A note on Frobenius inner product and the m-distance matrices of a tree

P.A. Asharaf ${ }^{1 *}$ and Bindhu K. Thomas ${ }^{2}$

Abstract

The m-distance matrix D_{m} of a simple connected undirected graph has an important role in computing the distance matrix D of the graph from the powers of the adjacency matrix using Hadamard product. This paper shows that for an undirected tree T with diameter $d,\left\{D_{0} . D_{1}, \ldots, D_{d}\right\}$ is an orthogonal basis for the space spanned by the binary equivalent matrices of the first $d+1$ powers of the adjacency matrix of T and it gives an invertible conversion matrix for finding the m-distance matrix of T using Frobenius inner product on matrices.

Keywords

Adjacency matrix, Distance matrix, Binary matrix , Diameter, Hadamard product, m-distance matrix , Frobenius inner product, Frobenius norm.

AMS Subject Classification

$05 \mathrm{C} 12,05 \mathrm{C} 40,05 \mathrm{C} 50,05 \mathrm{C} 62,05 \mathrm{~B} 20,46 \mathrm{C} 05,15 \mathrm{~A} 60$.
${ }^{1}$ Mathematics Research Centre, Mary Matha Arts and Science College, Mananthavady-670645, Kerala, India.
${ }^{2}$ Department of Mathematics, Mary Matha Arts and Science College, Mananthavady-670645, Kerala, India.
*Corresponding author: ${ }^{1}$ asharafpa@gecwyd.ac.in; ${ }^{2}$ bindhukthomas@gmail.com
Article History: Received 12 April 2020; Accepted 19 August 2020

Contents

\qquad
1 Introduction1321
2 Preliminaries 1322
3 Main Resuls. 1322
4 Illustration 1325
5 Conclusion 1327
References 1327

1. Introduction

Consider a simple, connected, undirected graph $G=(V, E)$ of order n with vertex set V and edge set E throughout this paper unless otherwise specified. Let A_{G} be the $n \times n$ adjacency matrix [1] of G. Then $i j^{t h}$ entry of A_{G}^{m} ($m^{t h}$ power of A_{G}), represent the number of walks of length m between the vertices v_{i} and v_{j} of G.

Definition 1.1. ([2]) The distance matrix, $D=\left(d_{i j}\right)$ of G is defined as,

$$
d_{i j}= \begin{cases}d\left(v_{i}, v_{j}\right) & , \text { if } i \neq j \\ 0 & , \text { if } i=j\end{cases}
$$

Where, $d\left(v_{i}, v_{j}\right)$ is the distance between the vertices v_{i} and v_{j}.

Definition 1.2. ([3]) The diameter of a graph G is the maximum distance between any two vertices of G and it is denoted by $\operatorname{Diam}(G)$.
Definition 1.3. (Hadamard product [4]) Consider the vector space $\mathbb{R}^{m \times n}$ of all $m \times n$ real matrices over the real field \mathbb{R}. For $P, F \in \mathbb{R}^{m \times n}$, the Hadamard product \circ is a binary operation on $\mathbb{R}^{m \times n}$ defined by,

$$
(P \circ F)_{i j}:=(P)_{i j}(F)_{i j}, \quad \forall i, j
$$

Let $B=\{0,1\}$ and let $B_{m \times n}$ denote the set of all binary matrices in $\mathbb{R}^{m \times n}$.
Then for $P, F \in B_{m \times n}$,

$$
(P \circ F)_{i j}= \begin{cases}1, & \text { if } p_{i j}=1 \text { and } f_{i j}=1 \\ 0, & \text { otherwise }\end{cases}
$$

Definition 1.4. (Frobenius inner product [5]) Consider the vector space $\mathbb{R}^{n \times n}$ over the field \mathbb{R}. Then the Frobenius inner product $\langle,\rangle_{F}: \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is defined by,

$$
\langle P, Q\rangle_{F}=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} q_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n}(P \circ Q)_{i j}=\operatorname{Tr}\left(P Q^{T}\right)
$$

where $P, Q \in \mathbb{R}^{n \times n}$. The Frobenius norm $\|\cdot\|$ induced by this inner product on $\mathbb{R}^{n \times n}$ is, $\|P\|_{F}=\left(\langle P, P\rangle_{F}\right)^{\frac{1}{2}}, P \in \mathbb{R}^{n \times n}$. Then
the metric d_{F} induced by this norm on $\mathbb{R}^{n \times n}$ is $d_{F}(P, Q)=$ $\|P-Q\|_{F}, P, Q \in \mathbb{R}^{n \times n}$.

Remark 1.5. (i) $\|P\|_{F}=\left(\langle P, P\rangle_{F}\right)^{\frac{1}{2}}=\left(\operatorname{Tr}\left(P P^{T}\right)\right)^{\frac{1}{2}}, P \in$ $\mathbb{R}^{n \times n}$
(ii) Let $X, Y \in \mathbb{R}^{1 \times n}$. Then $\langle X, Y\rangle_{F}=\sum_{i=1}^{n} x_{i} y_{i}$ and

$$
d_{f}(X, Y)=\|X-Y\|_{F}=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{\frac{1}{2}}
$$

which is the Euclidean distance between the vectors X and Y of \mathbb{R}^{n}.
(iii) For $P \in B_{n \times n}$,

$$
d_{F}(P, 0)=\|P-0\|_{F}=\|P\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j}^{2}\right)^{\frac{1}{2}}
$$

Then $\left(d_{F}(P, 0)\right)^{2}$ represents the number of I's in P. For $P, Q \in B_{n \times n}$,

$$
d_{F}(P, Q)=\|P-Q\|_{F}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left(p_{i j}-q_{i j}\right)^{2}\right)^{\frac{1}{2}}
$$

Then $\left(d_{F}(P, Q)\right)^{2}$ represent the number of non identical entries in P and Q and the number of identical entries in P and Q is $n^{2}-\left(d_{F}(P, Q)\right)^{2}$

2. Preliminaries

Definition 2.1. ([6]) The function $\delta: \mathbb{R} \rightarrow B=\{0,1\}$ is defined by

$$
\delta(a):=\left\{\begin{array}{ll}
0, & a \leq 0 \\
1, & \text { otherwise }
\end{array}, a \in \mathbb{R}\right.
$$

Also, $\delta: \mathbb{R}^{m \times n} \rightarrow B_{m \times n}$ is defined by $\delta(D)=(\delta(D))_{i j}:=$ $\left(\delta\left(d_{i j}\right)\right), \forall i, j$ and $D \in \mathbb{R}^{m \times n}$. Then $\delta\left(A_{G}^{m}\right) \in B_{n \times n}, \forall m \in$ $\{0,1,2, \ldots\}$ and it is the equivalent binary matrix representation of A_{G}^{m}. Let $A_{G}^{(m)}=\delta\left(A_{G}^{m}\right)$. Then

$$
\left(A_{G}^{(m)}\right)_{i j}= \begin{cases}1, & \text { if there exist a walk of length } m \\ 0, & \text { from } v_{i} \text { to } v_{j} \text { in } G \\ \text { otherwise }\end{cases}
$$

Also, for $C, F \in B_{m \times n}, \delta(C \circ F)=\delta(C) \circ \delta(F)$.
Definition 2.2. (m-distance matrix [6]) Consider the graph $G=(V, E)$ with n vertices. Then the m-distance matrix D_{m} of G is an $n \times n$ symmetric binary matrix defined by

$$
\left(D_{m}\right)_{i j}:= \begin{cases}1, & \text { if } d\left(v_{i}, v_{j}\right)=m \\ 0, & \text { otherwise }\end{cases}
$$

where, $d\left(v_{i}, v_{j}\right)$ is the distance between the vertices v_{i} and v_{j}.

Remark 2.3. (i) $D_{m} \in B_{n \times n}, \forall m=0,1,2, \ldots$
(ii) $D_{0}=I_{n}$
(iii) $D_{0}+D_{1}+\ldots+D_{d}=$

$$
J_{n}=\left[\begin{array}{cccccc}
1 & 1 & . & . & . & 1 \\
1 & 1 & . & . & . & 1 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
1 & 1 & . & . & . & 1
\end{array}\right]=\text { The matrix of ones }
$$

$$
\begin{equation*}
\operatorname{Diam}(G)=\underset{m}{\operatorname{Max}\left\{m: D_{m} \neq 0\right\}} \tag{iv}
\end{equation*}
$$

(v) $D_{i} \circ D_{j}=\left\{\begin{array}{ll}0, & \text { if } i \neq j \\ D_{i}, & \text { if } i=j\end{array}\right.$, for $0 \leq i, j \leq d$. i.e., $\left\{D_{0}, D_{1}, \ldots, D_{d}\right\}$ is an orthogonal subset $\mathbb{R}^{n \times n}$ with respect to the binary operation \circ.

Theorem 2.4. ([6]) Let A_{G} be the adjacency matrix of $G=$ (V, E) with diameter d. Then $\beta_{2}=\left\{D_{0}, D_{1}, \ldots, D_{d}\right\}$ is a Linearly independent subset of the vector space $\mathbb{R}^{n \times n}$.

Theorem 2.5. ([6]) Let A_{G} be the adjacency matrix of $G=$ (V, E) with diameter d. Then for $1 \leq m \leq d, D_{m}=A_{G}^{(m)}-$ $\delta\left(\sum_{s=0}^{m-1} A_{G}^{(m)} \circ A_{G}^{(s)}\right)$, where D_{m} is the m-distance matrix of G.

3. Main Resuls

Theorem 3.1. Let A_{G} be the adjacency matrix of $G=(V, E)$. Let $d=\operatorname{diam}(G)$. Then for $0 \leq K, m \leq d$,

$$
D_{k} \circ A_{G}^{(m)}= \begin{cases}D_{m}, & \text { if } K=m \\ 0, & \text { if } m<K\end{cases}
$$

Proof. Case(i): $K=m$

$$
\begin{aligned}
\left(D_{m} \circ A_{G}^{(m)}\right)_{i j} & =\left(D_{m}\right)_{i j}\left(A_{G}^{(m)}\right)_{i j} \\
& = \begin{cases}1, & \text { if }\left(D_{m}\right)_{i j}=1 \text { and }\left(A_{G}^{(m)}\right)_{i j}=1 \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}1, & \text { if } d\left(v_{i}, v_{j}\right)=m \text { and }\left(A_{G}^{(m)}\right)_{i j}=1 \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

But $d\left(v_{i}, v_{j}\right)=m \Rightarrow\left(A_{G}^{(m)}\right)_{i j}=1$

$$
\begin{aligned}
\therefore\left(D_{m} \circ A_{G}^{(m)}\right)_{i j} & =\left(D_{m}\right)_{i j}\left(A_{G}^{(m)}\right)_{i j} \\
& =\left\{\begin{array}{ll}
1, & \text { if } d\left(v_{i}, v_{j}\right)=m \\
0, & \text { otherwise }
\end{array}=\left(D_{m}\right)_{i j}\right.
\end{aligned}
$$

That is, $\left(D_{m} \circ A_{G}^{(m)}\right)_{i j}=D_{m}$.
Case(ii): $K>m$
$\left(D_{k} \circ A_{G}^{(m)}\right)_{i j}=\left(D_{k}\right)_{i j}\left(A_{G}^{(m)}\right)_{i j}$

If $\left(D_{k}\right)_{i j}=1$, then $d\left(v_{i}, v_{j}\right)=K$.
That is, if there exist a shortest path of length K between v_{i} and v_{j}. But then this path cannot be traversed by any of the walk between v_{i} and v_{j} of length $<K$. Thus $\left(A_{G}^{(m)}\right)_{i j}=0$. $(\because K>m)$
$\therefore\left(D_{K}\right)_{i j}\left(A_{G}^{(m)}\right)_{i j}=0$
If $\left(D_{K}\right)_{i j}=0$, then also $\left(D_{K}\right)_{i j}\left(A_{G}^{(m)}\right)_{i j}=0$.
Therefore, $\left(D_{K} \circ A_{G}^{(m)}\right)_{i j}=0, \forall i, j, \forall K>m$. ie., $D_{K} \circ A_{G}^{(m)}=0$ if $K>m$. Hence

$$
D_{K} \circ A_{G}^{(m)}=\left\{\begin{array}{ll}
D_{m}, & \text { if } K=m \\
0, & \text { if } m<K
\end{array}, \text { for } K \leq d\right.
$$

Theorem 3.2. Let A_{G} be the adjacency matrix of $G=(V, E)$. Let $d=\operatorname{diam}(G)$. Then $\beta_{1}=\left\{A_{G}^{(0)}, A_{G}^{(1)}, \ldots A_{G}^{(d)}\right\}$ is a linearly independent subset of the vector space $\mathbb{R}^{n \times n}$.

Proof. Suppose

$$
\begin{equation*}
c_{0} \cdot A_{G}^{(0)}+c_{1} \cdot A_{G}^{(1)}+\ldots+c_{d} \cdot A_{G}^{(d)}=0 \tag{3.1}
\end{equation*}
$$

for some $c_{0}, c_{1}, \ldots, c_{d} \in \mathbb{R}$. By taking Hadamard product \circ by D_{d}

$$
\begin{gather*}
(3.1) \Rightarrow D_{d} \circ\left(c_{0} \cdot A_{G}^{(0)}+c_{1} \cdot A_{G}^{(1)}+\ldots+c_{d} \cdot A_{G}^{(d)}\right)=0 \\
c_{0} \cdot\left(D_{d} \circ A_{G}^{(0)}\right)+c_{1} \cdot\left(D_{d} \circ A_{G}^{(1)}\right)+\ldots+c_{d} \cdot\left(D_{d} \circ A_{G}^{(d)}\right)=0 \\
\Rightarrow 0+0+\ldots 0+c_{d} \cdot\left(D_{d} \circ A_{G}^{(d)}\right)=0(\because \text { Theorem 3.1 }) \\
\quad \Rightarrow c_{d} \cdot D_{d}=0 \Rightarrow c_{d}=0, \text { as } D_{d} \neq 0 \\
\quad(3.1) \Rightarrow c_{0} \cdot A_{G}^{(0)}+c_{1} \cdot A_{G}^{(1)}+\ldots+c_{d-1} \cdot A_{G}^{(d-1)}=0 \tag{3.2}
\end{gather*}
$$

By taking Hadamard product \circ by D_{d-1} on both side of equation (3.2).

$$
\begin{aligned}
(3.2) \Rightarrow D_{d-1} \circ & \left(c_{0} \cdot A_{G}^{(0)}+c_{1} \cdot A_{G}^{(1)}+\ldots+c_{d-1} \cdot A_{G}^{(d-1)}\right)=0 \\
& c_{0} \cdot\left(D_{d-1} \circ A_{G}^{(0)}\right)+c_{1} \cdot\left(D_{d-1} \circ A_{G}^{(1)}\right)+\ldots \\
& +c_{d-1} \cdot\left(D_{d-1} \circ A_{G}^{(d-1)}\right)=0 \\
\Rightarrow & 0+0+\ldots+0+c_{d-1} \cdot\left(D_{d-1} \circ A_{G}^{(d-1)}\right)=0 \\
\Rightarrow & c_{d-1} D_{d-1}=0 \Rightarrow c_{d-1}=0, \text { as } D_{d-1} \neq 0 \\
(3.2) \Rightarrow & c_{0} \cdot A_{G}^{(0)}+c_{1} \cdot A_{G}^{(1)}+\ldots+c_{d-1} \cdot A_{G}^{(d-1)}=0
\end{aligned}
$$

Continue the above process further a finite number of times, we get $c_{0}=0, c_{1}=0, \ldots, c_{d}=0$.
$\Rightarrow \beta_{1}=\left\{A_{G}^{(0)}, A_{G}^{(1)}, \ldots, A_{G}^{(d)}\right\}$ is a linearly independent subset of $\mathbb{R}^{n \times n}$.

Remark 3.3. $\beta_{1}=\left\{A_{G}^{(0)}, A_{G}^{(1)}, \ldots, A_{G}^{(d)}\right\}$ is a basis for span $\left\{A_{G}^{(0)}, A_{G}^{(1)}, \ldots, A_{G}^{(d)}\right\}$.

Lemma 3.4. Let $G=(V, E)$ be a connected undirected graph of order $n(n>1)$. Let $d_{i j}$ denote the distance between v_{i} and v_{j}. Then there always exist at least one walk between v_{i} and v_{j} of length $d_{i j}+2 r, \forall r=0,1,2, \ldots$. That is,

$$
\left(A_{G}^{\left(d_{i j}+2 r\right)}\right)_{i j}=1, \forall r=0,1,2, \ldots
$$

Proof. Since G is a connected undirected graph, there exist at least one path in between v_{i} and v_{j}. Let $P_{i j}: v_{0}\left(=v_{i}\right)-$ $v_{1}-v_{2}-\ldots-v_{d_{i j}-1}-v_{d_{i j}}\left(=v_{j}\right)$ denote the shortest path between v_{i} and v_{j} of length $d_{i j}$. If we traverse back and forth once along the last edge in $P_{i j}$, then we get a walk $v_{0}(=$ $\left.v_{i}\right)-v_{1}-v_{2}-\ldots-v_{d_{i j}-1}-v_{d_{i j}}\left(=v_{j}\right)-v_{d_{i j}-1}-v_{d_{i j}}\left(=v_{j}\right)$ of length $d_{i j}+2$ between v_{i} and v_{j}. Also If we traverse back and forth twice along the last edge in $P_{i j}$, then we get a walk $v_{0}\left(=v_{i}\right)-v_{1}-v_{2}-\ldots-v_{d_{i j}-1}-v_{d_{i j}}-v_{d_{i j}-1}-v_{d_{i j}}-v_{d_{i j}-1}-$ $v_{d_{i j}}\left(=v_{j}\right)$ of length $d_{i j}+4$ between v_{i} and v_{j}. If we proceed like this, then we always get a walk of length $d_{i j}+2 r, \forall$ $r=0,1,2, \ldots$ between v_{i} and v_{j} in G. This walk will reflect as 1 in the $i j^{\text {th }}$ entry of $A_{G}^{\left(d_{i j}+2 r\right)}$.

$$
\therefore\left(A_{G}^{\left(d_{i j}+2 r\right)}\right)_{i j}=1, \forall r=0,1,2, \ldots
$$

Theorem 3.5. Let $T=(V, E)$ be an undirected tree of order $n(n>1)$. Let $d_{i j}$ denote the distance between v_{i} and v_{j}. Then,

$$
\left(A_{T}^{(m)}\right)_{i j}= \begin{cases}1, & \text { if } m=d_{i j}+2 r, \forall r=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Proof. Let $T_{i j}$ denote the unique path in T from v_{i} to v_{j} of distance $d_{i j}$. Consider a walk $W_{i j}$ from v_{i} to v_{j} such that length of $W_{i j}, l\left(W_{i j}\right)>d_{i j}$. Now delete the edges of $T_{i j}$ from $W_{i j}$. Let $W_{i j}^{1}$ be the remaining part of the walk $W_{i j}$. Then $W_{i j}^{1}$ should be disconnected. Otherwise $W_{i j}^{1}$ and some of the edges of $T_{i j}$ together would form a cycle. But T has no cycle.
Let $W_{i j, 1}, W_{i j, 2}, \ldots, W_{i j, s}$ be the component walks of $W_{i j}^{1}$. Then $W_{i j, h} \cap T_{i j},(1 \leq h \leq s)$ should be a single vertex $v_{w_{i j}, h}$, otherwise some of the edges of $W_{i j, h}$ and $T_{i j}$ together form a cycle. Since each vertex $v_{w_{i j}, h}$ is a part of the walk $W_{i j}, W_{i j, h}$ should be either the single vertex $v_{w_{i j}, h}$ or a closed walk from $v_{w_{i j}, h}$ to $v_{w_{i j}, h}$.
But length of a closed walk in a tree is always even. So $l\left(W_{i j}^{1}\right)=\sum_{h=1}^{s} l\left(W_{i j, h}\right)$ must be even.
Let $l\left(W_{i j}^{1}\right)=\sum_{h=1}^{s} l\left(W_{i j, h}\right)=2 r$, for some $r \in\{0,1,2, \ldots\}$
$\Rightarrow l\left(W_{i j}\right)=l\left(T_{i j}\right)+l\left(W_{i j}^{1}\right)=d_{i j}+\sum_{h=1}^{s} l\left(W_{i j, h}\right)=d_{i j}+2 r$, for some $r \in\{0,1,2, \ldots\}$
\Rightarrow length of every walk from v_{i} to v_{j} must be of the form $d_{i j}+2 r$, for $r \in\{0,1,2, \ldots\}$.
By Lemma 3.4, there always exist a walk between v_{i} and v_{j} of length $d_{i j}+2 r$, for all $r=0,1,2, \ldots$. So

$$
\left(A_{T}^{(m)}\right)_{i j}= \begin{cases}1, & \text { if } m=d_{i j}+2 r, \forall r=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

Theorem 3.6. Let A_{T} be the adjacency matrix of a tree $T=$ (V, E) of order $n(n>1)$. Let $d=\operatorname{diam}(T)$. Then for $0 \leq K \leq$ d,
(i) $D_{K} \circ A_{T}^{(K+2 r)}=D_{K}$.
(ii) $D_{K} \circ A_{T}^{(K+2 r+1)}=0, \forall r=0,1,2, \ldots$.

Proof.

$$
\begin{aligned}
&\left(D_{K} \circ A_{T}^{(m)}\right)_{i j}=\left(D_{K}\right)_{i j}\left(A_{T}^{(m)}\right)_{i j} \\
&= \begin{cases}1, & \text { if }\left(D_{K}\right)_{i j}=1 \text { and }\left(A_{T}^{(m)}\right)_{i j}=1 \\
0, & \text { otherwise }\end{cases} \\
&\left(D_{K}\right)_{i j}=1 \Rightarrow d_{i j}=K .
\end{aligned}
$$

But then $\left(A_{T}^{(K+2 r)}\right)_{i j}=1, \forall r=0,1,2, \ldots(\because$ Theorem 3.5) ie., $\left(D_{K}\right)_{i j}=1 \Rightarrow\left(A_{T}^{(K+2 r)}\right)_{i j}=1, \forall r=0,1,2, \ldots$.

$$
\begin{aligned}
\therefore & \left(D_{K} \circ A_{T}^{(K+2 r)}\right)_{i j}= \\
& \left\{\begin{array}{ll}
1, & \text { if } K=d_{i j} \\
0, & \text { otherwise }
\end{array}=\left(D_{K}\right)_{i j}, \forall i, j \text { and } r=0,1,2, \ldots\right.
\end{aligned}
$$

$\Rightarrow D_{K} \circ A_{T}^{(K+2 r)}=D_{K}, \forall r=0,1,2, \ldots$.
By Theorem 3.5 there does not exist a walk of length $d_{i j}+$ $2 r+1$ between v_{i} and $v_{j}, \forall r=0,1,2, \ldots$
$\Rightarrow\left(A_{T}^{\left(d_{i j}+2 r+1\right)}\right)_{i j}=0, \forall i, j$ and $r=0,1,2, \ldots$.
$\Rightarrow D_{K} \circ A_{T}^{(K+2 r+1)}=0 \forall r=0,1,2, \ldots$.
Remark 3.7. Let A_{T} be the adjacency matrix of a tree $T=$ (V, E) of order $n(n>1)$. Let $d=\operatorname{diam}(T)$. Then for $0 \leq K \leq$ d. For $m<K, A_{T}^{(m)} \circ D_{K}=0$, (by Theorem 3.1).

For $m>K$,
(i) $D_{K} \circ A_{T}^{(K+2 r)}=D_{K}$.
(ii) $D_{K} \circ A_{T}^{(K+2 r+1)}=0 . \forall r=0,1,2, \ldots$, (by Theorem 3.6)
$\therefore A_{T}^{(m)} \circ D_{K}= \begin{cases}D_{K}, & m=K+2 r, \forall r=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}$
Theorem 3.8. Let A_{T} be the adjacency matrix of $T=(V, E)$ with $d=\operatorname{diam}(G)$. Then $\beta_{2}=\left\{D_{0}, D_{1}, \ldots, D_{d}\right\}$ is an orthogonal basis for span $\left\{A_{T}^{(0)}, A_{T}^{(1)}, \ldots A_{T}^{(d)}\right\}$.

Proof. By Theorem 2.4, $\beta_{2}=\left\{D_{0}, D_{1}, \ldots, D_{d}\right\}$ is linearly independent. By Remark 2.3(v) β_{2} is orthogonal also. So it is enough to prove that $A_{T}^{(m)}$ is a linear combination of $D_{0}, D_{1}, \ldots, D_{d}$, for $0 \leq m \leq d$. By Remark 3.7,
$\therefore A_{T}^{(m)} \circ D_{K}= \begin{cases}D_{K}, & m=K+2 r, \forall r=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}$
$\Rightarrow \sum_{K=0}^{d} A_{T}^{(m)} \circ D_{K}$ is a linear combination of $D_{0}, D_{1}, \ldots, D_{d}$. i.e., $\sum_{K=0}^{d} A_{T}^{(m)} \circ D_{K}=\sum_{K=0}^{d} c_{m, K} D_{K}$, for $c_{m, 0}, c_{m, 1}, \ldots, c_{m, d} \in$ $B=\{0,1\}$. Now

$$
\begin{aligned}
A_{T}^{(m)} & =A_{T}^{(m)} \circ J_{n}=A_{T}^{(m)} \circ\left(D_{0}+D_{1}+\cdots+D_{d}\right),(\because \text { Remark } 2.3(i i i)) \\
& =\sum_{K=0}^{d} A_{T}^{(m)} \circ D_{K}=\sum_{K=0}^{d} c_{m, K} D_{K}
\end{aligned}
$$

$\Rightarrow A_{T}^{(m)}$ is a linear combination of $D_{0}, D_{1}, \ldots, D_{d}$.
For finding the scalars $c_{m, k}$, consider

$$
\begin{aligned}
& \left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}=\left\langle c_{m, 0} \cdot D_{0}+c_{m, 1} \cdot D_{1}+\cdots+c_{m, d} \cdot D_{d}, D_{j}\right\rangle_{F} \\
& =c_{m, 0} \cdot\left\langle D_{0}, D_{j}\right\rangle_{F}+c_{m, 1} \cdot\left\langle D_{1}, D_{j}\right\rangle_{F}+\cdots \\
& \quad+c_{m, d} \cdot\left\langle D_{d}, D_{j}\right\rangle_{F} \\
& =0+0+\cdots+c_{m, j}\left\langle D_{j}, D_{j}\right\rangle_{F}+0+\cdots+0 \\
& =c_{m, j}\left\langle D_{j}, D_{j}\right\rangle_{F}(\because \operatorname{Remark} 2.3(v)) \\
& \quad \Rightarrow c_{m, j}=\frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}}, j=0,1, \ldots, d
\end{aligned}
$$

the scalars, $c_{m, j}=\frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}} \in B=\{0,1\}, \forall 0 \leq m, j \leq d$, So,

$$
\begin{aligned}
A_{T}^{(m)}= & c_{m, 0} \cdot D_{0}+c_{m, 1} \cdot D_{1}+\cdots+c_{m, d} \cdot D_{d} \\
= & \frac{\left\langle A_{T}^{(m)}, D_{0}\right\rangle_{F}}{\left\langle D_{0}, D_{0}\right\rangle_{F}} \cdot D_{0}+\frac{\left\langle A_{T}^{(m)}, D_{1}\right\rangle_{F}}{\left\langle D_{1}, D_{1}\right\rangle_{F}} \cdot D_{1}+\cdots \\
& +\frac{\left\langle A_{T}^{(m)}, D_{d}\right\rangle_{F}}{\left\langle D_{d}, D_{d}\right\rangle_{F}} \cdot D_{d} \\
A_{T}^{(m)}= & \sum_{j=0}^{d} \frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}} D_{j}
\end{aligned}
$$

$\Rightarrow \beta_{2}=\left\{D_{0}, D_{1}, \ldots, D_{d}\right\}$ is an orthogonal basis for span $\left\{A_{T}^{(0)}, A_{T}^{(1)}, \ldots, A_{T}^{(d)}\right\}$.

Remark 3.9. (i) We have

$$
\begin{gathered}
A_{T}^{(m)}=\sum_{j=0}^{d} \frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}} D_{j}(\because \text { Theorem3.8 }) \\
A_{T}^{(m)}=\frac{\left\langle A_{T}^{(m)}, D_{d}\right\rangle_{F}}{\left\langle D_{d}, D_{d}\right\rangle_{F}} D_{d}+\sum_{j=0}^{d-1} \frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}} D_{j} \\
\frac{\left\langle A_{T}^{(m)}, D_{d}\right\rangle_{F}}{\left\langle D_{d}, D_{d}\right\rangle_{F}} D_{d}=A_{T}^{(m)}-\sum_{j=0}^{d-1} \frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}} D_{j}
\end{gathered}
$$

\Rightarrow The orthogonal basis for span $\left\{A_{T}^{(0)}, A_{T}^{(1)}, \ldots, A_{T}^{(d)}\right\}$ obtained from the basis β_{1} by Gram-Schmidt process is nothing but β_{2} itself.
(ii) $A_{T}^{(m)}=\sum_{j=0}^{d} c_{m, j} D_{j}$, by Theorem 3.8, where

$$
c_{m, j}=\frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}}, m, j=0,1, \ldots, d
$$

This can be written in the matrix form as given below,

$$
\left[\begin{array}{c}
A_{T}^{(0)} \tag{3.3}\\
A_{T}^{(1)} \\
\cdot \\
\cdot \\
\cdot \\
A_{T}^{(d)}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{00} & c_{01} & \cdot & \cdot & \cdot & c_{0 d} \\
c_{10} & c_{11} & \cdot & \cdot & \cdot & c_{1 d} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
c_{d 0} & c_{d 1} & \cdot & \cdot & \cdot & c_{d d}
\end{array}\right]\left[\begin{array}{c}
D_{0} \\
D_{1} \\
\cdot \\
\cdot \\
\cdot \\
D_{d}
\end{array}\right]
$$

Let
$Y=\left[\begin{array}{c}A_{T}^{(0)} \\ A_{T}^{(1)} \\ \cdot \\ \cdot \\ \cdot \\ A_{T}^{(d)}\end{array}\right], C=\left[\begin{array}{cccccc}c_{00} & c_{01} & \cdot & \cdot & \cdot & c_{0 d} \\ c_{10} & c_{11} & \cdot & \cdot & \cdot & c_{1 d} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & & \cdot & . & . & . \\ \cdot & \cdot & \cdot & . & . & \cdot \\ c_{d 0} & c_{d 1} & \cdot & \cdot & \cdot & c_{d d}\end{array}\right], X=\left[\begin{array}{c}D_{0} \\ D_{1} \\ \cdot \\ \cdot \\ \cdot \\ D_{d}\end{array}\right]$
Then (3.3) \Rightarrow

$$
\begin{equation*}
Y=C X \tag{3.4}
\end{equation*}
$$

where, X, Y are $(d+1) \times 1$ column matrices whose elements are $n \times n$ binary matrices and C is a $(d+1) \times(d+1)$ real matrix. But by Theorem 3.1, $c_{i i}=1$ and $c_{i j}=0$, when $i<$ $j,(i, j=0,1, \ldots, d)$. Which implies that C is a unit lower triangular matrix.
$\therefore C$ is invertible and C^{-1} is a lower triangular unit matrix with $|C|=1$.
So, by multiplying C^{-1} on both sides od equation (3.4). Then (3.4) \Rightarrow

$$
\begin{equation*}
X=C^{-1} Y \tag{3.5}
\end{equation*}
$$

Then (3.3) \Rightarrow

$$
\left[\begin{array}{c}
D_{0} \\
D_{1} \\
\cdot \\
\cdot \\
\cdot \\
D_{d}
\end{array}\right]=\left[\begin{array}{cccccc}
c_{00} & c_{01} & . & . & . & c_{0 d} \\
c_{10} & c_{11} & . & . & . & c_{1 d} \\
\cdot & \cdot & . & . & \cdot & \cdot \\
\cdot & & \cdot & . & \cdot & \cdot \\
\cdot & \cdot & \cdot & . & . & \cdot \\
c_{d 0} & c_{d 1} & \cdot & . & \cdot & c_{d d}
\end{array}\right]^{-1}\left[\begin{array}{c}
A_{T}^{(0)} \\
A_{T}^{(1)} \\
\cdot \\
\cdot \\
\cdot \\
A_{T}^{(d)}
\end{array}\right]
$$

$\Rightarrow C^{-1}$ and C are the conversion matrices for getting the orthogonal basis β_{2} from β_{1} and vice versa.

4. Illustration

Consider the following tree $T=(V, E)$. Then the adjacency matrix A_{T} of T is

$$
A_{T}=
$$

Figure 1

Here the maximum distance $d=3, A_{T}^{(0)}=I, A_{T}^{(1)}=\delta\left(A_{T}\right)=$ A_{T}

$$
\begin{aligned}
A_{T}^{2} & =\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & 0 & 1 \\
1 & 1 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right], \\
A_{T}^{(2)}=\delta\left(A_{T}^{(2)}\right) & =\left[\begin{array}{llllll}
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \\
A_{T}^{(2)} * A_{T}^{(1)} & =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
A_{T}^{3} & =\left[\begin{array}{llllll}
0 & 0 & 0 & 4 & 0 & 1 \\
0 & 0 & 0 & 4 & 0 & 1 \\
0 & 0 & 0 & 4 & 0 & 1 \\
4 & 4 & 4 & 0 & 5 & 0 \\
0 & 0 & 0 & 5 & 0 & 2 \\
1 & 1 & 1 & 0 & 2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\left(A_{T}^{(3)} * I+A_{T}^{(3)} * A+A_{T}^{(3)} * A^{2}\right)=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& A_{T}^{(3)}=\boldsymbol{\delta}\left(A_{T}^{(3)}\right)=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0
\end{array}\right] \\
& A_{T}^{(3)} * A_{T}^{(1)}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \\
& A_{G}^{(3)} * A_{T}^{(2)}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& A_{T}^{(1)} * I=0 \\
& D_{0}=A_{T}^{(0)}=I \\
& D_{1}=A_{T}^{(1)}-\delta\left(A_{T}^{(1)} * I\right)=A_{T}^{(1)}-0=A_{T}^{(1)} \\
& \left(A_{T}^{(2)} * I+A_{T}^{(2)} * A_{T}^{(1)}\right) \\
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]+\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \\
& D_{2}=A_{T}^{(2)}-\delta\left(A_{T}^{(2)} * I+A_{T}^{(2)} * A_{T}^{(1)}\right) \\
& =\left[\begin{array}{llllll}
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
D_{3} & =A_{T}^{(3)}-\delta\left(A_{T}^{(3)} * I+A_{T}^{(3)} * A_{T}^{(1)}+A_{T}^{(3)} * A_{T}^{(2)}\right) \\
& =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let

$$
Y=\left[\begin{array}{c}
A_{T}^{(0)} \\
A_{T}^{(1)} \\
A_{T}^{(2)} \\
A_{T}^{(3)}
\end{array}\right], X=\left[\begin{array}{l}
D_{0} \\
D_{1} \\
D_{2} \\
D_{3}
\end{array}\right]
$$

Then $Y=C X$, where

$$
c_{m, j}=\frac{\left\langle A_{T}^{(m)}, D_{j}\right\rangle_{F}}{\left\langle D_{j}, D_{j}\right\rangle_{F}}, m, j=0,1,2,3
$$

$$
\begin{aligned}
& c_{00}=\frac{\left\langle A_{T}^{(0)}, D_{0}\right\rangle_{F}}{\left\langle D_{0}, D_{0}\right\rangle_{F}}=\frac{6}{6}=1, c_{01}=c_{02}=c_{03}=0 \\
& c_{10}=\frac{\left\langle A_{T}^{(1)}, D_{0}\right\rangle_{F}}{\left\langle D_{0}, D_{0}\right\rangle_{F}}=\frac{0}{6}=0, \\
& c_{11}=\frac{\left\langle A_{T}^{(1)}, D_{1}\right\rangle_{F}}{\left\langle D_{1}, D_{1}\right\rangle_{F}}=\frac{10}{10}=1, c_{12}=c_{13}=0 \\
& c_{20}=\frac{\left\langle A_{T}^{(2)}, D_{0}\right\rangle_{F}}{\left\langle D_{0}, D_{0}\right\rangle_{F}}=\frac{6}{6}=1, c_{21}=\frac{\left\langle A_{T}^{(2)}, D_{1}\right\rangle_{F}}{\left\langle D_{1}, D_{1}\right\rangle_{F}}=\frac{0}{10}=0, \\
& c_{22}=\frac{\left\langle A_{T}^{(2)}, D_{2}\right\rangle_{F}}{\left\langle D_{2}, D_{2}\right\rangle_{F}}=\frac{14}{14}=1, c_{23}=0, \\
& c_{30}=\frac{\left\langle A_{T}^{(3)}, D_{0}\right\rangle_{F}}{\left\langle D_{0}, D_{0}\right\rangle_{F}}=\frac{0}{6}=0, c_{31}=\frac{\left\langle A_{T}^{(3)}, D_{1}\right\rangle_{F}}{\left\langle D_{1}, D_{1}\right\rangle_{F}}=\frac{10}{10}=1, \\
& c_{32}=\frac{\left\langle A_{T}^{(3)}, D_{2}\right\rangle_{F}}{\left\langle D_{2}, D_{2}\right\rangle_{F}}=\frac{0}{14}=0, c_{33}=\frac{\left\langle A_{T}^{(3)}, D_{3}\right\rangle_{F}}{\left\langle D_{3}, D_{3}\right\rangle_{F}}=\frac{6}{6}=1 .
\end{aligned}
$$

So,

$$
C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], C^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

Then $Y=C X$, also $X=C^{-1} Y$

$$
\begin{aligned}
Y & =C X \Rightarrow & X & =C^{-1} Y \Rightarrow \\
A_{T}^{(0)} & =D_{0} & D_{0} & =A_{T}^{(0)} \\
A_{T}^{(1)} & =D_{1} & D_{1} & =A_{T}^{(1)} \\
A_{T}^{(2)} & =D_{0}+D_{2} & D_{2} & =(-1) A_{T}^{(0)}+A_{T}^{(2)} \\
A_{T}^{(3)} & =D_{1}+D_{3} & D_{3} & =(-1) A_{T}^{(1)}+A_{T}^{(3)}
\end{aligned}
$$

5. Conclusion

Generally, $\beta_{2}=\left\{D_{0}, D_{1}, \ldots, D_{d}\right\}$ is not an orthogonal basis for span $\left\{A_{G}^{(0)}, A_{G}^{(1)}, \ldots, A_{G}^{(d)}\right\}$, for a simple connected undirected graph G with diameter d. But we proved that this is true for an undirected tree T with diameter d and also derived an invertible conversion matrix for computing one basis β_{1} from the other basis β_{2} and vice versa. Further study may be done on exploring some other connected undirected graphs having this property other than trees.

References

${ }^{[1]}$ L. Graham and L. Lovasz, Distance matrix polynomials of trees, Advances in Mathematics, 29(1978), 60-88.
[2] Bapat, Graphs and Matrices, Universitext, Springer, 2010.
[3] Narsingh Deo, Graph Theory with applications to Engineering and Computer Science, Courier Dover Publications, 2016.
${ }^{[4]}$ F. Harary, Graph Theory, Addison-Wesley, 1994.
${ }^{\text {[5] Xiao-Qing Jin, Seak-WengVong, An Introduction to Ap- }}$ plied Matrix Analysis, P.112, Higher Education Press Ltd, 2016.
${ }^{[6]}$ P. A. Asharaf and Bindhu K. Thomas, Distance matrix from adjacency matrix using Hadamard product, Malaya Journal of Matematik, 8(3)(2020), 877-881.

> ISSN(P):2319-3786

Malaya Journal of Matematik
ISSN(O):2321-5666

