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A NOTE ON GALOIS EXTENSION OF SEPARABLE ALGEBRAS

By Axkira INaTOMI

Introduction. In [7], Kanzaki established a Galois theory of central separable
algebras. Further Miyashita introduced the notion of outer G-Galois extension and
extended the Galois theory of commutative rings (see [3]) to general rings in [8].

This note consists of three sections. In §1 we shall show some property of
a certain subalgebra in a separable algebra over a commutative ring. In §2 we
shall give some relationship between a Galois extension in the sense of Kanzaki
and that in the sense of Miyashita. In §3 we shall give a shorter proof of the
following Harrison-Demeyer’s theorem: Let A be an algebra over a commutative
ring K. If A/K is a G-Galois extension and G is a cyclic group, then A is

commutative.
Throughout this note all rings have identities, all modules are unitary and all

ring homomorphisms carry the identity into the identity.

§1. Let K be a commutative ring. Let A and B be two K-algebras and
ADB. We denote by B° the opposite algebra of B. If M is a left A-, right B-
module, we can convert M into a left A® B®module. In particular, A itself may

be regarded as a left A@(B"-module. “
Now, let M be a left A-, right B-module. If we define the map of

HOITIA@BO(A, M)—>M
K

by
hi—h(1), he H0m4®Bo(A, M),
K

it is easily seen that the map induces an isomorphism
o HOH’IA®BO(A, M)ZMB,

where M3 is the subset of M consisting of all m in M such that xm=mzx for all

z in B.
Let A’ be a K-algebra and f: A— A’ a K-algebra epimorphism. We set
B'=f(B). We can regard A’ as a left A(1>;<)B°-module by setting

(@@b%a’=f(a)a’f(b) for acA, beB and a’cA’;

then f may be regarded as a left A B°-epimorphism.
K
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Lemma 1. If A is a projective A%)B"-module, then f(Va(B)=Vu(B)"

Proof. We have a commutative diagram

*
Hom.gu (4, 4) AN Hom g (4, ')

[24 a

VaB)=A" —~ AP=Vu(B'),

where a and «’ are the above mentioned isomorphisms and f*=Hom gz (1, ). f*
K
is an epimorphism since A is A B°-projective. Thus f is an epimorphism.
X

ProposiTiON 1. Let A be a separvable algebra over K. If A is pojective as a
vight B-module, then f(Vai(B))= Vi (B').

Proof. Since A is projective as a right B-module, A is projective as a left B-
module. Hence A(?A" is projective as a left A(?B"-module ([2], chap. IX, §2).
A is projective as a left A(?A“-module since A is separable over K. Thus A is
projective as a left A%)B"-module ([2], chap. II, §6). We obtain the proposition
by Lemma 1.

CoroLLARY 1. If A satisfies the hypothesis of Proposition 1, and if V(B) is
the center C of A, then Va4 (B') is the center C' of A’.

Proof. Since A is separable over K, f(C) is the center C’ of A’ ([1], Prop.
1.4). Thus Va(B)=f(Va4B)=f(C)=C".

ReMmark 1. We can regard A also as a left B@A"-module. If we make the
same argument as above for left B A’modules, we have the following result:

Let A be a separable algebra over KK If A is projective as a left B-module, then
F(Va(B)=Va(B).

COROLLARY 2. Let A be a separable algebva over the center C of A. Let B
be a separable algebra over C and ADBDC. Then f(VaB)=Vu(B’).

Proof. Since A is a projective B-module by Lemma 2 of [7], we obtain the
corollary by Proposition 1.

§2. Let A be a ring and G a finite group of automorphisms of A. We denote
by A€ the subring of all elements of A left invariant by all the automorphisms in
G. We set B=A¢%.

We call A/B a G-Galois extension if there exist elements i, -+, Zn, ¥1, **+, ¥n Of
A such that Y™, 20(y:)=061,, for all ceG.

Following Miyashita [8], we call A/B an outer G-Galois extension if A/B is a

1) We denote by Va(B) the commutor of B n A.
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G-Galois extension and V4(B)=C (the center of A).

LEMMA 2. Let A|/B be a G-Galsis extension. If we give o(x1)eG and any
maximal ideal P of A, there exists an element a in A such that o(a)—ad.

Proof. We can prove the lemma by the same way as the proof of Theorem
1.3, (f) in [3].

If A/B is an outer G-Galois extension, the center R of B is BNC and R=C%,
where G* is the group of automorphisms of C induced by G.

ProOPOSITION 2. Let A|B be an outer G-Galois extension. Let A be a separable
algebra over C (central separable algebra). If Cis a separable algebra over R, then
G=~G* and C|R is a G*-Galois extension.

Proof. A is a separable algebra over R since A is separable over C and C is
separable over R. Let H be the cyclic subgroup of G generated by o(=1) in G
and we set L=AH. It is easily seen that A/L is an outer H-Galois extension. A
is projective as a right L-module ([4], Th. 1).

Now we suppose that there exists a maximal ideal p of C that contains the
set {o(c)—c;ceCl. We set B=Ap. Then P is a maximal two-sided ideal of A and
BNC=p ([1], Cor. 3.2). We set A’=A/B and C'=C/p. Let f be the natural
epimorphism A—A’ and we set Z=f(z) for xze A. Then A’ is a finite dimentional
simple algebra with the center C’. Moreover, V4 (f(L))=C’ by Corollary 1.
o)== for any p in H since o(x)—xep for any x in p. Hence p induces an auto-
morphism 7 of A’ by setting p(#)=p(x) for xc A and the map given by p—p induces
an epimorphism from H into the group H of automorphisms of A’ generated by
. But this epimorphism is an isomorphism by Lemma 2.

We set L’'=A"2, Then L’'D>C’ and V. (L')=C’ since L'Df(L). Since L'DC’,
G is an inner automorphism induced by a regular element in V4 (L’)=C’. Hence
H~H={1}. This is impossible since ¢=1. Thus, given ¢(=1)eG and any maximal
ideal p of C, there exists an element ¢ is C such that ¢(c)—c¢p. The proposition
follows easily from Theorem 1.3 of [3].

CoroLLARY 3 ([9], Prop. 2.11.). Let A|/B bte an outer G-Galois extension. If
B is a separvable algebra over R, then G=G* and C|R is a G*-Galois extension.

Proof. Since A/B is a separable extension ([5], Prop. 3.3) and B/R is a
separable extension, A is a separable algebra over R. Hence A is a central sepa-
rable algebra and C is separable over R ([1], Th. 2. 3). The corollary follows easily
from Proposition 2.

REMARK 2. From the result of Proposition 2, under the same assumption as
in the proposition it follows that A/B is a Galois extension in the sense of Kanzaki
([71, 3, (#)). Hence B is separable over R and A=BC~B®C.» Conversely, if

R
A|B is a Galois extension in the sense of Kanzaki, it follows easily that A/B is an

2) We denote BC the subring of A generated by B and C.



GALOIS EXTENSION OF SEPARABLE ALGEBRAS 201
outer G-Galois extension and C is separable over R.

Remark 3. If we use Th. 3.3 of [1], we can prove Corollary 3 in the following
way, too. It follows easily that BC is separable over C and C is the center of BC.
Va(BC)=C, and so A=V4(C)=V4V4BC)=BC by Th. 3.3 of [1]. If we choose
any maximal ideal p of Cand ¢(=x1)eG and we set P=Ap, there exists an element
@ in A such that ¢(@)—a¢P. We can write « as

(l=b101+"‘+br67’
where c¢;€C, b;eB, 1=i=v. Then
a(@)—a=0bi(o(c1)—c1)+ -+ b (a(cr)—Cr).

If 6(c.)—ciep for every c,, then o(@)—aeP. Thus there exists an element c,
in C such that o(c,)—c;¢p.

RemARrk 4. Here, we shall use the same notation as in Theorem 5 of [7].
When C is not necessarily an integral domain, in Th. 5 of [7] we must replace
4) with the following: if @ is an intermediate ring between 4 and I" such that £
is separable over S and S is a separable G-strong R-subalgebra of C (see [3]),
where S=CN 2, then 4/2 is a Galois extension with respect to H where H={s€G;
o(z)=x for all zeQ}. The above fact is proved by the same way as the proof of
Th. 5, 4) of [7]. The above assumption is equivalent to that of 4), when C is
an integral domain.

CorOLLARY 4. Let A be a separable algebra over C. If A|B is an outer G-
Galois extension, then G=G%*.

Proof. Let H be the kernel of the natural epimorphism
G—G*,

We set L=A#. Then A/L is an outer H-Galois extension and the center of L is C.
Hence H=~H*={1} by Proposition 2. Thus G=G*.

Let Y.ca® Au, be the trivial crossed product of A with G. Following Miya-
shita [8], G is said completely outer if Au, and Awu, (6=p) are unrelated as two-
sides A-modules.®

If G is completely outer, A/B is an outer G-Galois extension ([8], Prop. 6. 4).

Let A’ be a ring and f a ring epimorphism from A into A’. Let G’ be a
finite group of automorphisms of A’ such that G—%G’ and f(o(x))=0"f(x), where
x€A, 6€G and ¢’=g(s). Then we can regard A’u, A’ as a two-sided A-module by
setting

ausb=f(@)u.,f(b), a,beA.

3) See [8], §6.
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If we define the map
9.0 M,=Au,~M, =A'u,
by
a1 (@)t
then ¢, is a two-sided A-module epimorphism.
Lemma 3. If G is completely outer, then G’ is completely outer.

Proof. If M, and M, are related, M{/N{~M}/Nj, where M]/N{ and M}/N}
are nonzero subquotients of M, and M,, respectively. We set M;=g;}(M?),
Ni=g;YNY), Me=g;*(M;) and N,=g;*(N}). Then M\|No=M{|N{=M}|N}=M,|N,,
and so M, and M, are related.

ProrosITION 3. Let A be a separable algebra over the center C. If G is
completely outer, then G=G* and C|R is a G*-Galois extension.

Proof. We shall use the same notation as in the proof of Proposition 2. It
follows that the cyclic group H is completely outer. Hence the H is completely
outer by Lemma 3, and so V4(A’#)=C’. Thus we can prove the proposition by
the same way as the proof of Proposition 2.

§3. Let K be a commutative ring. Let A be an algebra over K.

TaeoreM ([4], §2, Th. 11). If A/K is a G-Galois extension and G is a cyclic
group, then A is a commutative ring.

This theorem was proved by Harrison in case K is a field and the general
case was proved by Demeyer. The author proved this theorem when A is a simple
algebra [6]. Here, we shall give a shorter proof of the theorem.

At first, we shall assume that K is an integral domain. Let @ be the quotient
field of K. Then A®XQ/Q is a G-Galois extension and since G is a cyclic group

K
and @ is a field, A®Q is commutative by the result of Harrison. On the other
K
hand, A is a projective K-module since A/K is a G-Galois extension. Hence we
have the exact sequence

0—A (;{9 K—A gf) Q.

Thus A is a commutative ring.

Let C be the center of A. If we prove that G=~G* and C/K is a G*-Galois
extension in the general case, the theorem is valid by Remark 2. Let o(x1)eG
and we suppose that m is a maximal ideal of C that contains the set {s(c)—c; ceC}.
We set M=Am. o induces the automorphism & of A’=A/IM as in the proof of
Proposition 2.
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We set p=MNK=mNK. Then p is a prime ideal of K. Since ARQK/p/K]p is
K

a G-Galois extension and KJp is an integnal domain, A(;?K/p is a commutative
ring. Hence A(?K/p=i(0(>?K/p) (11, Cor. 1.6), where i(C@K/p) is the natural
image of C@K/p into A@{K/p. Hence A@I?K/p:A/Ap:C+Ap/Ap, so A=C+Ap
DMDAp. Thus A=C+M. If ceC+M=A, o(c)—ceM, and so =1. But =1 by
Lemma 2. From this contradiction, given ¢(%1)eG and any maximal ideal m of C,
there exists an element ¢ in C such that ¢(c)—c¢m. Thus G=G* and A/K is a
G*-Galois extensions.

[1]

[2]
[31]

[4]
[51]
[6]
[7]
[81]
[91]

REFERENCES

AUSLANDER, M., aND O. GoLpMmAN, The Brauer group of a commutative ring.
Trans. Amer. Math. Soc. 97 (1960), 367-409.
CarTAN, H., AND S. EILENBERG, Homological algebra. Princeton (1956).
Cuase, S. U, D. K. Harrison, AND A. RoOsSENBERG, Galois theory and Galois
cohomology of commutative rings. Mem. Amer. Math. Soc. 52 (1965), 15-33.
DEMEYER, F. R.,, Some notes on the general Galois theory of rings. Osaka Math.
J. 2 (1965), 117-127.

HiraTa, K., anD K. Sucano, On semi-simple extensions and separable extensions
over non-commutative rings. J. Math. Soc. Japan 18 (1966), 360-373.

InaTOMI, A., Remark on Galois theory of simple ring. Kodai Math. Sem. Rep.
14 (1962), 160-161.

Kanzakl, T., On commutator rings and Galois theory of separable algebra.
Osaka J. Math. 1 (1964), 103-115.

MiyasHiTA, Y., Finite outer Galois theory of non-commutative rings. J. Fac.
Sci. Hokkaido Univ., Ser. I, 19 (1966), 114-134.

MivasHiTA, Y., Locally finite outer Galois theory. J. Fac. Sci. Hokkaido Univ.,
Ser. I, 20 (1967), 1-26.

MEenj1 UNIVERSITY.



