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Abstract

Recently there has been some interest in difference equations and systems whose
forms resemble some trigonometric formulas. One of the classes of such systems is
the so-called hyperbolic-cotangent class of systems of difference equations. The
corresponding two-dimensional class has two delays denoted by k and l. So far the
class has been studied for the case k �= l, and it was shown that it is practically solvable
when max{k, l} ≤ 2. In this note we show practical solvability of the system in the case
k = l, not only for small values of k and l, but for all k = l ∈N, which is the first result of
such generality.
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1 Introduction

Let, as usual, N denote the set of natural numbers, N0 of nonnegative integers, Z of inte-

gers, R of reals, C of complex numbers, and let k = l,m, where l,m ∈ Z, l ≤ m, denote the

set of all integers k such that l ≤ k ≤ m.

Finding closed-form formulas for solutions to difference equations and systems is one

of the first topics investigated in the branch of mathematics. One of the first solvable dif-

ference equations appearing in the literature was the following:

an = c2an–1 + c1an–2, n≥ 2, (1)

where c1, c2 ∈ R,

c1 �= 0 and c22 �= –4c1. (2)

In [1] de Moivre showed that, under the conditions in (2), a general solution to equation

(1) is

an =
(a1 – s2a0)s

n
1 + (s1a0 – a1)s

n
2

s1 – s2
, n ∈N0, (3)
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where sj, j = 1, 2, are the roots of the polynomial Q(s) = s2 – c2s – c1. From c1 �= 0, we see

that Q(s) has two nonzero roots, whereas the second condition in (2) shows that they are

distinct.

The method in [1] was used in [2] for finding general solutions to some other linear dif-

ference equations, including the solution to equation (1) in the case c2 + 4c1 = 0. For more

information on linear difference equations, consult for instance [3–8]. For some recent

applications of linear difference equations in solvability of nonlinear ones, see for instance

[9–19]. Sometimes it is not possible to find general solutions to difference equations and

systems, but it is possible to find their invariants [20–25]. There are also cases when they

can help in solvability [26, 27]. For various applications, see for instance [28–32].

There are classes of difference equationswhich are similar to some trigonometric formu-

las. The similarity suggests potential solvability of the difference equations in the form. An

example of such a difference equation appeared long time ago in [33]. One of such classes

is the hyperbolic-cotangent class of difference equations (see, for instance, [15]).

Motivated by the hyperbolic-cotangent class of equations, by our paper [11], and in gen-

eral by papers by Papaschinopoulos and Schinas on systems of difference equations (see,

e.g., [20–25, 34–37]), we have initiated an investigation of the corresponding classes of

hyperbolic-cotangent systems of difference equations, that is, of the following ones:

xn+1 =
un–kvn–l + a

un–k + vn–l
, yn+1 =

wn–ksn–l + a

wn–k + sn–l
, n ∈N0, (4)

where k, l ∈N0, parameter a and initial values are complex numbers, and where un, vn,wn,

and sn are xn or yn.

We have shown that for some values of k and l, all the systems in (4) are solvable in

closed form. More concretely, in [18] and [19] the systems when k = 0 and l = 1 were

solved. Another solution to the solvability problem in this case was given in [13]. Further,

in [12] the systems in the case when k = 1 and l = 2 were solved, and finally in [38] the

systems were solved in the case k = 0 and l = 2. The methods used therein are closely

related to those used in the study of product-type systems (see, for instance, [39] as well

as the related references therein).

To complete a solution to the solvability problem for the systems in the case max{k, l} ≤
2, it is needed to deal with the case when k = l. Hence, in this paper we study the following

systems of difference equations:

xn+1 =
un–kvn–k + a

un–k + vn–k
, yn+1 =

wn–ksn–k + a

wn–k + sn–k
, n ∈ N0, (5)

where k ∈N0.

Since for a = 0 some simple and obvious changes of variables transform the systems in

(5) to some homogeneous linear ones with constant coefficients, the case will be omitted

(see also [13]).

First note that if k ∈N, then system (5) is with interlacing indices [14, 16]. Namely, let

x(i)m = xm(k+1)–i, y(i)m = ym(k+1)–i, u(i)m = um(k+1)–i,

v(i)m = vm(k+1)–i, w(i)
m = wm(k+1)–i, s(i)m = sm(k+1)–i,
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form ∈N0, and i = 0,k. Then it is easy to see that

x
(i)
m+1 =

u
(i)
m v

(i)
m + a

u
(i)
m + v

(i)
m

, y
(i)
m+1 =

w
(i)
m s

(i)
m + a

w
(i)
m + s

(i)
m

(6)

for every m ∈ N0, and i = 0,k. Hence, the sequences (x
(i)
m , y

(i)
m )m∈N0 , i = 0,k, are solutions

to system (5) with k = 0, implying that each solution to (5) consists of k + 1 unrelated

solutions to the system in the case k = 0. This shows that it is of some interest to study

only the systems in the case when k = 0, which is done in the sections that follow.

2 Product-type systems associated with the ones in (5)

The systems of difference equations in (5) with k = 0 are naturally connected to some

product-type ones. To show this, first note that the following simple relations hold:

xn+1 ±
√
a =

(un ±
√
a)(vn ±

√
a)

un + vn
and yn+1 ±

√
a =

(wn ±
√
a)(sn ±

√
a)

wn + sn

for n ∈N0, from which we obtain

xn+1 +
√
a

xn+1 –
√
a
=
un +

√
a

un –
√
a

·
vn +

√
a

vn –
√
a
,

yn+1 +
√
a

yn+1 –
√
a
=
wn +

√
a

wn –
√
a

·
sn +

√
a

sn –
√
a

(7)

for n ∈N0.

Now note that the system of difference equations (7) consists of the following nine ones:

xn+1 +
√
a

xn+1 –
√
a
=

(

xn +
√
a

xn –
√
a

)2

,
yn+1 +

√
a

yn+1 –
√
a
=

(

xn +
√
a

xn –
√
a

)2

, (8)

xn+1 +
√
a

xn+1 –
√
a
=

(

xn +
√
a

xn –
√
a

)2

,
yn+1 +

√
a

yn+1 –
√
a
=
yn +

√
a

yn –
√
a

·
xn +

√
a

xn –
√
a
, (9)

xn+1 +
√
a

xn+1 –
√
a
=

(

xn +
√
a

xn –
√
a

)2

,
yn+1 +

√
a

yn+1 –
√
a
=

(

yn +
√
a

yn –
√
a

)2

, (10)

xn+1 +
√
a

xn+1 –
√
a
=
xn +

√
a

xn –
√
a

·
yn +

√
a

yn –
√
a
,

yn+1 +
√
a

yn+1 –
√
a
=

(

xn +
√
a

xn –
√
a

)2

, (11)

xn+1 +
√
a

xn+1 –
√
a
=
xn +

√
a

xn –
√
a

·
yn +

√
a

yn –
√
a
,

yn+1 +
√
a

yn+1 –
√
a
=
yn +

√
a

yn –
√
a

·
xn +

√
a

xn –
√
a
, (12)

xn+1 +
√
a

xn+1 –
√
a
=
xn +

√
a

xn –
√
a

·
yn +

√
a

yn –
√
a
,

yn+1 +
√
a

yn+1 –
√
a
=

(

yn +
√
a

yn –
√
a

)2

, (13)

xn+1 +
√
a

xn+1 –
√
a
=

(

yn +
√
a

yn –
√
a

)2

,
yn+1 +

√
a

yn+1 –
√
a
=

(

xn +
√
a

xn –
√
a

)2

, (14)

xn+1 +
√
a

xn+1 –
√
a
=

(

yn +
√
a

yn –
√
a

)2

,
yn+1 +

√
a

yn+1 –
√
a
=
yn +

√
a

yn –
√
a

·
xn +

√
a

xn –
√
a
, (15)

xn+1 +
√
a

xn+1 –
√
a
=

(

yn +
√
a

yn –
√
a

)2

,
yn+1 +

√
a

yn+1 –
√
a
=

(

yn +
√
a

yn –
√
a

)2

(16)

for n ∈N0.
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The following substitutions

ζn =
xn +

√
a

xn –
√
a

and ηn =
yn +

√
a

yn –
√
a

yield

xn =
√
a
ζn + 1

ζn – 1
and yn =

√
a
ηn + 1

ηn – 1
, (17)

so that (8)–(16) become

ζn+1 = ζ
2
n , ηn+1 = ζ

2
n , (18)

ζn+1 = ζ
2
n , ηn+1 = ηnζn, (19)

ζn+1 = ζ
2
n , ηn+1 = η

2
n, (20)

ζn+1 = ζnηn, ηn+1 = ζ
2
n , (21)

ζn+1 = ζnηn, ηn+1 = ηnζn, (22)

ζn+1 = ζnηn, ηn+1 = η
2
n, (23)

ζn+1 = η
2
n, ηn+1 = ζ

2
n , (24)

ζn+1 = η
2
n, ηn+1 = ηnζn, (25)

ζn+1 = η
2
n, ηn+1 = η

2
n (26)

for n ∈N0.

Now note that if we show the solvability of systems (18)–(26), this together with the two

relations in (17) will show the solvability of systems (8)–(16). Because of this, our main

task is to show that there are closed-form formulas for solutions to systems (18)–(26).

3 Main results

This section considers the problem of solvability of systems (18)–(26). The systems are

considered separately, one by one. It is shown that they all are really solvable by pre-

senting some closed-form formulas for their general solutions. As a consequence, some

closed-form formulas for general solutions to systems (8)–(16) are obtained. In this way

it is shown that each of the systems of difference equations is practically solvable.

3.1 System (18)

From the first equation in the system of difference equations (18) we have

ζn = ζ
2
n–1, n ∈ N, (27)

from which by iteration and a simple inductive argument we obtain

ζn = ζ
2n

0 , n ∈N0. (28)
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By using (28) in the second equation in (18) it follows that

ηn = ζ
2n

0 , n ∈N. (29)

Using relations (28) and (29) in (17), we see that the following theorem holds.

Theorem 1 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( x0+

√
a

x0–
√
a
)2

n
+ 1

( x0+
√
a

x0–
√
a
)2

n
– 1

, n ∈N0,

yn =
√
a
( x0+

√
a

x0–
√
a
)2

n
+ 1

( x0+
√
a

x0–
√
a
)2

n
– 1

, n ∈ N,

present a general solution to system (8).

3.2 System (19)

Bearing in mind that the first equation in (19) is the same as in (18), we have that formula

(28) also holds in this case. Employing (28) in the second equation in (19), we have

ηn = ηn–1ζn–1 = ηn–1ζ
2n–1

0 , n ∈N. (30)

From (30) and by a simple inductive argument, we obtain

ηn = η0

n
∏

j=1

ζ
2j–1

0 = η0ζ

∑n
j=1 2

j–1

0 ,

from which together with the formula for the sum of a finite geometric progression it

follows that

ηn = η0ζ
2n–1
0 , n ∈N0. (31)

Using relations (28) and (31) in (17), we see that the following theorem holds.

Theorem 2 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( x0+

√
a

x0–
√
a
)2

n
+ 1

( x0+
√
a

x0–
√
a
)2

n
– 1

, n ∈N0,

yn =
√
a
( y0+

√
a

y0–
√
a
)( x0+

√
a

x0–
√
a
)2

n–1 + 1

( y0+
√
a

y0–
√
a
)( x0+

√
a

x0–
√
a
)2

n–1 – 1
, n ∈N0,

present a general solution to system (9).
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3.3 System (20)

Since the first equation in (20) is the same as in (18), formula (28) also holds in this case. On

the other hand, the second equation in (20) is obtained from the first one by interchanging

letters ζ and η, from which along with (28) it follows that

ηn = η
2n

0 , n ∈N0. (32)

Using relations (28) and (32) in (17), we see that the following theorem holds.

Theorem 3 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( x0+

√
a

x0–
√
a
)2

n
+ 1

( x0+
√
a

x0–
√
a
)2

n
– 1

, n ∈N0,

yn =
√
a
( y0+

√
a

y0–
√
a
)2

n
+ 1

( y0+
√
a

y0–
√
a
)2

n
– 1

, n ∈N0,

present a general solution to system (10).

3.4 System (21)

From the equations in (21) we have

ζn = ζn–1ηn–1 = ζn–1ζ
2
n–2, n≥ 2. (33)

If we use the following notations:

a1 := 1 and b1 := 2,

then equation (33) can be written as follows:

ζn = ζ
a1
n–1ζ

b1
n–2, n≥ 2. (34)

Employing relation (33), where index n is replaced by n – 1 in (34), we have

ζn = ζ
a1
n–1ζ

b1
n–2 =

(

ζn–2ζ
2
n–3

)a1
ζ
b1
n–2 = ζ

a1+b1
n–2 ζ

2a1
n–3

= ζ
a2
n–2ζ

b2
n–3, (35)

where a2 and b2 are clearly defined by

a2 := a1 + b1 and b2 := 2a1. (36)

Relations (35) and (36) suggest that the following ones hold:

ζn = ζ
ak
n–kζ

bk
n–k–1 (37)
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and

ak = ak–1 + bk–1, bk = 2ak–1 (38)

for 2≤ k ≤ n – 1.

Indeed, assume that (37) and (38) hold for k such that 2 ≤ k ≤ n – 1. Then, by using

relation (33) where index n is replaced by n – k in (37), we have

ζn = ζ
ak
n–kζ

bk
n–k–1

=
(

ζn–k–1ζ
2
n–k–2

)ak
ζ
bk
n–k–1

= ζ
ak+bk
n–k–1ζ

2ak
n–k–2

= ζ
ak+1
n–k–1ζ

bk+1
n–k–2,

where ak+1 and bk+1 are clearly defined by

ak+1 := ak + bk and bk+1 := 2ak

for 2 ≤ k ≤ n – 2. This inductive step along with (35) and (36) shows that (37) and (38)

hold, as claimed.

Let k = n – 1. Then from (37) we have

ζn = ζ
an–1
1 ζ

bn–1
0 = (ζ0η0)

an–1ζ
bn–1
0 = ζ

an–1+bn–1
0 η

an–1
0 .

From this and since an–1 + bn–1 = an, we have

ζn = ζ
an
0 η

an–1
0 . (39)

Now note that from (38) we have

an = an–1 + 2an–2, n≥ 3. (40)

Moreover, relation (40) can be used to calculate an also for n ≤ 0 by using the following

obvious consequence of it:

an–2 =
an – an–1

2
. (41)

Since a1 = 1 and a2 = 3, from (41) it follows that

a0 = 1 and a–1 = 0. (42)

By using (42) it is easy to see that formula (39) holds also for n = 0.

The characteristic polynomial associated with equation (40) is P2(s) = s2 – s – 2, and

clearly their roots are

s1 = 2 and s2 = –1. (43)
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Hence, by using the de Moivre formula (3), with s1 and s2 given in (43), and c1 = 2 and

c2 = 1, we obtain

an =
2n+1 – (–1)n+1

3
, n ∈ Z. (44)

Using (44) in (39), we get

ζn = ζ
2n+1–(–1)n+1

3
0 η

2n–(–1)n

3
0 , n ∈N0. (45)

By using (45) in the second equation in (21), we obtain

ηn = ζ
2n+1–2(–1)n

3
0 η

2n–2(–1)n–1

3
0 , n ∈N0. (46)

Using relations (45) and (46) in (17), we see that the following theorem holds.

Theorem 4 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( x0+

√
a

x0–
√
a
)
2n+1–(–1)n+1

3 ( y0+
√
a

y0–
√
a
)
2n–(–1)n

3 + 1

( x0+
√
a

x0–
√
a
)
2n+1–(–1)n+1

3 ( y0+
√
a

y0–
√
a
)
2n–(–1)n

3 – 1
, n ∈N0,

yn =
√
a
( x0+

√
a

x0–
√
a
)
2n+1–2(–1)n

3 ( y0+
√
a

y0–
√
a
)
2n–2(–1)n–1

3 + 1

( x0+
√
a

x0–
√
a
)
2n+1–2(–1)n

3 (
y0+

√
a

y0–
√
a
)
2n–2(–1)n–1

3 – 1
, n ∈N0,

present a general solution to system (11).

3.5 System (22)

First note that we have

ζn = ηn, n ∈N. (47)

Using (47) in the first equation in (22), we have that (27) holds, but this time for n ≥ 2,

from which it follows that

ζn = ζ
2n–1

1 , n ∈ N,

and consequently,

ζn = ζ
2n–1

0 η
2n–1

0 , n ∈N. (48)

From (47) and (48) we have

ηn = ζ
2n–1

0 η
2n–1

0 , n ∈N. (49)

Using relations (48) and (49) in (17), we see that the following theorem holds.
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Theorem 5 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( x0+

√
a

x0–
√
a
)2

n–1
( y0+

√
a

y0–
√
a
)2

n–1
+ 1

( x0+
√
a

x0–
√
a
)2

n–1
( y0+

√
a

y0–
√
a
)2

n–1
– 1

, n ∈N,

yn =
√
a
( x0+

√
a

x0–
√
a
)2

n–1
( y0+

√
a

y0–
√
a
)2

n–1
+ 1

( x0+
√
a

x0–
√
a
)2

n–1
(
y0+

√
a

y0–
√
a
)2

n–1
– 1

, n ∈N,

present a general solution to system (12).

3.6 System (23)

This system is obtained from the system in (19) by interchanging letters ζ and η. Hence,

we have that the following formulas hold:

ζn = ζ0η
2n–1
0 , n ∈N0, (50)

and

ηn = η
2n

0 , n ∈N0. (51)

Using relations (50) and (51) in (17), we see that the following theorem holds.

Theorem 6 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( x0+

√
a

x0–
√
a
)( y0+

√
a

y0–
√
a
)2

n–1 + 1

( x0+
√
a

x0–
√
a
)( y0+

√
a

y0–
√
a
)2

n–1 – 1
, n ∈ N0,

yn =
√
a
(
y0+

√
a

y0–
√
a
)2

n
+ 1

(
y0+

√
a

y0–
√
a
)2

n
– 1

, n ∈N0,

present a general solution to system (13).

3.7 System (24)

By using the second equation in (24) in the first one, we obtain

ζn = η
2
n–1 = ζ

4
n–2, n≥ 2. (52)

From (52) we have

ζ2n = ζ
4
2(n–1), n ∈N,

from which by iteration and a simple inductive argument we obtain

ζ2n = ζ
4n

0 , n ∈N0, (53)
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and

ζ2n+1 = ζ
4
2(n–1)+1, n ∈ N,

from which by iteration and a simple inductive argument we obtain

ζ2n+1 = ζ
4n

1 = η
22n+1

0 , n ∈N0. (54)

Since this system is symmetric, we have

η2n = η
4n

0 , n ∈N0, (55)

and

η2n+1 = ζ
22n+1

0 , n ∈N0. (56)

Using relations (53)–(56) in (17), we see that the following theorem holds.

Theorem 7 Let a �= 0. Then the following closed-form formulas

x2n =
√
a
( x0+

√
a

x0–
√
a
)4

n
+ 1

( x0+
√
a

x0–
√
a
)4

n
– 1

, n ∈N0,

x2n+1 =
√
a
( y0+

√
a

y0–
√
a
)2

2n+1
+ 1

( y0+
√
a

y0–
√
a
)2

2n+1
– 1

, n ∈N0,

y2n =
√
a
( y0+

√
a

y0–
√
a
)4

n
+ 1

( y0+
√
a

y0–
√
a
)4

n
– 1

, n ∈N0,

y2n+1 =
√
a
( x0+

√
a

x0–
√
a
)2

2n+1
+ 1

( x0+
√
a

x0–
√
a
)2

2n+1
– 1

, n ∈ N0,

present a general solution to system (14).

3.8 System (25)

This system is obtained from the system in (21) by interchanging letters ζ and η. Hence,

we have that the following formulas hold:

ζn = η
2n+1–2(–1)n

3
0 ζ

2n–2(–1)n–1

3
0 (57)

and

ηn = η
2n+1–(–1)n+1

3
0 ζ

2n–(–1)n

3
0 . (58)

Using relations (57) and (58) in (17), we see that the following theorem holds.
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Theorem 8 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( y0+

√
a

y0–
√
a
)
2n+1–2(–1)n

3 ( x0+
√
a

x0–
√
a
)
2n–2(–1)n–1

3 + 1

( y0+
√
a

y0–
√
a
)
2n+1–2(–1)n

3 ( x0+
√
a

x0–
√
a
)
2n–2(–1)n–1

3 – 1
, n ∈N0,

yn =
√
a
( y0+

√
a

y0–
√
a
)
2n+1–(–1)n+1

3 ( x0+
√
a

x0–
√
a
)
2n–(–1)n

3 + 1

( y0+
√
a

y0–
√
a
)
2n+1–(–1)n+1

3 ( x0+
√
a

x0–
√
a
)
2n–(–1)n

3 – 1
, n ∈N0,

present a general solution to system (15).

3.9 System (26)

This system is obtained from the system in (18) by interchanging letters ζ and η. Hence,

we have that the following formulas hold:

ζn = η
2n

0 , n ∈ N, and ηn = η
2n

0 , n ∈N0. (59)

Using (59) in (17), we see that the following theorem holds.

Theorem 9 Let a �= 0. Then the following closed-form formulas

xn =
√
a
( y0+

√
a

y0–
√
a
)2

n
+ 1

( y0+
√
a

y0–
√
a
)2

n
– 1

, n ∈N,

yn =
√
a
(
y0+

√
a

y0–
√
a
)2

n
+ 1

(
y0+

√
a

y0–
√
a
)2

n
– 1

, n ∈N0,

present a general solution to system (16).
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12. Stević, S.: Sixteen practically solvable systems of difference equations. Adv. Differ. Equ. 2019, Article ID 467 (2019)
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