 2, 3, .... With φt, 0 ≤ φt ≤ 1, the probability of no retrial at
time t, ρt 0 ≤ ρt ≤ 1 the probability of leaving the network from the orbit at time
t.
Let V = R3 and Q(t) = {Q1(t), Q2(t), Q3(t)}. We can construct the sample paths
for the Mt/Mt/ct queue length process as the unique set of solutions to the func-
tional equation
(3.1)

Q1(t) = Q1(0) + Π1

(∫ t

0

λ1sds

)
+ Π2

(∫ t

0

λ2sds

)
+ Π3

(∫ t

0

α1sQ2(s)ds

)

+Π4

(∫ t

0

α2sQ3(s)ds

)
−Π5

(∫ t

0

(Q1(s)− cs)+δ1sφsds
)

−Π6

(∫ t

0

(Q1(s)− cs)+δ2sφsds
)
−Π7

(∫ t

0

(Q1(s)− cs)+δ1s(1− φs)ds
)

−Π8

(∫ t

0

(Q1(s)− cs)+δ2s(1− φs)ds
)
−Π9

(∫ t

0

µ1s(Q1(s) ∧ cs)ds
)

−Π10

(∫ t

0

µ2s(Q1(s) ∧ cs)ds
)
.

(3.2)

Q2(t) = Q2(0) + Π1
1

(∫ t

0

(Q1(s)− cs)+δ1s(1− φs)ds
)

+ Π1
2

(∫ t

0

ω1sds

)

−Π1
3

(∫ t

0

α1sQ2(s)ds

)
−Π1

4

(∫ t

0

ρsθ1s(Q2(s)− k1s)+ds

)
.

(3.3)

Q3(t) = Q3(0) + Π2
1

(∫ t

0

(Q1(s)− cs)+δ2s(1− φs)ds
)

+ Π2
2

(∫ t

0

ω2sds

)

−Π2
3

(∫ t

0

α2sQ3(s)ds

)
−Π2

4

(∫ t

0

ρsθ2s(Q3(s)− k2s)+ds

)
,

where Πi(·), Π1
i (·), and Π2

i (·), are given independent, standard (rate 1) Poisson
processes, and for all real x and y, x ∧ y ≡ min(x, y).

For theMt/Mt/ct queue, we create a family of associated processes. TheMt/Mt/ct
queue is indexed by η, we want to have both the arrival rate and number of servers
grow large, i.e., scaled up by η, but leave the service rate unscaled. We are then
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interested in the asymptotic behavior of the process Qη(t) = (Qη1(t), Qη2(t), Qη3(t))
(3.4)

Qη1(t) = Qη1(0) + Π1

(∫ t

0

ηλ1sds

)
+ Π2

(∫ t

0

ηλ2sds

)
+ Π3

(∫ t

0

α1sQ
η
2(s)ds

)
+Π4

(∫ t

0

α2sQ
η
3(s)ds

)
−Π5

(∫ t

0

(Qη1(s)− ηcs)+δ1sφsds
)

−Π6

(∫ t

0

(Qη1(s)− ηcs)+δ2sφsds
)
−Π7

(∫ t

0

(Qη1(s)− ηcs)+δ1s(1− φs)ds
)

−Π8

(∫ t

0

(Qη1(s)− ηcs)+δ2s(1− φs)ds
)
−Π9

(∫ t

0

µ1s(Qη1(s) ∧ ηcs)ds
)

−Π10

(∫ t

0

µ2s(Qη1(s) ∧ ηcs)ds
)
.

(3.5)

Qη2(t) = Qη2(0) + Π1
1

(∫ t

0

(Qη1(s)− ηcs)+δ1s(1− φs)ds
)

+ Π1
2

(∫ t

0

ηω1sds

)

−Π1
3

(∫ t

0

α1sQ
η
2(s)ds

)
−Π1

4

(∫ t

0

ρsθ1s((Qη2(s)− ηk1s)+ds

)
.

(3.6)

Qη3(t) = Qη3(0) + Π2
1

(∫ t

0

(Qη1(s)− ηcs)+δ2s(1− φs)ds
)

+ Π2
2

(∫ t

0

ηω2sds

)

−Π2
3

(∫ t

0

α2sQ
η
3(s)ds

)
−Π2

4

(∫ t

0

ρsθ2s(Qη3(s)− ηk2s)+ds

)

as η →∞.
Let us note that servers and time-dependent parameters do not need to be scaled;

The primary motivating models are call centers, where service involves an interac-
tion between the customer and the server, because a customer is involved, it does
not seem reasonable to scale the service rates with η. Thus, in order to accom-
modate the arrivals, whose rate is proportional to η, the number of servers must
be scaled with η. Time dependent arrival rates should need no justification, since
phenomena such as rush hours are quite common. Time dependent service rates
can be used to model phenomena such as server fatigue or changes in the nature
of services over the day. Finally, a time dependent number of servers arises with
shift changes and in systems where the number of servers is varied to accommodate
changes in the arrival rate.
The first-order asymptotic result takes the form of a functional strong law of large
numbers and yields a fluid approximation for the original process.

Theorem 3.1. Let Qη be the uniform acceleration as in (2.4), the fluid limit for
the multiserver queue with retrials abandonment and feedback is the unique solution
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to the differential equations
(3.7)

d
dtQ

(0)
1 (t) = λ1t + λ2t + α1tQ

(0)
2 (t) + α2tQ

(0)
3 (t)− (µ1t + µ2t)(Q

(0)
1 (t) ∧ ct)

−(δ1t + δ2t)(Q
(0)
1 (t)− ct)+.

(3.8)
d
dtQ

(0)
2 (t) = ω1t − α1tQ

(0)
2 (t) + δ1t(1− φt)(Q

(0)
1 (t)− ct)+ − θ1tρt(Q

(0)
2 (t)− k1t)+.

(3.9)
d
dtQ

(0)
3 (t) = ω2t − α2tQ

(0)
3 (t) + δ2t(1− φt)(Q

(0)
1 (t)− ct)+ − θ2tρt(Q

(0)
3 (t)− k2t)+.

Furthermore, the diffusion limit for the multiserver queue with abandonment, feed-
back and retrials is the unique solution to the integral equations
(3.10)

Q
(1)
1 (t) = Q

(1)
1 (0) + Ω1

(∫ t

0

λ1sds

)
+ Ω2

(∫ t

0

λ2sds

)
+ Ω3

(∫ t

0

α1sQ
(0)
2 (s)ds

)

+Ω4

(∫ t

0

α2sQ
(0)
3 (s)ds

)
− Ω5

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1s(1− φs)ds

)

+

∫ t

0

[(
(µ1s + µ2s)1{Q(0)

1 (s)≤cs}
+ (δ1s + δ2s)1{Q(0)

1 (s)>cs}

)
Q

(1)
1 (s)−

−
(

(µ1s + µ2s)1{Q(0)
1 (s)<cs}

+ (δ1s + δ2s)1{Q(0)
1 (s)≥cs}

)
Q

(1)
1 (s)+

+α2sQ
(1)
3 (s) + α1sQ

(1)
2 (s)

]
ds− Ω6

(∫ t

0

(Q
(0)
1 (s)− cs)+δ2s(1− φs)ds

)

−Ω7

(∫ t

0

µ1s(Q
(0)
1 (s) ∧ cs)ds

)
− Ω8

(∫ t

0

µ2s(Q
(0)
1 (s) ∧ cs)ds

)

−Ω9

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1sφsds

)
− Ω10

(∫ t

0

(Q
(0)
1 (s)− cs)+δ2sφsds

)
.
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(3.11)

Q
(1)
2 (t) = Q

(1)
2 (0) + Ω1

1

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1s(1− φs)ds

)
+ Ω1

2

(∫ t

0

ω1sds

)

+

∫ t

0

[
Q

(1)
1 (s)+1{Q(0)

1 (s)≥cs}
−Q(1)

1 (s)−1{Q(0)
1 (s)>cs}

]
δ1s(1− φs)ds

−Ω1
3

(∫ t

0

α1sQ
(0)
2 (s)ds

)
− Ω1

4

(∫ t

0

ρsθ1s(Q
(1)
2 (s)− k1s)+ds

)

−
∫ t

0

θ1sρs

[
(Q

(1)
2 (s))+1{(Q(0)

2 (s)≥k1s}
− (Q

(1)
2 (s))−1{(Q(0)

2 (s)>k1s}

]
ds

−
∫ t

0

α1sQ
(1)
2 (s)ds.

(3.12)

Q
(1)
3 (t) = Q

(1)
3 (0) + Ω2

1

(∫ t

0

(Q
(0)
1 (s)− cs)+δ2s(1− φs)ds

)
+ Ω2

2

(∫ t

0

ω2sds

)

+

∫ t

0

[
Q

(1)
1 (s)+1{Q(0)

1 (s)≥cs}
−Q(1)

1 (s)−1{Q(0)
1 (s)>cs}

]
δ2s(1− φs)ds

(3.13)

−Ω2
3

(∫ t

0

α2sQ
(0)
3 (s)ds

)
− Ω2

4

(∫ t

0

ρsθ2s(Q
(1)
3 (s)− k2s)+ds

)

−
∫ t

0

θ2sρs

[
Q

(1)
3 (s)+1{(Q(0)

3 (s)≥k2s}
−Q(1)

3 (s)−1{(Q(0)
3 (s)>k2s}

]
ds

−
∫ t

0

α2sQ
(1)
3 (s)ds.

Getting these equations is based essentially on the theorem 2.1 and 2.2.
The following result provides ordinary differential equations for the mean vector,

variance and covariance matrices of Q
(1)
i .

Theorem 3.2. The mean vector for the diffusion limit solves the set of differential
equations
(3.14)
d
dtE(Q

(1)
1 (t)) =

(
(µ1t + µ2t)1{Q(0)

1 (t)≤ct}
+ (δ1t + δ2t)1{Q(0)

1 (t)>ct}

)
E(Q

(1)
1 (t)−)

−
(

(µ1t + µ2t)1{Q(0)
1 (t)<ct}

+ (δ1t + δ2t)1{Q(0)
1 (t)≥ct}

)
E(Q

(1)
1 (t)+)

+α1tE(Q
(2)
1 (t)) + α2tE(Q

(3)
1 (t)).
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(3.15)
d
dtE(Q

(1)
2 (t)) = δ1t(1− φt)

(
E(Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− E(Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}

)
−
(
ρtθ1t1{Q(0)

2 (t)≥k1t}

)
× E

(
Q

(1)
2 (t)

)
− α1tE(Q

(1)
2 (t)).

(3.16)
d
dtE(Q

(1)
3 (t)) = δ2t(1− φt)

(
E(Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− E(Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}

)
−
(
ρtθ2t1{Q(0)

3 (t)≥k2s}

)
× E

(
Q

(1)
3 (t)

)
− α2tE(Q

(1)
3 (t)).

The covariance matrix for the diffusion limit solves the differential equations
(3.17)
d
dtV ar(Q

(1)
1 (t)) = 2

(
(δ1t + δ2t)1{Q(0)

1 (t)>ct}
+ (µ1t + µ2t)1{Q(0)

1 (t)≤ct}

)
×Cov(Q

(1)
1 (t), Q

(1)
1 (t)−) + λ1t + λ2t + (δ1t + δ2t)(Q

(0)
1 (t)− ct)+

−2
(

(δ1t + δ2t)1{Q(0)
1 (t)≥ct}

+ (µ1t + µ2t)1{Q(0)
1 (t)<ct}

)
×Cov(Q

(1)
1 (t), Q

(1)
1 (t)+) + (µ1t + µ2t)(Q

(0)
1 (t) ∧ ct) + α1tQ

(0)
2 (t)

+α2tQ
(0)
3 (t) + 2

[
α1tcov(Q

(1)
1 (t), Q

(1)
2 (t)) + α2tcov(Q

(1)
1 (t), Q

(1)
3 (t))

]
.

(3.18)
d
dtV ar(Q

(1)
2 (t)) = 2δ1t(1− φt)Cov(Q

(1)
2 (t), Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− 2δ1t(1− φt)

×Cov(Q
(1)
2 (t), Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}
− 2α1tV ar(Q

(1)
2 (t))

+δ1t(1− φt)(Q
(0)
1 (t)− ct)+ + α1tQ

(0)
2 (t) + ρtθ1t(Q

(0)
2 (t)− k1t)+

+ω1t − 2ρtθ1t1{Q(0)
2 (t)≥k1t}

V ar(Q2(t)).

(3.19)
d
dtV ar(Q

(1)
3 (t)) = 2δ2t(1− φt)Cov(Q

(1)
1 (t)+, Q

(1)
3 (t))1{Q(0)

1 (t)≥ct}
− 2δ2t(1− φt)

×Cov(Q
(1)
1 (t)−, Q

(1)
3 (t))1{Q(0)

1 (t)>ct}
− 2α2tV ar(Q

(1)
3 (t))

+δ2t(1− φt)(Q
(0)
1 (t)− ct)+ + α2tQ

(0)
3 (t) + ρtθ2t(Q

(0)
3 (t)− k2t)+

+ω2t − 2ρtθ2t1{Q(0)
3 (t)≥k2t}

V ar(Q3(t)).
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(3.20)
d
dtCov(Q

(1)
1 (t), Q

(1)
2 (t)) =

(
(µ1t + µ2t)1{Q(0)

1 (t)≤ct}
+ (δ1t + δ2t)1{Q(0)

1 (t)>ct}

)
×Cov((Q

(1)
1 (t))−, Q

(1)
2 (t))− α1tCov(Q

(1)
1 (t), Q

(1)
2 (t))

−
(

(µ1t + µ2t)1{Q(0)
1 (t)<ct}

+ (δ1t + δ2t)1{Q(0)
1 (t)≥ct}

)
×Cov((Q

(1)
1 (t))+, Q

(1)
2 (t)) + δ1t(1− φt)(Q

(0)
1 (t)− ct)+

−
(
θ1tρt1{Q(0)

2 (t)≥k1t}

)
Cov(Q

(1)
1 (t), Q

(1)
2 (t))

+δ1t(1− φt)1{Q(0)
1 (t)≥ct}

V ar(Q
(1)
1 (t)) + α1tV ar(Q

(1)
2 (t))

+α2tCov(Q
(1)
3 (t), Q

(1)
2 (t)) + α1tQ

(0)
2 (t).

d
dtCov(Q

(1)
1 (t), Q

(1)
3 (t)) will be given easily, in the same manner.

(3.21)
d
dtCov(Q

(1)
2 (t), Q

(1)
3 (t)) = δ2t(1− φt)1{Q(0)

1 (t)≥ct}
Cov(Q

(1)
2 (t), Q

(1)
1 (t)) + δ1t(1− φt)

×1{Q(0)
1 (t)≥ct}

Cov(Q
(1)
3 (t), Q

(1)
1 (t))−

(
α1t + α2t + θ1tρt

×1{Q(0)
2 (t)≥k1t}

+ θ2tρt1{Q(0)
3 (t)≥k2t}

)
Cov(Q

(1)
2 (t), Q

(1)
3 (t)).

The proof of this theorem is based on Theorems 2.2 and 2.3; Given the integral

equations (3.10)-(3.13) that Q
(1)
i (t) solves, we immediately have for i=1,2,3

(3.22)

E(Q
(1)
i (t)) = E(Q

(1)
i (0)) +

∫ t

0

E(∧ν(0)s (Q
(0)
i (s), Q

(1)
i (s))ds+

∫ t

0

ν(1)s (Q(0)(s)).

Differentiating this equation we get (3.14), (3.15) and (3.16).
Then The solution to the integral equations (3.10)-(3.13) also solves the stochas-

tic differential equation
(3.23)

d(Q
(1)
i )(t) = (∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t)))+ν(1)s (Q(0)(t))dt+

∑
i∈I

√
ν
(0)
t (Q

(0)
i (t), i)vi dΩ∗i (t).
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Using Ito’s formula [24] (page 149) we get

d((Q
(1)
i (t))>, Q

(1)
i (t)) = (∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t))) + ν

(1)
t (Q

(0)
i (t))> ·Q(1)

i (t)dt

+
∑
i∈I

√
ν
(0)
t (Q

(0)
i (t), i)v>i ·Q

(1)
i (t)dΩ∗i (t) + (Q

(1)
i (t))>

·(∧ν(0)t (Q
(0)
i (t), Q

(1)
i (t))) + ν

(1)
t (Q

(0)
i (t))>dt

+
∑
i∈I

√
ν
(0)
t (Q

(0)
i (t), i)(Q

(1)
i (t))> · vidΩ∗i (t)

+
∑
i∈I

ν
(0)
t (Q

(0)
i (t), i)v>i · vidt.

Taking the expectations, we get
(3.24)
d
dtE(Q

(1)
i (t))>, Q

(1)
i (t)) = E

(
(∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t))) + ν

(1)
t (Q

(0)
i (t))> ·Q(1)

i (t)
)

+E
(
Q

(1)
i (t) · (∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t))) + ν

(1)
t (Q

(0)
i (t))>

)
+
∑
i∈I

ν
(0)
t (Q

(0)
i (t), i)v>i · vi.

for almost all t. Using the derivative of (3.22), we obtain
(3.25)

E(Q
(1)
i (t))>)E(Q

(1)
i (t)) = E(∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t))) + ν

(1)
t (Q

(0)
i (t))> · E(Q

(1)
i (t)

+E(Q
(0)
i (t))> · E(∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t))) + ν

(1)
t (Q

(0)
i (t)).

Subtracting (3.26) from (3.24) gives us (3.17)-(3.21).
Now, observe that (3.22) can be written as

(3.26) E(Q
(1)
i (t)) = E(Q

(1)
i (0)) +

∫ t

0

E(Q
(1)
i (s))Asds+

∫ t

0

ν(1)s (Q(0)(s)).

With At is the matrix that represents its action on V;

ν
(0)
t (Q

(0)
i (t), Q

(1)
i (t))) = Q

(1)
i (t))At,

and |At| ≤ ‖ν(0)t ‖ So, let

cov(Q
(1)
i (t),∧ν(0)t (Q

(0)
i (t), Q

(1)
i (t)))) = cov(Q

(1)
i (t), Q

(1)
i (t))))At,

for almost all t, and so the integral equation for the covariance matrix is

cov(Q
(1)
i (t), Q

(1)
i (t)) = cov(Q

(1)
i (0), Q

(1)
i (0)) +

∫ t

0

cov(Q
(1)
i (s), Q

(1)
i (s))Asds

+

∫ t

0

∑
i∈I

ν
(0)
t (Q

(0)
i (t), i)v>i · vids.
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