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Abstract: In this paper, we initiate the study of a generalized soliton on a Riemannian manifold,
we find a characterization for the Euclidean space, and in the compact case, we find a sufficient
condition under which it reduces to a quasi-Einstein manifold. We also find sufficient conditions
under which a compact generalized soliton reduces to an Einstein manifold. Note that Ricci solitons
being self-similar solutions of the heat flow, this topic is related to the symmetry in the geometry of
Riemannian manifolds. Moreover, generalized solitons being generalizations of Ricci solitons are
naturally related to symmetry.

Keywords: generalized solitons; Euclidean space; quasi-Einstein manifolds

1. Introduction

One of the most studied structures on a Riemannian manifold is a Ricci soliton and it is
a stable solution of the Ricci flow introduced by Hamilton [1]. Moreover, Ricci solitons are
natural generalizations of Einstein metrics [2]. There is another important generalization
of Einstein manifolds namely quasi-Einstein manifolds [3], which are important in the
Robertson-Walker spacetime. Moreover, an important generalization of Ricci solitons are
Ricci almost solitons [4,5]. There are various types of solitons considered in [1,6-13]. Itis a
natural need to define a most general structure on a Riemannian manifold that should include
existing structures such as Ricci solitons, Ricci almost solitons, quasi-Einstein manifolds, etc.,
as particular cases. A unitary approach of these soliton-types equations is given in the
following. For an n-dimensional Riemannian manifold (M, g), a 1-form 5 and a vector field
¢ on M, we consider the following equation

1 .
Eﬁgg +aRic = Bg+ 1 @71, (1.1)

with &, B, and 7y smooth functions on M, Eég the Lie derivative of ¢ in the direction of
¢, Ric the Ricci tensor of (M, g), which encompasses most of the concepts of solitons
and quasi-Einstein manifold in the Riemannian setting, and we call (M, g, ¢, «,B,7) a
generalized soliton.

We shall denote by X (M) the set of all smooth vector fields of M. If the vector field
¢ in the generalized soliton is of the gradient type, i.e., ¢ := Vf, for a smooth function f
on M, and if we denote by Hess(f) the Hessian of f, by V the Levi-Civita connection of g,
and by Q the Ricci operator, i.e.,

2(QX,Y) =Ric(X,Y),

for X, Y € X(M), then Lzg = 2Hess(f), and thus the definition of the generalized soliton
takes the form
Hess(f) + aRic = Bg+ @1, (1.2)
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with &, B, and 7y smooth functions on M, which is equivalent to
Ap+aQ =Bl + 97 @1,

where Ay is the Hessian operator defined by Hess(f)(X,Y) = g(A X, Y), t is the dual

vector field to the 1-form 7, and I is the identity endomorphism on X(M). In this case, we
say that (M, g, Vf,1,«, B, ) defines a gradient generalized soliton on M.

Recall that for @« = 1, B a constant, and y = 0, the generalized soliton is a Ricci soliton,
and for « = 1 and v = 0, it is a Ricci almost soliton. Moreover, for ¢ a Killing vector field
and « = 1, the generalized soliton is a quasi-Einstein manifold. It is easy to show that the
Euclidean space E" is a gradient generalized soliton (E”, (,), Vf,«, B,0), where (,) is the
Euclidean inner product and

N ™

f(x)=5(x,x), xe€FE".
This raises a question: can we characterize the Euclidean space E" using an n-dimensional
complete and connected gradient generalized soliton (M, g, Vf,a, B,7)? We answer this
question in Section 3, where we find a characterization of the Euclidean space E".

Note that, if we allow in the definition of a generalized soliton (M, g, ¢, a, B, y) the
potential field ¢ to be a Killing vector field, and the function &« = 1, then we get

Ric = pg+yn @1,

that is, the generalized soliton (M, g, ¢, «, B, y) is a quasi-Einstein manifold (see [3]). How-
ever, the requirements that ¢ be a Killing vector field and the function & = 1 are quite strong
conditions and naturally one would like to see whether some weaker conditions could
be found that would render a generalized soliton (M, g, ¢, «, B, y) into a quasi-Einstein
manifold. In Section 4, we consider this question and find conditions on a compact general-
ized soliton (M, g, &, «, B, v) under which it reduces to a quasi-Einstein manifold. In that
section, we also find conditions under which a compact generalized soliton (M, g, ¢, «, B, )
becomes an Einstein manifold.

It is worth noting that the generalized Ricci soliton (M, g, {, «, B, ) generalizes struc-
tures such as Ricci solitons, Ricci almost solitons, Einstein manifolds, quasi-Einstein man-
ifolds, therefore the study of generalized solitons has a modest scope. A future study
could include questions of finding necessary and sufficient conditions on a generalized
Ricci soliton (M, g, ¢, «, B, ) to reduce it to a Ricci soliton or a Ricci almost soliton. Note
that if the potential field ¢ of a generalized Ricci soliton (M, g, ¢, «, B, v) is a Killing vector
field, and the function a = 1, then the generalized Ricci soliton becomes a quasi-Einstein
manifold. It will be an interesting question to analyze the impact of the restriction on the
potential field ¢ of a generalized Ricci soliton (M, g, &, &, B, y) as a conformal vector field.

2. Preliminaries

Let (M, 8,6, B, 'y) be an n-dimensional generalized soliton and V be the Riemannian
connection with respect to metric g. We denote by w the smooth 1-form dual to the potential
field ¢ of the generalized soliton (M, g, ¢, «, B, v) and denote by ¢ the (1,1) skew-symmetric
tensor field defined by

%dw(X, Y) = g(pX,Y), XY € X(M). @1)
Note that

28(VxZ,Y) = g(VxE,Y) —8(VyE, X) +8(VxZ,Y) +8(VyE, X),
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that is,
22(VxZ,Y) =dw(X,Y) + (£:8)(X,Y), X, Y € X(M),
where
dw(X,Y) = g(VxE,Y) - g(Vy, X)
and
(£28) (X, Y)g(VxE,Y) = &(VyE, X).
Then, using Equations (1.1) and (2.1), we have
Vxé=BX+y(X)t—aQX+ ¢X, X e X(M). (2.2)

Using the expression for the scalar curvature T = trQ and a local frame {vy,...,v,} with

the skew-symmetry of ¢, and the definition of the divergence

divg = Z g(VviC, Ui)/
i=1

we have .,
divg =Y g(Boi + v (v;)t — aQu; + o;, v;),
i=1
thatis,
div¢ = np + ||t]|* — at.

Now, we are in position to state the following:

Lemma 1. Let (M, g, ¢, a, B,y) be an n-dimensional compact generalized soliton. Then,

| 6= [ (apr—ng=apltl), [ &= [ (arm—npy—2leP).

(2.3)

Proof. Using Equation (2.3), we have div(B¢) = &(B) + np® + By||t||* — ¢t and div (&) =

E(7) + npy + 72||t]|* — ayT. Integrating these equations and using Stokes’s theorem

/ divX =0,
M

for a smooth vector field X, we get the results in the Lemma. [

Lemma 2. Let (M, g,¢,a, B, ) be an n-dimensional generalized soliton. Then,

T 2 ) x \2
w?]|Q— T1|" = 2wyRic(t, ) + | VEI? — n (B~ S) " = 22l — 271l ~ ol

Proof. Using Equation (2.2), we have
a(Q-21)(X) = (b= T )X+ (Xt +9X — Vx&, X € X(M).
Taking a local orthonormal frame {vy,...,v,} on M, we have
2o TPy Y Y
w21 = Ls(s(Q- 1) w)a(Q= 1) @),

which, in view of Equation (2.4), implies

2.4)



Symmetry 2023, 15, 954 4 0f9
2 2
2lQ- 31" = n(p—3) +72Qf||4 + ol + 1V
+27(B = 3) 117 = 2(8 — 3)divg (2.5)
—278(Vig, t) —2 ,Zlg(Vv,-é‘, @v;).
=
Using Equation (2.2), we get
(Vi t) = Bt + y||t|* — aRic(t, 1) (2.6)
and
n n 5
> 8(Void, pvi) = ) 8(9vi 9vi) = o], (2.7)

Il
_

i i=1

where we have used the skew-symmetry of ¢ and the symmetry of Q for concluding
tr(Qo @) = 0. Inserting Equations (2.3), (2.6), and (2.7) in Equation (2.5), we get the
result. O

3. A Characterization of a Euclidean Space

Let (M, g, ¢, a, B,) be an n-dimensional gradient generalized soliton with § = V f
for some smooth function f. In this section, we prove the following result that gives a
characterization for a Euclidean space.

Theorem 1. Let (M, g,V f,a,B,0) be an n-dimensional complete and connected gradient general-
ized soliton n > 3 with o # 0, B constants. Then, the scalar curvature T is constant with

at(np—at) <0
and np # at, ifand only if (M, g, V f,, B,0) is isometric to the Euclidean space.

Proof. Let (M, g, Vf,a,pB,0) be an n-dimensional complete and connected gradient gener-
alized soliton. Then, Equation (1.2) with ¢ = 0 yields

AfX = BX —aQX, X € X(M). 3.1)
Since « and B are constants, we have
(VAf)(X, Y) = VxAsY — Ap(VxY) = —a(VQ)(X,Y), X,Y € X(M). (3.2)
Now, using the expression for the curvature tensor field
R(X,Y)Vf = (VAf) (X,Y) — (VAf) (Y, X)
and Equation (3.2), we conclude that
RX,Y)Vf =a{(VQ)(Y,X) - (VQ)(X,Y)}. (3.3)

Note that the scalar curvature T is a constant and therefore for a local orthonormal frame
{v1,...,v,} on M, we have

(VQ)(v;,v;) = %VT =0. (3.4)

™=

1

I
—

Thus, Equation (3.3) on contraction yields

Ric(Y, Vf) = a{Y(T) - ;Y(T)} ~0,
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that is,

Q(Vf) = 0. (35)
We proceed to compute divQ(V f) as follows:
n

8(VoQ(Vf),0) = Y- g((VQ)(0i, V) + Q(Afvy), 01)

i=1

g(Vf, (VQ)(vi,vi)) + ig(Afvi/ Qvi)-

M-

I
—_

divQ(Vf) =

I
1=

i=1

Using Equations (3.1), (3.4), and (3.5) in the above equation, we conclude

=

0=)_g(Bv;i —aQu;, Qu;),
1

which implies BT — «[|Q||* = 0, that is,
2
o2 QII* = apr.
Thus, we have

1 1 1
"‘2<||Q||2 - nT2> = apT — EDCZTZ = Ear(nﬁ —at) <0

by virtue of the premise. Using Schwarz’s inequality || Q||* > 172 in the above inequality,

we conclude .
2 2 12\ _
(Il - 57) =0

However, as the constant & # 0, we conclude
21 5
H Q || - n T 7
this is the equality in Schwarz’s inequality, and it holds if and only if Q = 1. Moreover,

Equation (3.1) gives A¢X = X — LaTX, thatis,

Hess(f) = %(n,B —aT)g =g, (3.6)

where ¢ = %(nﬁ —aT) # 0 by virtue of a condition in the statement. Using the result
in [11], we conclude that M is isometric to the n-dimensional Euclidean space E".
Conversely, on the Euclidean space E” for a nonzero constant 8, we define f : E* — R by

£y =B

Then, we have Vf = BI and Hess(f) = B(,), where (,) is the Euclidean inner product.
Thus, on the Euclidean space E”, we have

Hess(f) + aRic = B(,)
for a nonzero constant «. Hence, (E", (,), Vf,, B,0) is a gradient generalized soliton. [

4. Quasi-Einstein Manifolds

Recall that a Riemannian manifold (M, g) is said to be a quasi-Einstein manifold
(see [3]) if its Ricci tensor has the form

Ric=Ag+ug®g,
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where A, u are smooth functions and ¢ is a smooth 1-form on M. In this section, we
are interested in finding conditions under which an n-dimensional generalized soliton
(M, g,¢,«, B, ) is a quasi-Einstein manifold. Note that from the definition of a generalized
soliton, it follows that if the potential field ¢ is a Killing vector field and the function « =1,
then (M, g, ¢, o, B, y) is a quasi-Einstein manifold.

Recall that a smooth vector field X on a Riemannian manifold (N, &) is said to be
Killing if £xh = 0, and this condition is equivalent to the fact that the local flow of X
consists of local isometries. It is worth pointing out that the presence of Killing vector fields
on a Riemannian manifold (N, h) severely restricts its geometry as well as the topology of
M; for instance, the Ricci curvature of a compact Riemannian manifold (N, &) possessing
a nonparallel Killing vector field must have a positive Ricci curvature. Thus, asking
the potential field ¢ of a generalized Ricci soliton (M, g, &, «, B,y) to be Killing is quite a
strong condition.

Theorem 2. Let (M, g, &, u, B,7y) be an n-dimensional compact generalized soliton with the func-
tion « nowhere zero. If the Ricci curvature Ric(¢, &) satisfies

Ric(&,€) > (divé)? + || ¢|)%,

then (M, g, ¢, w, B, 7y) is a quasi-Einstein manifold.

Proof. Suppose (M, g, &, a, B,7) is an n-dimensional compact generalized soliton. Then,
using a local orthonormal frame {vy,...,v,} on M and Equation (1.1), we have

n

sl = 3 [0e) (o] = 3 (BeCouey) + e (s) —ekic(or )’

ij=1 ij=1
that is,
i!ﬁcg\z = 1+ Pt +a?( QI + 267 t]* — 2apT — 2ayRic(t, t)
= (llQR - 172) + (s Ee)" + 21+ 2671l — 201 Ric(, ).
Note that : ) :
e S (s

and the above equation gives

2

1 1 & \2 .
E‘Eggf = a?||Q — ETI + n(ﬁ — ;T) + 92||E)|* 4 2By |1t — 2ayRic(t, ¢).

Thus, we have

. 4 2 2 2 4 2 1 2 1 2
Zocszc(t,t)—n(,B—ET) = 2B7[IH17 = 2 NIEl* = o)) Q — 7T —1|C§g| L@
Using Lemma 2 with the above equation, we conclude
1 2 2 2
—glesl” +IVEI* = llgl* =o. (42)

Now, using Yano's integral formula (see [14])

/(Ric(g, &)+ %yﬁggyz v (div€)2> =0

M
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and Equation (4.1), we have

%/!%8!2 = [ (oI + (dioz)* - Rie(,0))- 4.3)
M

M

Now, using the condition in the hypothesis, we conclude
1 2
2 [1easl <o,
M
thatis, £z¢ = 0. Consequently, as a is nowhere zero, Equation (1.1) implies

=P
Ric = ag+a17®77,

thatis, (M, g, &, &, B, ) is a quasi-Einstein manifold. [

Theorem 3. Let (M, g, ¢, w, B, 7y) be an n-dimensional (n > 2), compact and connected generalized
soliton with the function a nowhere zero. If vy is nonzero and constant along the integral curves of ¢
and the following conditions hold

ayt < npy, Ric(&E) > |||,

then (M, g,¢, «, B, 7y) is an Einstein manifold.

Proof. Suppose (M, g, &, a, B,7y) is an n-dimensional compact generalized soliton satisfying
the conditions in the hypothesis. Then, using {(y) = 0 in Lemma 1, we get

[P = [ @rr—npy), (@4
M M

which, in view of ayT < nBvy, implies > ||t = 0. However, as y # 0 and M is connected,
we get t = 0. Using t = 0 in Equation (4.4) and ayt < nB7, we conclude y(at — np) = 0.
Furthermore, owing to the fact that y # 0, we get

at —np =0. (4.5)

Now, using t = 0 and Equation (4.5), we conclude through Equation (2.3) that div¢ = 0.
Thus, Equation (4.3) takes the form

3 [1cesP = [ (1ol - Ric(z.0)).
M M

Using the lower bound on Ric(¢, &) in the statement, we get Lzg = 0. Thus, Equation (1.1)
with t = 0 implies
&Ric = Bg
and as a is nowhere zero, we conclude Ric = fg, where f = fa~! = %T (see Equation (4.5)),
thatis, Q = fI and
(VQ)(X,Y) =X(f)Y, X, Y € X(M).

Using a local orthonormal frame {v1, ..., v,} on M in the above equation, we have

(VQ)(oi0) = Vf = 1V,

1=

I
—
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that is 1 1
~Vt=-V1
2 n

and as n > 2, we conclude 7 is a constant and (M, g, ¢, «, B, 7v) is an Einstein manifold. [

Along similar lines as in the above theorem, using the first part of Lemma 1, we prove
the following:

Theorem 4. Let (M, g, ¢, a, B, y) be an n-dimensional n > 2, compact and connected generalized
soliton with the function « nowhere zero. If By > 0 and B is a constant along the integral curves of
¢ and the following conditions hold

apt <np?, Ric(Z,¢) > ||,
then (M, g,¢, «, B, 7y) is an Einstein manifold.

5. Examples and Conclusions

First, we discuss a few examples of generalized solitons.
(i) Consider the open subset M = E" — {0}. Then, with the Euclidean metric g, (M, g)
is a flat Riemannian manifold. Let

N

‘P =
ox!

=

i=1

be the position vector field, which is a nonzero vector field on M. Define

1
¢=r1Y, f—m-
Note that
1 1
X(f) = ———X(|I¥]) = ————=X(¢(¥,¥)) = —2¢(& X), Xe€x(M).
(f) ¥ (1) 2 (8(¥,Y)) 788, X) € X(M)

Thus, we get
V& =f(X=n(X)¢), XeX(M),

where 17(X) = g(¢, X); consequently, we have
(£e8)(X,Y) =2fg(X,Y) =2fn(X)y(Y), X,Y € X(M).
Choosing a nonzero function « on M, we get
1 )
Eﬁég +aRic=Bg+vn®7,
where p = f and v = —f. Hence, (M, g, ¢, «, B,y) is an n-dimensional generalized soliton.
(if) Consider the unit sphere S” with canonical metric g of constant curvature 1. Then,
it is well-known that S" possesses a conformal vector field ¢ that satisfies (see [2])
Lzg =20g,
where ¢ is a smooth function on S”. Then, it follows for a smooth function « on S”, we have
1 )
Eﬁgg + aRic = Bg,

where = 0 + (n — 1)a. Hence, (S", g, ¢, «, B,0) is an n-dimensional generalized soliton.
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(iii) Let (M, ¢, ¢, 17, ) be a (2n 4 1)-dimensional Einstein f-Kenmotsu manifold (see [8]).
Then, the unit vector field ¢ satisfies

Vx¢ = B(X —n(X)Z), X e X(M),

where S is a smooth function on M. Since M is an Einstein manifold, we have Ric = Ag for
a constant A. Hence, for a smooth function « on M, we have

1 )
Eﬁég +aRic=Bg+1®7,

where v = —B. Hence, (M, g,¢, &, B,7v) is a (2n + 1)-dimensional generalized soliton.

We saw through Theorem 1 that an n-dimensional complete and connected gradient
generalized soliton (M, g, Vf,«, B,0) was used to find a characterization of the Euclidean
space E", and example (ii) also showed that (S", g, ¢, «, B,0) was an n-dimensional general-
ized soliton. This naturally raises the question of whether we can find a characterization
of the unit sphere §” using an appropriate n-dimensional compact generalized soliton
(M, g,¢, ,B,0). This could be an interesting question for future studies on this topic. More-
over, in the results of Section 4, we found conditions under which an n-dimensional gen-
eralized soliton (M, g, &, &, B, v) was a quasi-Einstein and Einstein manifold, respectively.
It will be interesting study to find conditions under which an n-dimensional generalized
soliton (M, g,¢, «, B, 7y) is a Ricci almost soliton.
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