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1 Introduction

The nature of dark energy in quantum gravity remains a great mystery. In order to
understand dark energy in string theory, one may attempt to find de Sitter solutions.
Kachru, Kallosh, Linde, and Trivedi (KKLT) argued that one can find meta-stable de
Sitter solutions in type IIB string theory if the right modules are in place in a given string
compactification [1].1

Over the last few years, we have gathered significant evidence that light complex
structure moduli in KKLT like solutions are rather more generic than it was assumed
before [3–8]. In light of this developement, it may no longer qualify as a good practice to
assume that the one-loop pfaffian of the non-perturbative superpotentials due to Euclidean
M5-branes [9, 10] is constant without an explicit demonstration that the one-loop pfaffian
is well controlled, even in the absence of the open string moduli.

1For a similar proposal see [2].
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In this work, we are interested in the one-loop pfaffian of the non-perturbative super-
potentials generated by Euclidean M5-branes.2 Although the type IIB description and
the F-theory description of the non-perturbative superpotentials are physically equivalent,
we will mostly focus on the F-theory description [11] because F-theory provides a clean
geometric picture.

In M/F-theory, the non-perturbative superpotentials are generated by M5-branes
wrapped on rigid divisors. The partition function of an M5-brane on a divisor D is known
to be a section of a line bundle L whose Chern class is the principal polarization of the
intermediate Jacobian JD := H3(D,R)/H3(D,Z) [10, 12]. The first step in determining
the one-loop pfaffian of the non-perturbative superpotential is therefore to compute the
intermediate Jacobian JD.

In order to compute the intermediate Jacobian JD, one must compute its dimension and
complex structure moduli. To compute the dimension of JD, one may compute the middle
cohomology via sequence chasing [13]. Albeit it is possible to compute the dimension of JD
in this way in principle, this method becomes computationally intractable for Calabi-Yau
manifolds with large hodge numbers. Therefore, it is preferable to have combinatorial
formulas for the dimension of JD to carry out an extensive search for Calabi-Yau manifolds
with desirable properties.

In this work, we prove combinatorial formulas to determine the dimension of JD for
prime toric divisors in toric hypersurface Calabi-Yau 4-folds, which we will denote by Y4.3
Then, we construct a new class of F-theory compactifications. We will present a more
detailed study of such F-theory uplifts in [18]. We furthermore show that in relatively simple
F-theory compactifcations, there are more than h1,1(Y4) non-perturbative superpotential
terms with trivial intermediate Jacobian. We will address the Freed-Witten anomaly [19, 20]
in [18]. The hodge numbers of divisors in toric CICYs will be studied in [21].

The organization of this paper is as follows. In section 2, we summarize the combinatorial
formulas for h2,1 and h•(D,OD) of prime toric divisors. In section 3, we prove the combinato-
rial formulas. In section 4, we study a few examples and show that more than h1,1(Y4) prime
toric divisors support non-perturbative superpotentials. In section A, we review relevant
materials. Readers familiar with stratifications and toric geometries may skip this appendix.

2 Summary

Consider a pair of reflexive polytopes (∆,∆◦), where ∆ ∈M and ∆◦ ∈ N . Let T be a Fine
Regular Star Triangulation (FRST) of ∆◦. We treat ∆ as the Newton polytope for the
anti-canonical line bundle of the toric variety PΣ defined by the fan Σ over T . By ti, we
denote i-dimensional simplices in T ∩∆◦. To each point p ∈ ∆◦ ∩N , we associate a prime
toric divisor Dp in the toric hypersurface Calabi-Yau manifold. We define li(Θ) for Θ ∈ ∆
to be the number of points in i-dimensional simplicies in Θ. Similarly, by l∗(Θ) we denote
the number of points interior to Θ. We define the genus of a face Θ to be g(Θ) := l∗(Θ◦).

2In this note, the phrase the non-perturbative superpotential will always mean the non-perturbative
superpotential generated by a Euclidean M5-brane.

3For an interesting series of works on the period in the context of tropical geometry, see [14–17].
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Let v be a vertex of ∆◦. Similarly, let ve, vf , vs, be points interior to an edge e, a
2-face f , and a 3-face s, respectively. Then, we compute

−h2,1(Dv) = e2,1(Dv) = l3(v◦)− l2(v◦)− ϕ2(v◦)−
∑
f≥v

l∗(f◦)#(f ⊃ t1 ⊃ v) , (2.1)

−h2,1(Dve) = e2,1(Dve) =
∑
f≥e

l∗(f◦)(1−#(f ⊃ t1 ⊃ ν)) , (2.2)

−h2,1(Dvf ) = e2,1(Dvf ) = l∗(f◦)(2−#(f ⊃ t1 ⊃ ν)) , (2.3)
−h2,1(Dvs) = e2,1(Dvs) = 0 , (2.4)

where #(f ⊃ t1 ⊃ v) denotes the number of 1-simplices in f ∩ T that contain the point v,
and ϕ2(v◦) = l∗(2v◦)− 5l∗(v◦). For the hodge vectors, one obtains [22–24]

h•(Dv,O(Dv)) = (1, 0, 0, l∗(v◦)) , (2.5)
h•(Dve ,O(Dve)) = (1, 0, l∗(e◦), 0) , (2.6)
h•(Dvf ,O(Dvf )) = (1, l∗(f◦), 0, 0) , (2.7)
h•(Dvs ,O(Dvs)) = (1 + l∗(s◦), 0, 0, 0) . (2.8)

We finally remark that one can also compute the combinatorial formulas for h1,1 from the
stratifications studied in section 3.

3 Proofs

In this section, we prove (2.1)–(2.4) by constructing the strata of prime toric divisors. Let
us recall the definitions. By ti, we denote i-dimensional simplices in T ∩∆◦, where F is an
FRST of ∆◦. Let v be a vertex of ∆◦. Similarly, we denote an edge, a 2-face, and a 3-face
by e, f , and s, respectively.

3.1 Vertex

The stratification for the prime toric divisor {zv = 0} ∩ ZF ,Σ is

Dv = Zv◦
∐
e≥v

Ze◦ × (pt)
∐
f≥v

Zf◦ ×

 ∑
f⊃t1⊃v

(C∗)
∐ ∑

f⊃t2⊃v
(pt)


×
∐
s≥v

Zs◦ ×

 ∑
s⊃t1⊃v

(C∗)2∐ ∑
s⊃t2⊃v

(C∗)
∐ ∑

s⊃t3⊃v
(pt)

 . (3.1)

Because e2,1(Ze◦) = e2,1(Zf◦) = e2,1(Zs◦) = e1,0(Zs◦) = 0, there can be contributions to
e2,1(Dv) only from e2,1(Zv◦) and e1,0(Zf◦)× e1,1(C∗). As a result, we obtain

e2,1(Dv) = e2,1(Zv◦) +
∑
f≥v

e1,0(Zf◦)×

 ∑
f⊃t1⊃v

e1,1(C∗)

 (3.2)

= l3(v◦)− l2(v◦)− ϕ2(v◦)−
∑
f≥v

l∗(f◦)#(f ⊃ t1 ⊃ v). (3.3)

One can similarly compute the hodge vector [22–24]

h•(Dv,ODv) = (1, 0, 0, l∗(v◦)). (3.4)
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Before we move on to the edge case, let us study a special case: l∗(v◦) = 1. To simplify
the discussion, we will further assume that one of the anti-canonical sections is a square of
the toric cooridnate v. When l∗(v◦) = 1 the corresponding divisor is a CY 3-fold. We first
recall a useful formula

l∗(2Θ) = l(Θ), (3.5)

when l∗(Θ) = 1.4 We thus write

h2,1(Dv) = l(v◦)− 5−
∑

Γ≤v◦
l∗(Γ) +

∑
F≤v◦

l∗(F )#(F ◦ ⊃ t1 ⊃ v), (3.6)

where Γ and F are 3-faces and 2-faces in v◦ respectively. To rewrite #(F ◦ ⊃ t1 ⊃ v) in a
more familiar form, let us recall that there is a hyperplane H such that H ∩∆◦5d = ∆◦4d.
Note that there is an isomorphism ∆4d ≡ v◦. Then, it is straightforward to show that
#(F ◦ ⊃ t1 ⊃ v) = l∗(F ◦ ∩H), which equals to l∗(F ◦ ∩∆◦4d). As a result, we reproduce the
famous formula for h2,1 of a toric hypersurface CY 3-fold!

3.2 Edge

Let ν be an interior point of an edge e. The stratification for the divisor Dν is then

Dν = Ze◦ × (C∗
∐

2pts)
∐
f≥e

Zf◦ ×

 ∑
f⊃t1⊃ν

(C∗)
∐ ∑

f⊃t2⊃ν
(pt)


×
∐
s≥e

Zs◦ ×

 ∑
s⊃t1⊃ν

(C∗)2∐ ∑
s⊃t2⊃ν

(C∗)
∐ ∑

s⊃t3⊃ν
(pt)

 . (3.7)

For this type of divisors, we obtain contributions to e2,1(Dν) only from Ze◦ and Zf◦

e2,1(Dν) = e1,0(Ze◦)e1,1(C∗) +
∑
f≥e

e1,0(Zf◦)×

 ∑
f⊃t1⊃ν

e1,1(C∗)

 (3.8)

= l2(e◦)− l1(e◦)−
∑
f≥e

l∗(f◦)#(f ⊃ t1 ⊃ ν) (3.9)

=
∑
f≥e

l∗(f◦)(1−#(f ⊃ t1 ⊃ ν)). (3.10)

For the hodge vector, one obtains

h•(Dν ,ODν ) = (1, 0, l∗(e◦), 0). (3.11)

3.3 2-face

Let ν be an interior point of a 2-face f .

Dν = Zf◦ ×

(C∗)2∐ ∑
f⊃t1⊃ν

(C∗)
∐ ∑

f⊃t2⊃ν
(pt)


×
∐
s≥e

Zs◦ ×

 ∑
s⊃t1⊃ν

(C∗)2∐ ∑
s⊃t2⊃ν

(C∗)
∐ ∑

s⊃t3⊃ν
(pt)

 . (3.12)

4See [25] for a more general treatment.
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Similarly, we obtain
e2,1(Dν) = l∗(f◦)(2−#(f ⊃ t1 ⊃ ν)) (3.13)

and
h•(Dv,ODv) = (1, l∗(f◦), 0, 0). (3.14)

3.4 3-face

Let ν be an interior point of a 3-face s.

Dν = Zs◦ ×

(C∗)3∐ ∑
s⊃t1⊃ν

(C∗)2∐ ∑
s⊃t2⊃ν

(C∗)
∐ ∑

s⊃t3⊃ν
(pt)

 . (3.15)

From the stratification, it is manifest that Dν is a (1 + l∗(s◦)) copies of a toric threefold.
Hence, we obtain e2,1(Dν) = 0 and

h•(Dv,ODv) = (1 + l∗(s◦), 0, 0, 0). (3.16)

4 Examples

4.1 The Sextet and the mirror of the Sextet

We first study the simplest example, the Sextet fourfold. Let (∆,∆◦) be the dual pair of
the reflexive polytopes. ∆◦ has vertices

∆◦ ⊃


1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1

 , (4.1)

and ∆ has vertices

∆ ⊃


5 −1 −1 −1 −1 −1
−1 5 −1 −1 −1 −1
−1 −1 5 −1 −1 −1
−1 −1 −1 5 −1 −1
−1 −1 −1 −1 5 −1

 . (4.2)

If one considers the mirror Sextet, then ∆◦ serves as the Newton polytope of the mirror
sextet. Note that there is no other point in ∆◦ ∩ N than the vertices and the origin.
Furthermore, all of the facets in ∆ have five interior points.

As expected, we find that all of the prime toric divisors in the Sextet have the hodge
vector h•Sextet(D,OD) = (1, 0, 0, 5). We also find that h2,1(D) for every prime toric divisor
D is 255.

Unlike the Sextet, all of the prime toric divisors in the mirror Sextet are rigid and
trivial in h2,1. The mirror Sextet therefore provides a very interesting playground for moduli
stabilization, because more than h1,1 non-perturbative superpotential terms are generated

– 5 –
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and the complex structure moduli space is particularly simple. In light of this, one can hope
to find scale separated supersymmetric AdS3 vacua of M-theory, by a slight generalization
of the KKLT scenario [1], which can be acheived by finding M-theory flux vacua with
expoenentially small vev of Gukov-Vafa-Witten superpotential and stabilze Kahler moduli
at large expectation value.

4.2 A fourfold uplift of P[1,1,1,6,9][18]

Now let us study an F-theory uplift Y1 of the P[1,1,1,6,9][18] model.5 We assign the weights
to coordinates ui’s as follows. u1, u2, u3 have weight 1, u4 has weight 6, and u5 has weight
9. As a threefold base, we consider B3 = P[1,1,1,6] ⊂ P[1,1,1,6,9], which is given by {u5 = 0}.
Note that there is no reflexive polytope construction for P[1,1,1,6], because 6 does not divide 9.
This choice of the threefold base will lead to an F-theory uplift for the orientifold generated
by u5 7→ −u5. Because c1(B) = c1(P[1,1,1,6,9])/2, ỹ2 = b2/576 is formally equivalent to a
weighted degree 18 polynomial which is symmetric under ỹ 7→ −ỹ.

The E8 Weierstrass model can be understood as a single blow up of an anti-canonical
class of P[1,1,1,6,18,27]. The GLSM charge matrix for the single blow up is given by

u1 u2 u3 u4 x y z

1 1 1 6 18 27 0
0 0 0 0 2 3 1

The GLSM for the E7 model is similarly given by

u1 u2 u3 u4 s ỹ z

1 1 1 6 18 9 0
0 0 0 0 2 1 1

The E7 model is described by a pair of the dual reflexive polytopes ∆◦ ⊂ N and ∆ ⊂M

∆◦ ∩ Z5 ⊃


1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −6
0 0 0 1 0 −9
0 0 0 0 1 −18

 , (4.3)

∆ ∩ Z5 ⊃


35 −1 −1 −1 −1 −1
−1 35 −1 −1 −1 −1
−1 −1 −1 −1 5 −1
−1 −1 3 −1 −1 −1
−1 −1 −1 1 −1 −1

 . (4.4)

We record the combinatorial properties of the ∆◦ in section B.1.6 We find that the 4d
polytope ∆4d generated as a convex hull of the vertices {v1, v2, v3, v4, v6} is the 4d reflexive

5For prior works on F-theory uplifts, see [26–30].
6We have computed the combinatorial data using CYTools [31].
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polytope that defines P[1,1,1,6,9][18]. There is a single point v7 interior to a 2-face Θ(2)
0 , which

is a convex hull of points v1, v2, and v6.
In this example, the genus of every vertex is non-trivial, meaning that the vertex prime

toric divisors are not rigid. We compute the hodge vectors of the vertical vertex prime toric
divisors

h•(Dv1,2,6 ,ODv1,2,6 ) = (1, 0, 0, 2), (4.5)

h•(Dv3 ,ODv3 ) = (1, 0, 0, 28), (4.6)
h•(Dv4 ,ODv4 ) = (1, 0, 0, 65). (4.7)

This result accords extremely well with the type IIB picture. Let us take as an example
D1 := {u1 = 0} in P[1,1,1,6,9][18]. Because there are two additional toric coordinates u2 and
u3 that are linearly equivalent to u1, we obtain h•(D1,OD1) = (1, 0, 2). Furthermore, the
coordinates u2 and u3 are orientifold even. As a result, we obtain h2

−(D1) = h0
+(D1, ND1) = 2

which agrees exactly with the hodge vector h•(Dv1) = (1, 0, 0, 2).
We now compute h2,1 of the vertex divisors. As there is no 2 face Θ(2) with g(Θ)l∗(Θ) 6=

0, h2,1 of the vertex divisors do not depend on triangulations.

h2,1(Dv1,2,6) = 253, (4.8)
h2,1(Dv3) = 1758, (4.9)
h2,1(Dv4) = 2912. (4.10)

Similarly, we compute h•(Dv7 ,ODv7 ) = (1, 0, 0, 0) and h2,1(Dv7) = 0. Note that this
divisor descends to a rigid prime toric divisor that hosts an O7-plane hence the non-higgsable
cluster [18].

4.3 GP orbifold of the uplift of P[1,1,1,6,9][18]

We now attempt to construct an orbifold Y2 ≡ Y1/G of Y1. The strategy is to extend
the Green-Plesser group G and its action to the Weierstrass model. Let us recall the
Green-Plesser group G and its action on P[1, 1, 1, 6, 9] [32]

G ' Z6 × Z18 : (u1, u2, u3, u4, u5) 7→
(
ω18u1, ω

−1
18 ω6u2, ω

3
6u3, ω

2
6u4, u5

)
, (4.11)

where ωi is an i-th root of unity. Conveniently, the Green-Plesser group does not act on u5.
As in the previous sections, let Y2 be the Calabi-Yau fourfold defined by the Netwon

polytope ∆. In order to construct the F-theory compactification on Y2, we collect G
invariant monomials in |Y1|. Then, from the G-invariant subsets of |Y1|, we could learn a
good deal about the Newton polytope for Y2.

Let us summarize the findings regarding the G-invariant subset of |Y1|. There are in total
57 G-invariant monomials in |Y1|, and there are in total 13 non-trivial root automorphisms.
Hence, we expect ∆Y2 ∩ Z5 should contain 57 points, where one of them is the origin.
Furthermore, among 57 points in ∆Y2 ∩ Z5, 13 points should lie inside the facets.

Given the fact that ∆◦11169 is contained in a hypersurface in the N lattice, we propose an
ansatz for ∆◦Y2

as follow. First, let us consider the group action of G on the lattice polytope

– 7 –
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∆◦11169 and its containing lattice N11169. More explicitly, let us consider an isomorphism
N11169 → Z4, such that ∆◦11169 ∩ Z4 has vertices

∆◦11169 ∩ Z4 ⊃


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −6
0 0 0 1 −9

 . (4.12)

Then, consider the group action of G on N11169

G · v =


−1 17 −1 −1
−1 −1 −1 −1
−1 −1 2 −1
−1 −1 −1 1


T

· v, (4.13)

which maps the vertices of ∆◦11169 to

g · (∆11169 ∩ Z4) ⊃


−1 −1 −1 −1 17
17 −1 −1 −1 −1
−1 −1 2 −1 −1
−1 1 −1 −1 −1

 . (4.14)

Now consider an embedding of N11169 into N and an extension of the group action on
u ∈ N such that

g · u =


−1 17 −1 −1 0
−1 −1 −1 −1 0
−1 −1 2 −1 0
−1 −1 −1 1 0
0 0 0 0 1



T

· u. (4.15)

Given the group action of G on N , we now obtain a candidate lattice polytope ∆◦G ∩ Z5 =
G · (∆◦ ∩ Z5), which has vertices

∆◦G ∩ Z5 ⊃


17 0 −1 −1 −1 −1
−1 0 17 −1 −1 −1
−1 0 −1 2 −1 −1
−1 0 −1 −1 1 −1
−18 1 0 0 0 0

 . (4.16)

The dual polytope ∆G, which is meant to be the Newton polytope, contains vertices

∆G ∩ Z5 ⊃


−1 1 −1 1 −1 −3
0 0 0 0 2 −2
0 0 2 0 0 −12
2 0 0 0 0 −18
−1 1 −1 −1 −1 −1

 . (4.17)

– 8 –
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Let us check if our ansatz for ∆G and ∆◦G is consistent with what we have found about
the G-invariant subset of |Y1|. What we find is that the monomials constructed from ∆◦G
and ∆G are one to one to the monomials in the G-invariant subset of |Y1|, and the root
automorphisms also map from one to the other via a one to one map. Hence, we conclude
∆◦G is isomorphic to ∆◦Y2

and likewise ∆G is isomorphic to ∆Y2 . We record the combinatorial
data in section B.2.

Let us study the fourfold Y2 in more detail. Among 475 prime toric divisors, only three
prime toric divisors have non-trivial hodge vectors.7 Here is a list of the three non-trivial
hodge vectors

h•(Dv2 ,ODv2 ) = (1, 0, 0, 10), (4.18)
h•(Dv4 ,ODv4 ) = (1, 0, 0, 1), (4.19)
h•(Dv5 ,ODv5 ) = (1, 0, 0, 2). (4.20)

We also find that all of the rigid prime toric divisors are trivial in h2,1. It can be easily
checked that no rigid divisor is in a convex hull of v2, v4, and v5, which is the unique 2-face
with non-trivial genus. Hence, all of the rigid edge-divisors and 2-face-divisors are trivial in
h2,1. Let us therefore compute h2,1 of Dv1,2,6 . Because there is a Z3 symmetry that relates
v1,2,6, without loss of generality, we will study v1 explicitly and draw conclusions for v2 and
v6 as well. Recall that h2,1(Dv1), cf. (2.1), is written as

h2,1(Dv1) = ϕ2(v◦1)−
∑
e≥v1

l∗(f◦) (4.21)

= l∗(2v◦1)− 5l∗(v◦1)−
∑
e≥v1

l∗(f◦). (4.22)

Let us compute l∗(2v◦1). 2v◦1 is the convex hull of the following points

2v◦1 ⊃


2 −2 −2 −2 −6
0 4 0 0 −4
0 0 4 0 −24
0 0 0 4 −36
2 −2 −2 −2 −2

 . (4.23)

It is straightforward to verify that there is no interior point in 2v◦1, hence we obtain
l∗(2v◦1) = 0. Because h2,1 cannot be negative, l∗(v◦1) and ∑f≥v1 l

∗(f◦) should vanish. Let
us verify this claim explicitly. As was computed in section B.2, Dv1 has no deformation
modulus and l∗(v◦1) = 0. Furthermore, all the 2-faces containing v1 have trivial genus so
that ∑f≥v1 l

∗(f◦) = 0. As a result, we obtain h2,1(Dv1,2,6) = 0.
A comment is in order. Although this F-theory compactification is attractive, it is not

clear how to extract the j-invariant of Y2 or find the weakly coupled type IIB description.
After an MPCP desingularization, the section X4 in the defining equation of the E7 model,
Y2, becomes X4∏

i ε
2
i , where εi are some homogeneous coordinates. Note that this is not a

7This can be easily seen from the fact that g(Θ)l∗(Θ) = 0 for all faces except for v2, v4, v5.
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unique feature of the E7 model, in fact the Weierstrass form suffers from the similar problem.
Hence, we no longer have the canonical form of the elliptic fibration which complicates the
analysis. It will be interesting to compute the j-invariant of this model in the future.
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A Review

In this section, we review the relevant results of [22–24, 33–36].

A.1 Toric varieties and stratification

Let M be an abelian group of rank n, one can think of M as an integral lattice of dimension
n under the isomorphism i : M → Zn. We consider a polytope ∆, which is integral with
respect to M . We further require that ∆ is reflexive. We will regard this reflexive polytope
∆ as the Newton polytope for the Calabi-Yau manifold in the latter. One can construct
a toric variety through the Proj construction of the graded rings generated by cones over
faces of ∆. In this note, we do not consider the Proj construction but rather the normal
fan construction which will be described in the subsequent paragraphs.

Consider a dual of M , N = Hom(M,Z). Likewise, we take a polar dual ∆◦ of the
lattice polytope ∆. Given the dual lattice and the polytope data, we construct the toric fan
as follows. Let Θ(l) be an l-dimensional face of ∆. Then, we define a convex n-dimensional
cone σ∨(Θ(l)) ⊂M ⊗Q which is a set of vectors λ(p− p′) where λ ∈ Q≥0, p ∈ ∆, p′ ∈ Θ(l).
We define σ(Θ(l)) te be the (n − l) dimensional dual cone of σ∨(Θ(l)). Let N(σ(Θ(l)) be
a minimal n− l dimensional sublattice of N containing σ ∩N . Then, for each cone σ of
dimension d, we define an n dimensional affine toric varitey Aσ,N = Spec[σ∨ ∩M ] which
is isomorphic to (C∗)n−d × Aσ,N(σ). The toric fan Σ is the polyhedral fan of cones σ. We
define Σ(i) be the set of all i-dimensional cones in Σ, and Σ[i] be the subfan of Σ that
contains all cones of dimension less than or equal to i. By gluing the affine toric varities
Aσ,N for all σ canonically, we obtain the n-dimensional toric variety PΣ,N .

We now present a different, and quite useful, angle on the construction of PΣ,N , the
stratification. An n-dimensional toric variety can be understood as a compactification of an
n-dimensional torus (C∗)n. The first step of the compactification is proceeded by attaching
normal crossing divisors, each of which irreducible components is (C∗)n−1, to (C∗)n. At
this stage, the compactification is not completed because the normal crossing divisors used
to compactify (C∗)n themselves are not compact. Hence, one then sequentially compactifies
(C∗)n−d by attaching (C∗)n−d−1 until d = n− 1. We call (C∗)d a d-dimensional strata of
PΣ. An elementary example is the toric variety P1, which can be constructed by attaching
two points to a one dimensional algebraic torus C∗.
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The stratification procedure may look quite distant from the toric fan construction.
But, in fact, the toric fan construction provides a natural way to stratify toric varieties. We
recall the following proposition [35]

Proposition 1. Let ∆ be an n-dimensional M -integral polytope in M ⊗Q, Σ = Σ(∆) the
corresponding complete rational polyhedral fan in N ⊗Q. Then

• For any face Θ ⊂ ∆, the affine toric variety Aσ(Θ),N is the minimal T-invariant affine
open subset in PΣ containing the T-orbit TΘ.

• Let Tσ := Tσ(Θ). There exists a one-to-one correrspondence between s-dimensional
cones σ ∈ Σ and (n − s)-dimensional T-orbits Tσ such that Tσ′ is contained in the
closure of Tσ iff σ is a face of σ′.

• P[i]
Σ = ∪dimσ≤iTσ is an open T-invariant subvariety in PΣ = P∆, and PΣ\P

[i]
Σ = P(i)

∆ .

This proposition also provides a very intuitive understanding on the nature of the
points in the polytope ∆◦. To each vertex vi ∈ ∆◦, we associate a homogeneous coordinate
xi, and Pv◦ . Pv◦ is a compacitification of (C∗)n−1. Note that the toric variety PΣ can have
various singularities, we comment on the singularity in the next section.

A.2 Comments on singularities

The singularities of the toric variety PΣ are determined by the integrality of the faces in ∆◦,
or equivalently the integrality of the toric fan [33, 35]. In general, there is a face Θ ∈ ∆◦
that is not integral with respect to the lattice N which then indicates a singularity. This
kind of singularities can be resolved by blowing up along the singular subvarieties. In the
toric fan construction, such blow-ups can be carried out by a refinement of the toric fans
which naturally gives a star triangulation of the reflexive polytope ∆◦. In this section, we
review which types of triangulations are good enough so that we can compute the hodge
numbers reliably. We also comment on in which cases the singularities are completely
resolved.

First, let us define pσ to be the unique T/Tσ-invariant point on the d-dimensional
affine toric variety Aσ,N(σ). It suffices to study the singularity around pσ for σ ∈ Σ as the
algebraic torus is locally indistinguishable. We then recall a proposition [33]

Proposition 2. Let n1, . . . , nr ∈ N (r ≥ s) be primitive N -integral generators of all
1-dimensional faces of an d-dimensional cone σ.

• The point pσ ∈ Aσ,N(σ) is Q-factorial (or quasi-smooth) if and only if the cone σ is
simplicial.

• The point pσ ∈ Aσ,N(σ) is Q-Gorenstein if and only if the elements n1, . . . , nr are
contained in an affine hyperplane

Hσ : {y ∈ NQ|〈kσ, y〉 = 1} , (A.1)

for some kσ ∈MQ. Moreover, Aσ,N(σ) is Gorenstein if and only if kσ ∈M .
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We first discuss which faces constitute good faces. A d-dimensional simplex σ ∈ Qn

with vertices in Zn is called P elementary if the minimal d-dimensional affine Q lattice
A(σ) satisfies following property: σ ∩ (A(σ) ∩ Zn) contains only the vertices of σ. σ is
called regular, if σ is unimodular with respect to A(σ) ∩ Zn. Note in particular that every
elementary simplex of dimension less than or equal to 2 is regular. We then recall a very
important proposition [35]

Proposition 3. Let PΣ be a toric variety with only Q-Gorenstein singularities. Then

• PΣ has only Q-factorial terminal singularities if and only if for every cone σ ∈ Σ the
polyhedron

Pσ = σ ∩ {y ∈ NQ|〈kσ, y〉 ≤ 1} (A.2)

is elementary.

• PΣ is smooth if and only if for every cone σ ∈ Σ the polyhedron Pσ is regular.

Note that in this note we will only consider PΣ with only Gorenstein singularities.

As a corollary, if PΣ has only Gorenstein Q-factorial terminal singularities, then the
open toric subvarieties P[3]

Σ is smooth. This corollary is a central result that guarantees the
smoothness of the subvarieties up to co-dimension three under a Maximal Projective Crepant
Partial desingularization (MPCP-desingularization), which is a crepant resolution of the
singularities that only leave out Q-factorial terminal singularities unresolved. Furthermore,
in [35] for any PΣ with only Gorenstein singularities it was shown that there exists at least
one MPCP-desingularization, and each MPCP desingularization is defined by a fine regular
star triangulation of ∆◦.8

A few comments are in order. In general, there is no reason to expect that the simplices
induced by an MPCP will all be regular. Hence, for a general MPCP desingularization, the
toric variety PΣ will still suffer from Q-factorial terminal singularities. This result implies
that any toric hypersurface CY 3-folds can be made completely smooth via MPCPs, while
toric hypersurface CY 4-folds may still have some singularities. It is nevertheless very
important not to think that there is no complete resolution of the singularities in toric
hypersurface CY 4-folds. If there is an FRST T of ∆◦ such that a proper subset of the
simplices are regular, the CY 4-folds in P∆◦ under T will be smooth.

A.3 Calabi-Yau hypersurfaces

A d-dimensional Calabi-Yau manifold can be embedded into a d+1-dimensional toric variety
PΣ, on which an MPCP desingularization was carried out, as a vanishing locus of a section
of the anti-canonical line bundle −KPΣ . Because the first Chern class of the anti-canonical
line bundle is a formal sum of the divisors, we obtain

c1(−KPΣ) =
∑

νi∈Σ(1)
Di. (A.3)

8See, for example, [37, 38] for detailed discussions on FRSTs.
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The corresponding Newton polytope for the anti-canonical line bundle is then

∆CY := {m ∈M |〈m, ν〉 ≥ −1∀ν ∈ Σ(1)}, (A.4)

which is the polar dual of ∆◦. Hence, we conclude that ∆ = ∆CY and a point p ∈ ∆ defines
a section

Fp = ap
∏

νi∈Σ(1)
z
〈p,νi〉+1
i . (A.5)

Note that points ν ∈ Σ(1) coincide with points in (T ∩∆◦) ∩N. By F , we denote a generic
section of −KPΣ

F =
∑
p∈∆

ap
∏

νi∈Σ(1)
z
〈p,νi〉+1
i . (A.6)

Let ZF ,∆ be a vanishing locus of F in PΣ. The bar above ZF ,∆ is to denote that ZF ,∆
is a compactification of ZF ,∆ ∈ (C∗)d+1. Assuming that the hypersurface ZF ,∆ or in a
shorthanded notation ZF is regular, meaning that for every face Θ ⊂ ∆ the affine variety
ZF ,Θ = ZF ,∆ ∩ TΘ is empty or a smooth hypersurface in TΘ, we obtain a stratification

ZF ,∆ =
∐

Θ⊂∆
ZF ,Θ . (A.7)

Equivalently, we define ZF ,Σ := ZF ,∆ and ZF ,σ(Θ) := ZF ,Θ. We define an open subvariety
Z

[i]
F ,Σ ⊂ ZF ,Σ as

Z
[i]
F ,Σ := ZF ,Σ ∩ P[i]

Σ . (A.8)
F In the beginning of this section, we assumed that an MPCP desingularization for the
toric fan was carried out. Now we discuss the implication of an MPCP desingularization.
An MPCP desingularization is defined by a refinement φ : Σ→ Σ(∆) of the toric fan Σ(∆).
The refinement procedure introduces new exceptional divisors whose topologies are dictated
by

ZF ,σ ≡ Zφ∗(F),σ′ × (C∗)dimσ′−dimσ , (A.9)
for σ ∈ Σ and φ(σ) ⊂ σ′ ∈ Σ(∆). This result will be used in an important manner when we
prove the combinatorial formulas for h2,1 of divisors.

Borrowing the results on the singularities of P[i]
Σ , we now recall the singularities of the

strata of ZF [35].

Proposition 4. For any regular hypersurface ZF ,Σ ⊂ PΣ, the open subset Z [1]
F ,Σ consists of

smooth points of ZF ,Σ. Moreover,

• Z
[2]
F ,Σ consists of smooth points if PΣ has only terminal singularities.

• Z
[3]
F ,Σ consists of smooth points if PΣ has only Q-factorial Gorenstein terminal singu-

larities.

• Z
[d]
F ,Σ = ZF is smooth iff P[d]

Σ is smooth.

As a result, given an arbitrary FRST T , at the worst there are singularities in Z[4]
F ,Σ\Z

[3]
F ,Σ

for a CY 4-fold embedded in a toric fivefold. As it is well known, a CY 3-fold is completely
smooth as an embedding to a toric fourfold.
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A.4 Hodge-Deligne numbers

In the previous sections, we introduced stratifications for an arbitrary toric Calabi-Yau
manifold. The stratification for the Calabi-Yau manifold will come in handy when computing
the hodge structure of the prime toric divisors, as the stratifications of the prime toric
divisors descend from the stratification of the Calabi-Yau manifold. For more inclined
readers, we recommend [39, 40].

In order to compute the hodge structure algorithmically, we wish to have a character
e that satisfies good properties, a few of which are as follows. First, for a disjoint union
X = ∐

Xi, we want the character to satisfy e(X) = ∑
e(Xi). Second, for a compact

quasi-smooth variety, we want the character ep,q to hold equivalent information as hp,q.
Phrased differently, we require that ep,q computes the pure hodge structure. Third, we want
the Kunneth isomorphism compatible with the hodge structure to exist for the character
e. Once those conditions are met, we can utilize the character e to determine the hodge
structures of the prime toric divisors from the stratification data quite algorithmically.

The topological invariant of interest is the Hodge-Deligne number which is defined as

ep,q(X) =
∑
k

(−1)khp,q
(
Hk
c (X)

)
, (A.10)

where Hk
c (X) is the dimension k cohomology with compact support. We then define the

Hodge-Deligne character as
e(X) =

∑
p,q

ep,q(X)xpx̄q . (A.11)

The Hodge-Deligne character and number satisfy various useful properties, and we highlight
some of them.

• For a compact quasi-smooth variety X, ep,q(X) = (−1)p+qhp,q(X).

• hp,q(Hk
c (X)) = 0 for p+ q > k.

• Let X be a disjoint union of Xi’s such that X = ∐
Xi. Then e(X) = ∑

i e(Xi).

• For a fiber bundle f : X → Y with f(pt)−1 = F that is locally trivial in the Zariski
topology, e(X) = e(Y )× e(F ).

• Let X be a smooth variety, and X be a compactification such that D := X\X is a
normal crossing divisor in X. Then, ep(X) := ∑

q e
p,q(X) = (−1)pχ(X,Ωp

(X,D)).

To compute the Hodge-Deligne numbers of toric hypersurfaces of various dimensions,
we recall three important ingredients.9

• There is a Gysin homomorphism H i(ZΘ,C)→ H i+2(PΘ,C) which is an isomorphism
for i > dimZΘ and is a surjection for i = dimZΘ.

9Note that we will not restrict ourselves to the reflexive polytopes, because the prime toric divisor’s
strata contains such hypersurfaces that are not of Calabi-Yaus.
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• The following short sequence is exact

0→ Ωp

(ZΘ,DZ) ⊗OPΘ
OPΘ(−ZΘ)→ Ωp+1

(PΘ,D) ⊗OPΘ
OZΘ

→ Ωp+1
(ZΘ,DZ) → 0 . (A.12)

• For the toric variety PΘ and its hypersurface ZΘ, the fundamental exact sequence
exists

0→ OPΘ(−Θ)→ OPΘ → OZΘ
→ 0 . (A.13)

Let n be dimPΘ. From the existence of the Gysin isomorphism, one can compute for
p+ q > n− 1

ep,q(ZΘ) = ep+1,q+1(TΘ) , (A.14)
which is equal to (−1)n+p+1( n

p+1
)
for p = q and is equal to 0 otherwise. Furthermore, from

the exact sequences (A.12) and (A.13), we obtain

(−1)n−1ep(ZΘ) = (−1)p
(

n

p+ 1

)
+ ϕn−p(Θ) , (A.15)

where ϕi(Θ) := (−1)i∑j≥1(−1)j
(n+1
i−j
)
l∗(jΘ). Finally, we relate the Hodge-Deligne numbers

of ZΘ to the Hodge-Deligne numbers of ZΓ for Γ ≤ Θ

ep,q(ZΘ) =
∑
Γ≤Θ

ep,q(ZΓ) . (A.16)

Because the Hodge-Deligne numbers ep,q(ZΘ) are known for p+ q > n− 1 and the Poincare
duality requires ep,q(ZΘ) = en−p−1,n−q−1(ZΘ), we have determined all of the Hodge-Deligne
numbers. In the rest of the section, we collect some of the Hodge-Deligne numbers for
k-dimensional polytopes Θ(k) up to dimension 4.

Let li(Θ) be the number of points in i-dimensional simplex in Θ and l∗(Θ) be the
number of interior points in Θ. Then we obtain the following identities.

e0,0(ZΘ(k)) = (−1)k−1(l1(Θ(k))− 1) . (A.17)

ei,j(Θ(2)) =
−l∗(Θ(2)) 1

1− l1(Θ(2)) −l∗(Θ(2))
. (A.18)

ei,j(Θ(3)) =
l∗(Θ(3)) 0 1

l2(Θ(3))− l1(Θ(3)) e1,1(Θ(3)) 0
l1(Θ(3))− 1 l2(Θ(3))− l1(Θ(3)) l∗(Θ(3))

, (A.19)

where e1,1(Θ(3)) = ϕ2(Θ(3))− l2(Θ(3)) + l1(Θ(3))− 3. For ei,j(Θ(4)) we obtain

−l∗(Θ(4)) 0 0 1
−l3(Θ(4)) + l2(Θ(4)) e2,1(Θ(4)) -4 0
−l2(Θ(4)) + l1(Θ(4)) e1,1(Θ(4)) e2,1(Θ(4)) 0

1− l1(Θ(4)) −l2(Θ(4)) + l1(Θ(4)) −l3(Θ(4)) + l2(Θ(4)) −l∗(Θ(4))

(A.20)

where e2,1(Θ(4)) = l3(Θ(4))− l2(Θ(4))−ϕ2(Θ(4)) and e1,1 = −ϕ3(Θ(4))+ϕ2(Θ(4))− l3(Θ(4))+
2l2(Θ(4))− l1(Θ(4)) + 6.
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B Combinatorial data for the Calabi-Yau fourfolds

B.1 Combinatorial data for the uplift of P[1,1,1,6,9][18]

dim face # int pts genus
0 1 1 2
0 2 1 2
0 3 1 28
0 4 1 65
0 5 1 376
0 6 1 2
1 1,2 0 1
1 1,3 0 8
1 1,4 0 16
1 1,5 0 62
1 1,6 0 1
1 2,3 0 8
1 2,4 0 16
1 2,5 0 62
1 2,6 0 1
1 3,4 0 136
1 3,5 0 489
1 3,6 0 8
1 4,5 0 860
1 4,6 0 16
1 5,6 0 62
2 1,2,3 0 1
2 1,2,4 0 2
2 1,2,5 0 7
2 1,2,6 1 0
2 1,3,4 0 17
2 1,3,5 0 51
2 1,3,6 0 1
2 1,4,5 0 85
2 1,4,6 0 2
2 1,5,6 0 7

dim face # int pts genus
2 2,3,4 0 17
2 2,3,5 0 51
2 2,3,6 0 1
2 2,4,5 0 85
2 2,4,6 0 2
2 2,5,6 0 7
2 3,4,5 0 595
2 3,4,6 0 17
2 3,5,6 0 51
2 4,5,6 0 85
3 1,2,3,4 0 1
3 1,2,3,5 0 3
3 1,2,3,6 2 1
3 1,2,4,5 0 5
3 1,2,4,6 1 1
3 1,2,5,6 0 1
3 1,3,4,5 0 35
3 1,3,4,6 0 1
3 1,3,5,6 0 3
3 1,4,5,6 0 5
3 2,3,4,5 0 35
3 2,3,4,6 0 1
3 2,3,5,6 0 3
3 2,4,5,6 0 5
3 3,4,5,6 0 35
4 1,2,3,4,5 0 0
4 1,2,3,5,6 0 0
4 1,2,3,4,6 1 0
4 1,2,4,5,6 0 0
4 1,3,4,5,6 0 0
4 2,3,4,5,6 0 0
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B.2 Combinatorial data for Y2

dim face # int pts genus
0 1 1 0
0 2 1 10
0 3 1 0
0 4 1 1
0 5 1 2
0 6 1 0
1 1,2 0 0
1 1,3 17 0
1 1,4 2 0
1 1,5 1 0
1 1,6 17 0
1 2,3 0 0
1 2,4 0 6
1 2,5 0 11
1 2,6 0 0
1 3,4 2 0
1 3,5 1 0
1 3,6 17 0
1 4,5 0 1
1 4,6 2 0
1 5,6 1 0
2 1,2,3 0 0
2 1,2,4 0 0
2 1,2,5 0 0
2 1,2,6 0 0
2 1,3,4 16 0
2 1,3,5 8 0
2 1,3,6 136 0
2 1,4,5 1 0
2 1,4,6 16 0
2 1,5,6 8 0

dim face # int pts genus
2 2,3,4 0 0
2 2,3,5 0 0
2 2,3,6 0 0
2 2,4,5 0 4
2 2,4,6 0 0
2 2,5,6 0 0
2 3,4,5 1 0
2 3,4,6 16 0
2 3,5,6 8 0
2 4,5,6 1 0
3 1,2,3,4 0 1
3 1,2,3,5 0 1
3 1,2,3,6 0 1
3 1,2,4,5 0 1
3 1,2,4,6 0 1
3 1,2,5,6 0 1
3 1,3,4,5 2 1
3 1,3,4,6 65 1
3 1,3,5,6 28 1
3 1,4,5,6 2 1
3 2,3,4,5 0 1
3 2,3,4,6 0 1
3 2,3,5,6 0 1
3 2,4,5,6 0 1
3 3,4,5,6 2 1
4 1,2,3,4,5 0 0
4 1,2,3,5,6 0 0
4 1,2,3,4,6 0 0
4 1,2,4,5,6 0 0
4 1,3,4,5,6 1 0
4 2,3,4,5,6 0 0
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