A note on Hadamard arrays

Joan Cooper

```
Let v=mk + l be a prime power; we show for m}\mathrm{ even it is not
possible to partition the Galois field GF(v) to give four
(0, 1, -1) matrices }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\mp@subsup{X}{3}{},\mp@subsup{X}{4}{}\mathrm{ satisfying:
(i) }\mp@subsup{X}{i}{** X X = 0, i\not=j, i, j=1, 2, 3, 4;
\[
\begin{equation*}
\sum_{i=1}^{4} X_{i} \text { is a }(1,-1) \text { matrix } \tag{ii}
\end{equation*}
\]
\[
\text { (iii) } \sum_{i=1}^{4} X_{i} X_{i}^{T}=v I v
\]
Thus this method of partitioning the Galois field GF(v), into four matrices satisfying the above conditions, cannot be used to find Baumert-Hall Hadamard arrays \(\mathrm{BH}[4 v]\) ior \(v=9,11,17,23,27,29, \ldots\).
```


Terminology and definitions

A $4 n \times 4 n$ Hadamard array, H, is a square matrix of order $4 n$ with elements $\pm A, \pm B, \pm C, \pm D$ each repeated n times in each row and column. Assuming the indeterminants A, B, C, D commute, the row vectors of H must be orthogonal.

The Hadamard product, *, of two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ which are the same size is given by

$$
A * B=\left(a_{i, j} b_{i, j}\right)
$$

The identity matrix will be represented as I and the $v \times v$ matrix
Received 1 August 1973. Communicated by Jennifer R.S. Wallis. 15
of all l's will be J.
The symbol \& represents the result from adjoining two sets with repetition remaining; that is,

$$
\left\{x_{1}, \ldots, x_{s}\right\} \&\left\{y_{1}, \ldots, y_{t}\right\}=\left[x_{1}, \ldots, x_{8}, y_{1}, \ldots, y_{t}\right]
$$

Where repetition occurs the elements resulting from such an adjunction will be called a collection and denoted by square brackets [] .

A binary composition \wedge of two sets will be defined as

$$
\begin{aligned}
A_{1} \wedge A_{2} & =\left[x_{1}, \ldots, x_{8}\right] \wedge\left[y_{1}, \ldots, y_{t}\right] \\
& =\left[x_{1}+A_{2}, \ldots, x_{s}+A_{2}\right] .
\end{aligned}
$$

Let $v=m k+1=p^{\alpha}$ (a prime power). Let x be a primitive element of $\cdot F=G F(v)$ and write $G=\left\{z_{1}, \ldots, z_{v-1}\right\}$ for the multiplicative cyclic group of order $v=1$ generated by x.

Choose the cosets C_{i} of G by

$$
C_{i}=\left\{x^{k j+i}: 0 \leq j \leq m-1\right\} \quad 0 \leq i \leq k-1
$$

where the order of C_{i} is m and its index k.
Now let $D_{i}=\left(d_{j l}\right)$ be the incidence matrix of the coset C_{i}. $D_{i}=\left(d_{j l}\right)$ is defined as

$$
d_{j l}= \begin{cases}1 & \text { if } z_{q^{-}} z_{j} \in C_{i}, \\ 0 & \text { otherwise } .\end{cases}
$$

We will denote D_{i} by $\left[C_{i}\right]$.

$$
\text { As } G=C_{0} \cup C_{1} \cup \ldots \cup C_{k-1}=F \backslash\{0\} \text {, its incidence matrix is } J-I
$$

and the incidence matrix of F is J.
Therefore the incidence matrix of $\{0\}$ will be I.

$$
X=\left[\begin{array}{ccc}
k-1 & & \\
\&=0 & b_{s} C_{s}
\end{array}\right] \text { will mean the matrix } X \text { which is a summation of the }
$$

incidence matrices of the cosets. That is
(1)

$$
X=\left[\begin{array}{ccc}
k-1 & & \\
\sum_{s=0} & b_{s} & C_{s}
\end{array}\right]=\sum_{s=0}^{k-1} b_{s}\left[C_{s}\right],
$$

$b_{a} \in Z$, the integers. Note from the definition of a binary composition

$$
\{0\} \wedge c_{i}=c_{i}
$$

We will define the transpose of a coset c_{i}^{T} by:

$$
\begin{aligned}
& c_{i}=\left\{x^{k j+i}: 0 \leq j \leq m-1\right\} \\
& c_{i}^{T}=\left\{-x^{k j+i}: 0 \leq j \leq m-1\right\}
\end{aligned}
$$

LEMMA 1 [1]. If m is even, $C_{i}^{T}=C_{i}$; and if m is odd, $c_{i}^{T}=c_{i+\frac{1}{2} k}$.

THEOREM 2 [1]. If c_{i} and c_{2} are two cosets of order m and index k of the group G, then the binaxy composition of C_{i} and C_{2} is given by:
(i) $c_{i} \wedge C_{Z}={\underset{\varepsilon}{\delta=0}}_{k-1} a_{\delta} C_{s}$ if zero does not occur;
(ii) $C_{i} \wedge C_{Z}=m\{0\} \&{\underset{\delta}{k}=0}_{k-1}^{s} a_{s} C_{s}$ if zero does occur;
where the a_{s} are integers giving multiplicities.
LEMMA 3. If
(i) zero does not occur in $C_{i} \wedge C_{Z}$ then

$$
\sum_{s=0}^{k-1} a_{s}=m ;
$$

(ii) zero does occur in $C_{i} \wedge C_{i}$ then

$$
\sum_{s=0}^{k-1} a_{s}=m-1 .
$$

LEMMA 4 [1]. $\quad c_{i} \wedge C_{2}=m\{0\} \& \underset{s=0}{k-1} a_{s} C_{s}$ if and only if $c_{2}=c_{i}^{T}$.
LEMMA 5 [1]. If
(i) $c_{Z} \neq c_{i}^{T}$ in $c_{i} \wedge c_{Z}$ then

$$
\underset{p=0}{k-1} C_{i+p} \wedge C_{q+p}={\underset{\varepsilon=0}{k-1} m C_{s} ; ~}_{s=}
$$

(ii) $C_{Z}=C_{i}^{T}$ in $C_{i} \wedge C_{z}$ then

$$
{\underset{p=0}{k-1} C_{i+p} \wedge C_{Z+p}=k m\{0\} \& \underset{s=0}{k-1}(m-1) C_{s} ~ . ~}_{k=0}
$$

Method of partitioning $G F(v)$

The incidence matrices $\left[C_{i}\right]$ of the cosets C_{i} and the identity matrix I are partitioned into four ($0,1,-1$) matrices $X_{1}, X_{2}, X_{3}, X_{4}$ such that

$$
\begin{gathered}
x_{i} * x_{j}=0, \quad i \neq j, \quad i, j=1,2,3,4 ; \\
\sum_{i=1}^{4} x_{i} x_{i}^{T}=v I_{v} .
\end{gathered}
$$

We show for m even with $X_{i} * X_{j}=0$ it is not possible to get $\sum_{i=1}^{4} X_{i} X_{i}^{T}=v I_{v}$.

THEOREM 6. Let $v=m k+1=p^{\alpha}$ (p a prime) with m even. Further suppose C_{i} are cosets of order m defined above.

Let

$$
x_{i}=\left[\begin{array}{ccc}
k-1 & & \\
\underset{s=0}{ } & a_{i} & c_{s}
\end{array}\right], \quad i=1,2,3,4,
$$

and suppose exactly one of $a_{1_{s}}, a_{2}, a_{3_{s}}, a_{4_{s}}$ is 1 or -1 and I
belongs to one of the X_{i} 's.
Then

$$
\sum_{i=1}^{4} x_{i} x_{i}^{T}=v I_{v}
$$

is not possible.
Proof. Without loss of generality let I occur in X_{1}.

$$
\left.\begin{array}{rl}
x_{1} & =\left[\begin{array}{c}
k-1 \\
\& \\
s=0
\end{array}\right. \\
a_{1} & C_{s}
\end{array} \&_{s} \quad\{0\}\right] \text {, from (1); }
$$

for $i=2,3,4$,

$$
x_{i}=\sum_{s=0}^{k-1} a_{i_{s}}\left[C_{s}\right]
$$

Since m is even from Lemma 1,

$$
c_{i}^{T}=c_{i}
$$

thus $X_{i} X_{i}^{T}$ becomes X_{i}^{2} for all i and we have

$$
\begin{aligned}
& x_{1}^{2}=\left(\sum_{s=0}^{k-1} a_{1_{s}}\left[c_{s}\right]+I\right)^{2}, \\
& x_{i}^{2}=\left(\sum_{s=0}^{k-1} a_{i_{s}}\left[C_{s}\right]\right)^{2}, i \neq 1, \\
& x_{1}^{2}=\sum_{s=0}^{k-1} a_{1_{s}}^{2}\left[C_{s}\right]^{2}+2 \sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{1} a_{s}\left[C_{s}\right]\left[C_{p}\right]+2 \sum_{s=0}^{k-1} a_{1}\left[C_{s}\right]+I
\end{aligned}
$$

For $i=2,3,4$,

$$
x_{i}^{2}=\sum_{s=0}^{k-1} a_{i_{s}}^{2}\left[c_{s}\right]^{2}+2 \sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{i_{s}} a_{i}\left[C_{s}\right]\left[c_{p}\right]
$$

Now

$$
\begin{aligned}
& \sum_{i=1}^{4} X_{i} X_{i}^{T}=\sum_{i=1}^{4} X_{i}^{2} \\
& =\sum_{\varepsilon=0}^{k-1}\left[c_{8}\right]^{2} \text { from the conditions of the theorem } \\
& +2 \sum_{i=1}^{4}\left(\sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{i s_{s}} a_{i}\left[C_{s}\right]\left[C_{p}\right]\right)+2 \sum_{s=0}^{k-1} a_{1}\left[C_{s}\right]+I ; \\
& \sum_{i=1}^{4} X_{i}^{2}=k m I+(m-1) \sum_{s=0}^{k-1}\left[c_{s}\right] \quad \text { from Lemma } 5 \\
& +2 \sum_{i=1}^{4}\left(\sum_{s=0}^{k-1} \sum_{p=s+1}^{k-1} a_{i}{ }_{s} a_{i_{p}}\left(\sum_{j=0}^{k-1} b_{j}\left[c_{j}\right]\right)\right) \text { by Theorem } 2 \text { (i) } \\
& \left(b_{j}{ }^{\prime} s \text { depend on } s \text { and } p\right) \\
& +2 \sum_{s=0}^{k} a_{1_{s}}\left[c_{s}\right]+I, \\
& \text { (2) } \\
& \sum_{i=1}^{4} X_{i}^{2}=(k m+1) I+(m-1) \sum_{s=0}^{k-1}\left[c_{s}\right]+2 \sum_{j=0}^{k-1} d_{j}\left[c_{j}\right] \text {, }
\end{aligned}
$$

where d_{j} comes from collecting all the cosets together from the third and fourth terms of the equation above.

It can be easily seen that it is not possible to get $\sum_{i=1}^{4} X_{i}^{2}=v I v$ as $m-1$ is odd and the 2 in front of the last term of equation (2) gives all the coset from this term an even number of times.

For $v=9,11,17, \ldots, m$ cannot be odd, by a result in [2]. We have just shown m cannot be even. So it is impossible to partition GF(v) by the method of [2] in order to construct Hadamard arrays, for those values of v.

References

[1] Joan Cooper, "A binary composition for collections and sets", Proc. First Austral. Conf. Combinatorial Math., Newcastle, 1972, 145-161 (TUNRA, Newcastle, 1972).
[2] Joan Cooper and Jennifer Wallis, "A construction for Hadamard arrays", Bull. Austral. Math. Soc. 7 (1972), 269-277.
[3] David C. Hunt and Jennifer Wallis, "Cyclotomy, Hadamard arrays and supplementary difference sets", Proc. Second Manitoba Conf. Numerical Mathematics, October 1972, 351-381 (Congressus Numerantium, 7. University of Manitoba, Winnipeg, 1972).
[4] Thomas Storer, Cyclotomy and difference sets (Lectures in Advanced Mathematics, 2. Markham, Chicago, Illinois, 1967).

Department of Mathematics,
University of Newcastle,
Newcastle,
New South Wales.

