J. WatanabeNagoya Math. J.Vol. 50 (1973), 227-232

A NOTE ON GORENSTEIN RINGS OF EMBEDDING CODIMENSION THREE

JUNZO WATANABE

1. Let $A = R/\alpha$, where R is a regular local ring of arbitrary dimension and α is an ideal of R. If A is a Gorenstein ring and if height $\alpha = 2$, it is easily proved that A is a complete intersection, i.e., α is generated by two elements (Serre [5], Proposition 3). Hence Gorenstein rings which are not complete intersections are of embedding codimension at least three. An example of these rings is found in Bass' paper [1] (p. 29). This is obtained as a quotient of a three dimensional regular local ring by an ideal which is generated by five elements, i.e., generated by a regular sequence plus two more elements. In this paper, suggested by this example, we prove that if A is a Gorenstein ring and if height $\alpha = 3$, then α is minimally generated by an odd number of elements. If A has a greater codimension, presumably there is no such restriction on the minimal number of generators for α , as will be conceived from the proof.

In the following the basic results of the two famous papers Bass [2] and Matlis [4] are taken for granted.

2. In this paper we shall consider only Noetherian local rings. If R is a local ring with the maximal ideal \mathfrak{m} , we sometimes say that the pair (R,\mathfrak{m}) is a local ring. Let R be a ring. If x,y,\dots,z are elements of R, (x,y,\dots,z) denotes the ideal they generate. For an R-module M, hd M denotes the homological dimension of M over R. If R is a regular local ring, hd $M<\infty$ for any finite R-module M and it holds that hd M + depth $M=\dim R$.

LEMMA 1. Let R be a regular local ring and let q be a primary ideal belonging to the maximal ideal of R. Suppose that $q = \bigcap_{i=1}^{n} q_i$ is an irredundant decomposition of q by n irreducible ideals q_i . Let

Received September 25, 1972.

 $0 \to F_a \to F_{a-1} \to \cdots \to F_1 \to F_0 \to 0$ be a minimal free resolution of R/\mathfrak{q} . Then the rank of F_a is equal to n.

Proof. Since depth $R/\mathfrak{q}=0$, dim R=d. Therefore we have an isomorphism $\operatorname{Ext}^d_R(R/\mathfrak{q},R)\cong\operatorname{Hom}_R(R/\mathfrak{q},E)$, where E denotes the injective envelope of the residue class field. (See [2] Theorem 4.1) Thus the rank of F_a is equal to the minimal number of generators for $\operatorname{Hom}_R(R/\mathfrak{q},E)$. On the other hand, the injective envelope of the module $\operatorname{Hom}_R(\operatorname{Hom}_R(R/\mathfrak{q},E),E)\cong R/\mathfrak{q}$ is an n copies of E, and in general these two numbers are identical, because a minimal surjection $F\to\operatorname{Hom}_R(R/\mathfrak{q},E)\to 0$ with F free gives an essential injection $0\to\operatorname{Hom}_R(\operatorname{Hom}_R(R/\mathfrak{q},E),E)\to\operatorname{Hom}_R(F,E)$. (cf. [4] Theorem 2.3 and Theorem 4.2)

COROLLARY. Let R be a Gorenstein ring and \mathfrak{q} a perfect ideal of grade d. Let $0 \to F_d \to F_{d-1} \to \cdots \to F_0 \to 0$ be as in the Lemma. Then the rank of F_d is the "type" of the Cohen-Macaulay ring R/\mathfrak{q} .

Proof. Let x_1, x_2, \dots, x_r be a maximal regular sequence for both R and R/q. Then it is well known that the complex:

$$0 \longrightarrow F_d \otimes R/\mathfrak{x} \longrightarrow F_{d-1} \otimes R/\mathfrak{x} \longrightarrow \cdots \longrightarrow F_0 \otimes R/\mathfrak{x} \longrightarrow 0$$

is a minimal free resolution of $R/\mathfrak{q} + \mathfrak{x}$, over R/\mathfrak{x} , where $\mathfrak{x} = (x_1, \dots, x_r)$. (To prove this we only have to show the acyclicity, and this can be done by induction on r.) Since the isomorphisms used in the proof of Lemma 1 hold for a Gorenstein ring R/\mathfrak{x} , the assertion follows.

LEMMA 2. Let A be an Artin Gorenstein local ring and α and b be two ideals of A. If $0: \alpha = 0: b$, then $\alpha = b$.

Proof. Since for any ideal α of A, we have $0:[0:\alpha]=\alpha$, the assertion is clear. (cf. [3] Satz 1.44)

LEMMA 3. Let (R, \mathfrak{m}) be a local ring and \mathfrak{q} an \mathfrak{m} -primary irreducible ideal, and let y be an element of R which is not in \mathfrak{q} . Assume that $\mathfrak{q}: y = \mathfrak{q} + (f_1, f_2, \dots, f_n)$. Then we have $\bigcap_{i=1}^n [\mathfrak{q}: f_i] = \mathfrak{q}: (f_1, \dots, f_n) = \mathfrak{q} + (y)$. Moreover the following two conditions are equivalent to each other:

- i) the intersection of ideals $\bigcap_{i=1}^{n} [q: f_i]$ is irredundant.
- ii) $\{f_1, f_2, \dots, f_n\}$ is (a set of representatives of) a minimal generators for the ideal $q + (f_1, f_2, \dots, f_n)$ modulo q.

Proof. The equality $\bigcap_{i=1}^n [\mathfrak{q}:f_i] = \mathfrak{q}:(f_1,\cdots,f_n)$ is easily verified (without the assumption that \mathfrak{q} is irreducible and \mathfrak{m} -primary). We prove the second equality. It is obvious that $\mathfrak{q}+(y)\subset \mathfrak{q}:(f_1,\cdots,f_n)$. Assume $z\in \mathfrak{q}:(f_1,\cdots,f_n)$. Then $zf_i\in \mathfrak{q}$ for each i, which implies that $\mathfrak{q}:z\supset \mathfrak{q}:y$. Therefore $\mathfrak{q}:(y)=\mathfrak{q}:(y,z)$, and considering everything modulo \mathfrak{q} , we conclude by Lemma 2 that $\mathfrak{q}+(y)=\mathfrak{q}+(y,z)$, which proves $\mathfrak{q}:(f_1,\cdots,f_n)\subset \mathfrak{q}+(y)$. (Recall that R/\mathfrak{q} is an Artin Gorenstein ring if and only if \mathfrak{q} is \mathfrak{m} -primary and irreducible.)

To prove the second assertion assume $\bigcap_{i=1}^n [\mathfrak{q}:f_i] = \bigcap_{i=2}^n [\mathfrak{q}:f_i]$ for instance. Then $\mathfrak{q}:(f_1,f_2,\cdots,f_n)=\mathfrak{q}:(f_2,\cdots,f_n)$, and again by Lemma 2, $\mathfrak{q}+(f_1,\cdots,f_n)=\mathfrak{q}+(f_2,\cdots,f_n)$. This shows that ii) implies i). The other implication is immediate.

LEMMA 4. Let α be an irreducible m-primary ideal of a local ring (R,m). If $\mathfrak b$ is another irreducible ideal which contains α , then there is an element y such that $\mathfrak b=\alpha\colon y$. Conversely for any element y of R which is not in α , $\alpha\colon y$ is irreducible.

Proof. Let E be the injective envelope of R/\mathfrak{m} . From the canonical epimorphism $R/\mathfrak{a} \to R/\mathfrak{b} \to 0$ we obtain a monomorphism $0 \to \operatorname{Hom}_R(R/\mathfrak{b}, E) \to \operatorname{Hom}_R(R/\mathfrak{a}, E)$. Since R/\mathfrak{a} and R/\mathfrak{b} are both self-injective, $\operatorname{Hom}_R(R/\mathfrak{a}, E) \cong R/\mathfrak{a}$ and $\operatorname{Hom}_R(R/\mathfrak{b}, E) \cong R/\mathfrak{b}$. Therefore the above monomorphism shows the existence of y satisfying $\mathfrak{b} = \mathfrak{a} \colon y$. An \mathfrak{m} -primary ideal \mathfrak{q} is irreducible if and only if $\dim_k \operatorname{Hom}_R(k, R/\mathfrak{q}) = 1$, where $k = R/\mathfrak{m}$. Consequently the irreducibility of $\mathfrak{a} \colon y$ follows immediately from the fact that we can define a monomorphism $R/[\mathfrak{a} \colon y] \to R/\mathfrak{a}$ by $1 \operatorname{mod} [\mathfrak{a} \colon y] \mapsto y \operatorname{mod} \mathfrak{a}$.

THEOREM. Let (R, \mathfrak{m}) be a regular local ring and \mathfrak{a} be an ideal of height three, such that R/\mathfrak{a} is a Gorenstein ring. Then \mathfrak{a} is minimally generated by an odd number of elements.

Proof. We denote by $\mu(I)$ the number of minimal generators of an ideal I of a local ring. With this notation it is easy to see that if $x \in m$ is a regular element on R/α , then $\mu(\alpha) = \mu(\alpha + (x)/(x))$, where $\alpha + (x)/(x)$ is an ideal of R/(x). Note also that, in this case, height $\alpha = 0$ height $\alpha + (x)/(x)$ and $R/\alpha + (x) = R/(x)/\alpha + (x)/(x)$ is a Gorenstein ring. Thus we may assume depth $R/\alpha = 0$, because whenever depth $R/\alpha > 0$, there is a regular element on R/α in $m - m^2$. This amounts to assuming that

 α is m-primary and dimension R=3, since R/α is a Cohen-Macaulay ring.

Let $\mu(\alpha) = N = n + 3$. If n = 0, there is nothing to prove. Let n > 0, and let $\alpha = (x_1, x_2, x_3, f_1, f_2, \dots, f_n)$, where we may assume that $(x_1, x_2, x_3) = g$ is already m-primary. Since both α and g are irreducible, by Lemma 4, there is g such that g = g : g.

This y can be chosen in such a way that x_2, x_3, y is a regular sequence. For suppose that $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_t$ are the associated primes of (x_2, x_3) and that

$$y \notin \mathfrak{p}_i$$
 $i = 1, 2, \dots, s$
 $y \in \mathfrak{p}_i$ $i = s + 1, \dots, t$.

Since x_2, x_3 is a regular sequence, height $\mathfrak{p}_t = 2$ for every i. If s = t, the sequence x_2, x_3, y is a regular sequence. Let $0 \le s < t$ and $D = \mathfrak{x} \cap \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_s$. Then $\mathfrak{p}_{s+1} \cup \cdots \cup \mathfrak{p}_t \not\supset D$. For any element $z \in D$ such that $z \notin \mathfrak{p}_{s+1} \cup \cdots \cup \mathfrak{p}_t, x_2, x_3, y + z$ is a regular sequence and obviously $\mathfrak{x} : y + z = \alpha$. From now on y is assumed to be chosen in this way.

We are interested in the ideal q generated by x_1, x_2, x_3 and y. We assert first that these four elements are a minimal generating set for q. For if $x_1 \in (x_2, x_3, y)$, $x_1 = a_2x_2 + a_3x_3 + by$ with suitable elements a_2, a_3, b . This b is an element of g: y, so that b is a linear combination of x_1 and f_i . But this contradicts the fact that x_i and f_i form a minimal basis for a. The same is true with x_2 and x_3 . Since it is clear that y cannot be omitted, the above assertion is proved. On the other hand, by Lemma 3, $a = \bigcap_{i=1}^n [g: f_i]$, and therefore, by Lemma 1 and Lemma 4, $a = a_1 + a_2 + a_3 + a_4 + a_4 + a_4 + a_4 + a_5 + a_$

Let $0 \to F_3 \to F_2 \to F_1 \to F_0 \to R/\mathfrak{q} \to 0$ be a minimal free resolution of R/\mathfrak{q} . So far we have proved that rank $F_1 = 4$ and rank $F_3 = n$. Since rank $F_0 = 1$, rank $F_2 = N$. We may assume that the homomorphism $F_1 \to F_0$ is defined by the column vector φ such that ${}^t\varphi = [x_1 \, x_2 \, x_3 \, y]$ (where ${}^t\varphi$ denotes the transposed matrix of φ); if elements of F_1 are represented by row vectors, their images by φ are obtained by the usual matrix product. Let M be a matrix that defines $F_2 \to F_1$, and let I_i be the ideal generated by those elements that appear in the i-th column of M (i = 1, 2, 3, 4). It is easy to see that these I_i depend only on the vector φ and not on the choice of M. In fact I_1 is nothing but $(x_2, x_3, y) : x_1$, for example. Note $I_4 = \alpha$. By Lemma 4 and by the choice of y, I_1 is irreducible. We are going to prove that $\mu(I_1) = N - 2$, which completes

the proof of the theorem by induction on μ of irreducible \mathfrak{m} -primary ideals, because the least μ is three.

Consider the following $N \times 4$ matrix M_1 :

$$m{M}_1 = \left[egin{array}{ccccc} -y & 0 & 0 & x_1 \ 0 & -y & 0 & x_2 \ 0 & 0 & -y & x_3 \ a_{11} & a_{12} & a_{13} & f_1 \ & \ddots & \ddots & \ddots & \ddots \ & a_{n1} & a_{n2} & a_{n3} & f_n \end{array}
ight]$$

where a_{ij} are elements satisfying $a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3 + f_iy = 0$, their existence being a consequence of the assumption that $f_i \in \mathfrak{x}$: y. Since each row of M_1 is in Ker φ , there is an $N \times N$ matrix T such that $TM = M_1$. This T can be regarded as an R-endomorphism of each I_i . Then since T must be an R-automorphism of I_4 , T is invertible and it follows that $I_1 = (y, a_{11}, a_{21}, \dots, a_{n1})$. We want to show that these elements are precisely a minimal basis for I_1 . Let v denote the first and v_j the (3+j)-th row of M_1 , where $j = 1, 2, \dots, n$. Assume for instance $a_{11} \in (y, a_{21}, \dots, a_{n1})$. Then there are elements b and c_j such that the first component of u = bv $+\sum_{j=2}^{n}c_{j}v_{j}$ is a_{11} . Set $u'=v_{1}-u$. Then the first component of u' is 0, and the fourth component of u' has the form $f_1 - \alpha$, where α is an element of (x_1, f_2, \dots, f_n) . Let d_2 and d_3 be the 2nd and the 3rd component of u' respectively. Since $u' \in \text{Ker } \varphi$, d_2 , d_3 and $f_1 - \alpha$ give a relation of x_2, x_3, y , i.e., $d_2x_2 + d_3x_3 + (f_1 - \alpha)y = 0$. Since x_2, x_3, y is a regular sequence, it follows that $f_1 - \alpha \in (x_2, x_3)$, whence $f_1 \in (x_1, x_2, x_3, f_2, \dots, f_n)$, which is impossible. That y is not superfluous is similarly proved.

COROLLARY. Let R be a Gorenstein ring and α be an ideal of homological dimension two. If R/α is a Gorenstein ring, then $\mu(\alpha)$ is odd.

Proof. By the first part of the proof of Corollary to Lemma 1, we may assume that R/α is Artinian.

Let g, y, q etc. be as in the proof of the theorem. In order to repeat the same argument as before we only have to show that $\operatorname{hd} R/q$ is finite. But we have an exact sequence: $0 \to R/\alpha \xrightarrow{\varphi} R/g \to R/q \to 0$, where φ is defined by $\varphi(1 \mod \alpha) = y \mod g$. Since $\operatorname{hd} R/g = \operatorname{hd} R/\alpha = 3$, it follows that $\operatorname{hd} R/q \leq 3$. (In fact $\operatorname{hd} R/q = 3$, since R/q is Artinian.) Q.E.D. *Remark.* It can be proved that over a local ring R the existence of an ideal $\mathfrak a$ of finite homological dimension such that $R/\mathfrak a$ is a Gorenstein ring implies that R itself is a Gorenstein ring. Therefore in the above corollary the condition that R is a Gorenstein ring is unnecessary.

BIBLIOGRAPHY

- [1] Bass, H., Injective dimension in Noetherian rings, Trans. A.M.S., 102 (1962).
- [2] Bass, H., On the ubiquity of Gorenstein rings, Math. Zeit., 82 (1963).
- [3] Herzog, H. and E. Kunz, Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture notes in Math., 238, Springer (1971).
- [4] Matlis, E., Injective modules over Noetherian rings, Pacific J. of Math., 8 (1958).
- [5] Serre, J.-P., Sur les modules projectifs, Seminaire Dubreil, 1960/61.

Nagoya University