A NOTE ON GALOIS EXTENSION OF SEPARABLE ALGEBRAS

By Akira Inatomi

Introduction. In [7], Kanzaki established a Galois theory of central separable algebras. Further Miyashita introduced the notion of outer G-Galois extension and extended the Galois theory of commutative rings (see [3]) to general rings in [8].

This note consists of three sections. In §1 we shall show some property of a certain subalgebra in a separable algebra over a commutative ring. In §2 we shall give some relationship between a Galois extension in the sense of Kanzaki and that in the sense of Miyashita. In §3 we shall give a shorter proof of the following Harrison-Demeyer's theorem: Let A be an algebra over a commutative ring K. If A/K is a G-Galois extension and G is a cyclic group, then A is commutative.

Throughout this note all rings have identities, all modules are unitary and all ring homomorphisms carry the identity into the identity.

§1. Let K be a commutative ring. Let A and B be two K-algebras and $A \supset B$. We denote by B^{0} the opposite algebra of B. If M is a left A-, right B-module, we can convert M into a left $A \bigotimes_{K} B^{0}$ -module. In particular, A itself may be regarded as a left $A \bigotimes_{K} B^{0}$ -module.

Now, let M be a left A-, right B-module. If we define the map of

$$\operatorname{Hom}_{A \bigotimes B^0}(A, M) \to M$$

by

$$h \mapsto h(1), h \in \operatorname{Hom}_{A \otimes B^0}(A, M),$$

it is easily seen that the map induces an isomorphism

 α : Hom_{$A\otimes B^0$} $(A, M) \simeq M^B$,

where M^B is the subset of M consisting of all m in M such that xm = mx for all x in B.

Let A' be a K-algebra and $f: A \to A'$ a K-algebra epimorphism. We set B'=f(B). We can regard A' as a left $A \bigotimes B^{0}$ -module by setting

$$(a \otimes b^{0})a' = f(a)a'f(b)$$
 for $a \in A$, $b \in B$ and $a' \in A'$;

then f may be regarded as a left $A \bigotimes_{K} B^{0}$ -epimorphism.

Received August 6, 1970.

LEMMA 1. If A is a projective $A \bigotimes_{K} B^{0}$ -module, then $f(V_{A}(B)) = V_{A'}(B')$.¹⁾ Proof. We have a commutative diagram

where α and α' are the above mentioned isomorphisms and $f^* = \operatorname{Hom}_{A \bigotimes B^0}(1, f)$. f^* is an epimorphism since A is $A \bigotimes B^0$ -projective. Thus f is an epimorphism.

PROPOSITION 1. Let A be a separable algebra over K. If A is pojective as a right B-module, then $f(V_A(B)) = V_{A'}(B')$.

Proof. Since A is projective as a right B-module, A is projective as a left B-module. Hence $A \bigotimes_{K} A^{0}$ is projective as a left $A \bigotimes_{K} B^{0}$ -module ([2], chap. IX, § 2). A is projective as a left $A \bigotimes_{K} A^{0}$ -module since A is separable over K. Thus A is projective as a left $A \bigotimes_{K} B^{0}$ -module ([2], chap. II, § 6). We obtain the proposition by Lemma 1.

COROLLARY 1. If A satisfies the hypothesis of Proposition 1, and if $V_A(B)$ is the center C of A, then $V_{A'}(B')$ is the center C' of A'.

Proof. Since A is separable over K, f(C) is the center C' of A' ([1], Prop. 1.4). Thus $V_{A'}(B')=f(V_A(B))=f(C)=C'$.

REMARK 1. We can regard A also as a left $B \bigotimes_{K} A^{0}$ -module. If we make the same argument as above for left $B \bigotimes_{K} A^{0}$ -modules, we have the following result: Let A be a separable algebra over K. If A is projective as a left B-module, then $f(V_{A}(B)) = V_{A'}(B')$.

COROLLARY 2. Let A be a separable algebra over the center C of A. Let B be a separable algebra over C and $A \supset B \supset C$. Then $f(V_A(B)) = V_{A'}(B')$.

Proof. Since A is a projective B-module by Lemma 2 of [7], we obtain the corollary by Proposition 1.

§ 2. Let A be a ring and G a finite group of automorphisms of A. We denote by A^{a} the subring of all elements of A left invariant by all the automorphisms in G. We set $B=A^{a}$.

We call A/B a *G*-Galois extension if there exist elements $x_1, \dots, x_n, y_1, \dots, y_n$ of A such that $\sum_{i=1}^{n} x_i \sigma(y_i) = \delta_{1,\sigma}$ for all $\sigma \in G$.

Following Miyashita [8], we call A/B an outer G-Galois extension if A/B is a

1) We denote by $V_A(B)$ the commutor of $B ext{ in } A$.

AKIRA INATOMI

G-Galois extension and $V_A(B) = C$ (the center of A).

LEMMA 2. Let A/B be a G-Galsis extension. If we give $\sigma(\pm 1) \in G$ and any maximal ideal \mathfrak{P} of A, there exists an element a in A such that $\sigma(a) - a \notin \mathfrak{P}$.

Proof. We can prove the lemma by the same way as the proof of Theorem 1.3, (f) in [3].

If A/B is an outer G-Galois extension, the center R of B is $B \cap C$ and $R = C^{G^*}$, where G^* is the group of automorphisms of C induced by G.

PROPOSITION 2. Let A|B be an outer G-Galois extension. Let A be a separable algebra over C (central separable algebra). If C is a separable algebra over R, then $G \simeq G^*$ and C|R is a G*-Galois extension.

Proof. A is a separable algebra over R since A is separable over C and C is separable over R. Let H be the cyclic subgroup of G generated by $\sigma(\pm 1)$ in G and we set $L=A^{H}$. It is easily seen that A/L is an outer H-Galois extension. A is projective as a right L-module ([4], Th. 1).

Now we suppose that there exists a maximal ideal \mathfrak{p} of C that contains the set $\{\sigma(c)-c; c\in C\}$. We set $\mathfrak{P}=A\mathfrak{p}$. Then \mathfrak{P} is a maximal two-sided ideal of A and $\mathfrak{P}\cap C=\mathfrak{p}$ ([1], Cor. 3. 2). We set $A'=A/\mathfrak{P}$ and $C'=C/\mathfrak{p}$. Let f be the natural epimorphism $A\to A'$ and we set $\bar{x}=f(x)$ for $x\in A$. Then A' is a finite dimentional simple algebra with the center C'. Moreover, $V_{A'}(f(L))=C'$ by Corollary 1. $\rho(\mathfrak{P})=\mathfrak{P}$ for any ρ in H since $\sigma(x)-x\in\mathfrak{p}$ for any x in \mathfrak{p} . Hence ρ induces an automorphism $\overline{\rho}$ of A' by setting $\overline{\rho}(\overline{x})=\overline{\rho(x)}$ for $x\in A$ and the map given by $\rho\to\overline{\rho}$ induces an epimorphism from H into the group H of automorphisms of A' generated by $\overline{\sigma}$. But this epimorphism is an isomorphism by Lemma 2.

We set $L' = A'^{H}$. Then $L' \supset C'$ and $V_{A'}(L') = C'$ since $L' \supset f(L)$. Since $L' \supset C'$, $\bar{\sigma}$ is an inner automorphism induced by a regular element in $V_{A'}(L') = C'$. Hence $H \simeq \bar{H} = \{1\}$. This is impossible since $\sigma \neq 1$. Thus, given $\sigma(\neq 1) \in G$ and any maximal ideal \mathfrak{p} of C, there exists an element c is C such that $\sigma(c) - c \notin \mathfrak{p}$. The proposition follows easily from Theorem 1.3 of [3].

COROLLARY 3 ([9], Prop. 2. 11.). Let A|B be an outer G-Galois extension. If B is a separable algebra over R, then $G \simeq G^*$ and C|R is a G*-Galois extension.

Proof. Since A/B is a separable extension ([5], Prop. 3. 3) and B/R is a separable extension, A is a separable algebra over R. Hence A is a central separable algebra and C is separable over R ([1], Th. 2. 3). The corollary follows easily from Proposition 2.

REMARK 2. From the result of Proposition 2, under the same assumption as in the proposition it follows that A/B is a Galois extension in the sense of Kanzaki ([7], 3, (#)). Hence B is separable over R and $A=BC\simeq B\bigotimes_R C^{(2)}$ Conversely, if A/B is a Galois extension in the sense of Kanzaki, it follows easily that A/B is an

200

²⁾ We denote BC the subring of A generated by B and C.

outer G-Galois extension and C is separable over R.

REMARK 3. If we use Th. 3.3 of [1], we can prove Corollary 3 in the following way, too. It follows easily that *BC* is separable over *C* and *C* is the center of *BC*. $V_A(BC)=C$, and so $A=V_A(C)=V_A(V_A(BC))=BC$ by Th. 3.3 of [1]. If we choose any maximal ideal \mathfrak{p} of *C* and $\sigma(\mathfrak{t}) \in G$ and we set $\mathfrak{P}=A\mathfrak{p}$, there exists an element *a* in *A* such that $\sigma(a)-a \notin \mathfrak{P}$. We can write *a* as

$$a=b_1c_1+\cdots+b_rc_r$$

where $c_i \in C$, $b_i \in B$, $1 \leq i \leq r$. Then

$$\sigma(a) - a = b_1(\sigma(c_1) - c_1) + \dots + b_r(\sigma(c_r) - c_r).$$

If $\sigma(c_i) - c_i \in \mathfrak{p}$ for every c_i , then $\sigma(a) - a \in \mathfrak{P}$. Thus there exists an element c_i in C such that $\sigma(c_i) - c_i \notin \mathfrak{p}$.

REMARK 4. Here, we shall use the same notation as in Theorem 5 of [7]. When C is not necessarily an integral domain, in Th. 5 of [7] we must replace 4) with the following: if Ω is an intermediate ring between Λ and Γ such that Ω is separable over S and S is a separable G-strong R-subalgebra of C (see [3]), where $S=C\cap\Omega$, then Λ/Ω is a Galois extension with respect to H where $H=\{\sigma \in G; \sigma(x)=x \text{ for all } x \in \Omega\}$. The above fact is proved by the same way as the proof of Th. 5, 4) of [7]. The above assumption is equivalent to that of 4), when C is an integral domain.

COROLLARY 4. Let A be a separable algebra over C. If A|B is an outer G-Galois extension, then $G \simeq G^*$.

Proof. Let *H* be the kernel of the natural epimorphism

 $G \rightarrow G^*$.

We set $L=A^{H}$. Then A/L is an outer *H*-Galois extension and the center of *L* is *C*. Hence $H \simeq H^* = \{1\}$ by Proposition 2. Thus $G \simeq G^*$.

Let $\sum_{\sigma \in G} \bigoplus Au_{\sigma}$ be the *trivial crossed product* of A with G. Following Miyashita [8], G is said *completely outer* if Au_{σ} and Au_{ρ} ($\sigma \neq \rho$) are unrelated as twosides A-modules.³⁾

If G is completely outer, A/B is an outer G-Galois extension ([8], Prop. 6.4).

Let A' be a ring and f a ring epimorphism from A into A'. Let G' be a finite group of automorphisms of A' such that $G \xrightarrow{g} G'$ and $f(\sigma(x)) = \sigma' f(x)$, where $x \in A$, $\sigma \in G$ and $\sigma' = g(\sigma)$. Then we can regard $A' u_{\sigma'}A'$ as a two-sided A-module by setting

$$au_{\sigma'}b=f(a)u_{\sigma'}f(b), \quad a, b\in A.$$

³⁾ See [8], §6.

If we define the map

$$g_{\sigma}: M_{\sigma} = A u_{\sigma} \rightarrow M_{\sigma'} = A' u_{\sigma'}$$

by

$$au_{\sigma} \mapsto f(a)u_{\sigma'},$$

then g_{σ} is a two-sided A-module epimorphism.

LEMMA 3. If G is completely outer, then G' is completely outer.

Proof. If $M_{\sigma'}$ and $M_{\rho'}$ are related, $M'_1/N'_1 \simeq M'_2/N'_2$, where M'_1/N'_1 and M'_2/N'_2 are nonzero subquotients of $M_{\sigma'}$ and $M_{\rho'}$, respectively. We set $M_1 = g_{\sigma}^{-1}(M'_1)$, $N_1 = g_{\sigma}^{-1}(N'_1)$, $M_2 = g_{\rho}^{-1}(M'_2)$ and $N_2 = g_{\rho}^{-1}(N'_2)$. Then $M_1/N_2 \simeq M'_1/N'_1 \simeq M'_2/N'_2 \simeq M_2/N_2$, and so M_{σ} and M_{ρ} are related.

PROPOSITION 3. Let A be a separable algebra over the center C. If G is completely outer, then $G \simeq G^*$ and C/R is a G*-Galois extension.

Proof. We shall use the same notation as in the proof of Proposition 2. It follows that the cyclic group H is completely outer. Hence the H is completely outer by Lemma 3, and so $V_{A'}(A'^{H})=C'$. Thus we can prove the proposition by the same way as the proof of Proposition 2.

§ 3. Let K be a commutative ring. Let A be an algebra over K.

THEOREM ([4], § 2, Th. 11). If A/K is a G-Galois extension and G is a cyclic group, then A is a commutative ring.

This theorem was proved by Harrison in case K is a field and the general case was proved by Demeyer. The author proved this theorem when A is a simple algebra [6]. Here, we shall give a shorter proof of the theorem.

At first, we shall assume that K is an integral domain. Let Q be the quotient field of K. Then $A \bigotimes_{K} Q/Q$ is a G-Galois extension and since G is a cyclic group and Q is a field, $A \bigotimes_{K} Q$ is commutative by the result of Harrison. On the other hand, A is a projective K-module since A/K is a G-Galois extension. Hence we have the exact sequence

$$0 \to A \bigotimes_{K} K \to A \bigotimes_{K} Q.$$

Thus A is a commutative ring.

Let C be the center of A. If we prove that $G \simeq G^*$ and C/K is a G^* -Galois extension in the general case, the theorem is valid by Remark 2. Let $\sigma(\pm 1) \in G$ and we suppose that m is a maximal ideal of C that contains the set $\{\sigma(c) - c; c \in C\}$. We set $\mathfrak{M} = A\mathfrak{m}$. σ induces the automorphism $\overline{\sigma}$ of $A' = A/\mathfrak{M}$ as in the proof of Proposition 2.

202

We set $\mathfrak{p}=\mathfrak{M}\cap K=\mathfrak{m}\cap K$. Then \mathfrak{p} is a prime ideal of K. Since $A\bigotimes_{K}K/\mathfrak{p}/K/\mathfrak{p}$ is a G-Galois extension and K/\mathfrak{p} is an integnal domain, $A\bigotimes_{K}K/\mathfrak{p}$ is a commutative ring. Hence $A\bigotimes_{K}K/\mathfrak{p}=i(C\bigotimes_{K}K/\mathfrak{p})$ ([1], Cor. 1. 6), where $i(C\bigotimes_{K}K/\mathfrak{p})$ is the natural image of $C\bigotimes_{K}K/\mathfrak{p}$ into $A\bigotimes_{K}K/\mathfrak{p}$. Hence $A\bigotimes_{K}K/\mathfrak{p}\simeq A/A\mathfrak{p}=C+A\mathfrak{p}/A\mathfrak{p}$, so $A=C+A\mathfrak{p}$ $\supset \mathfrak{M}\supset A\mathfrak{p}$. Thus $A=C+\mathfrak{M}$. If $c\in C+\mathfrak{M}=A$, $\sigma(c)-c\in\mathfrak{M}$, and so $\bar{\sigma}=1$. But $\bar{\sigma}\neq 1$ by Lemma 2. From this contradiction, given $\sigma(\neq 1)\in G$ and any maximal ideal \mathfrak{m} of C, there exists an element c in C such that $\sigma(c)-c\notin\mathfrak{m}$. Thus $G\simeq G^*$ and A/K is a G^* -Galois extensions.

References

- AUSLANDER, M., AND O. GOLDMAN, The Brauer group of a commutative ring. Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [2] CARTAN, H., AND S. EILENBERG, Homological algebra. Princeton (1956).
- [3] CHASE, S. U., D. K. HARRISON, AND A. ROSENBERG, Galois theory and Galois cohomology of commutative rings. Mem. Amer. Math. Soc. 52 (1965), 15–33.
- [4] DEMEYER, F. R., Some notes on the general Galois theory of rings. Osaka Math. J. 2 (1965), 117-127.
- [5] HIRATA, K., AND K. SUGANO, On semi-simple extensions and separable extensions over non-commutative rings. J. Math. Soc. Japan 18 (1966), 360–373.
- [6] INATOMI, A., Remark on Galois theory of simple ring. Ködai Math. Sem. Rep. 14 (1962), 160-161.
- [7] KANZAKI, T., On commutator rings and Galois theory of separable algebra. Osaka J. Math. 1 (1964), 103-115.
- [8] MIYASHITA, Y., Finite outer Galois theory of non-commutative rings. J. Fac. Sci. Hokkaido Univ., Ser. I, 19 (1966), 114–134.
- [9] MIYASHITA, Y., Locally finite outer Galois theory. J. Fac. Sci. Hokkaido Univ., Ser. I, 20 (1967), 1-26.

Meiji University.