A Note on Height Pairings, Tamagawa Numbers, and the Birch and Swinnerton-Dyer Conjecture

S. Bloch *
Department of Mathematics, University of Chicago, Chicago, IL 60637, USA

Introduction

Let G be an algebraic group defined over a number field k. By choosing a lifting of G to a group scheme over $\mathcal{O}_{S} \subset k$, the ring of S-integers for some finite set of places S of k, we may define $G\left(\mathcal{O}_{v}\right)$, where $\mathcal{O}_{v} \subset k_{v}$ is the ring of integers in the v adic completion of k for all non-archimedean places $v \notin S$. In this way, we can define the adelic points $G\left(\mathbf{A}_{k}\right)$. Since different choices of lifting will change $G\left(\mathcal{O}_{v}\right)$ for only a finite number of $v, G\left(\mathbf{A}_{k}\right)$ is intrinsically defined independent of the choice of \hat{O}_{s}-scheme structure.

It may happen that $G(k) \subset G\left(\mathbf{A}_{k}\right)$ is discrete. This will be the case, for example, if G is affine. If so, we may try to compute the volume of $G\left(\mathbf{A}_{k}\right) / G(k)$. Writing $\mathbb{F}_{v}=$ residue field at $v, q_{v}=\# \mathbb{F}_{v}, N_{v}=\# G\left(\mathbb{F}_{v}\right)$, the natural volume form gives $\operatorname{Vol}\left(G\left(\mathcal{O}_{\nu}\right)\right)=N_{v} q_{v}^{-1}$ for all $v \notin S$. It can happen that $\prod N_{v} q_{v}^{-1}$ does not converge (example: $G=G_{m}$), but in many cases there is an L-function $L(G, s)$ available such that $L(G, s)=\prod_{v \notin S} L_{v}(G, s)$ where the product converges absolutely for $\operatorname{Re} S \geqslant 0$ and extends meromorphically to the whole plane with $L_{,}(G, 1)=\frac{q_{v}}{N_{v}}$. Suppose $\lim _{s \rightarrow 1} L(G, s)(s-1)^{-r} \neq 0, \infty$. The Tamagawa number $\tau(G)$ is defined by modifying the measure on $G\left(\mathbf{A}_{k}\right)$ so $\operatorname{Vol}\left(G\left(\mathbb{O}_{r}\right)\right)=1$, all $v \notin S$, computing the measure of $G\left(\mathbf{A}_{k}\right) / G(k)$, and then multiplying by $\lim _{s \rightarrow 1} L(G, s)(s-1)^{-r}$. For more details, the reader should see [10].

The Tamagawa number has been computed for all except a few particularly stubborn affine algebraic groups, and takes the value (see [10, 4-6])

$$
\tau(G)=\frac{\# \operatorname{Pic}(G)}{\# I I I(G)}
$$

where $\operatorname{Pic}(G)=\operatorname{Picard} \operatorname{group}$, and $H(G)=\operatorname{Ker}\left(H^{1}(\bar{k} / k, G(\bar{k}))\right) \rightarrow \prod_{v} H^{1}\left(\bar{k}_{v} / k_{v}, G(\bar{k})\right)$.
Moreover, $r \leqq 0$, and $r=0$ if $G\left(A_{v}\right) / G(k)$ is compact. Moreover, $r \leqq 0$, and $r=0$ if $G\left(A_{k}\right) / G(k)$ is compact.

[^0]Suppose now that G is not necessarily affine, but that $G(k)$ is discrete in $G\left(\mathbf{A}_{k}\right)$. One conjectures that $\Psi(G)$ is finite. (This is not known for a single abelian variety $G!) \operatorname{Pic}(X)$ may be infinite but $\operatorname{Pic}(X)_{\text {torsion }}$ is finite and one may
(0.1) Conjecture. $\tau(G)=\frac{\# \operatorname{Pic}(G)_{\text {tors }}}{\# I I I(G)}$. Moreover, $r \leqq 0$ and $r=0$ if and only if $G\left(\mathbf{A}_{k}\right) / G(k)$ has finite volume.

We refer to this in the sequel as the Tamagawa number conjecture.
Consider now the case of an abelian variety A. Conjecture (0.1) makes sense only if $A(k)$ is finite. The Hasse-Weil L-function $L(A, s)=\prod_{v \notin S} L_{v}(A, s)$, where S $=$ set of bad reduction places, and
$L_{v}(A, s)=\frac{1}{\operatorname{det}\left(1-q_{v}^{-s} F_{v} \mid H_{\mathrm{et}}^{1}\left(A_{\overline{\mathbb{F}}_{v}}, \overline{\mathbb{Q}_{l}}\right)\right)} \quad\left(F_{v}=\right.$ geometric frobenius $)$.
Birch and Swinnerton-Dyer conjecture that $L(A, s)$ has a zero of order r $=r k A(k)$ at $s=1$ (so $r \geqq 0)$ and that

$$
\begin{equation*}
\lim _{s \rightarrow 1} L(A, s)(s-1)^{-r}=\frac{\# I I I(A) \cdot \operatorname{det}\langle \rangle \cdot V_{\infty} \cdot V_{\mathrm{bad}}}{\# A(k)_{\mathrm{tors}} \cdot \# \operatorname{Pic}(A)_{\mathrm{tors}}} \tag{0.2}
\end{equation*}
$$

where $V_{\infty}=$ Volume $A\left(k \otimes_{\mathbb{Q}} \mathbb{R}\right)$ and $V_{\text {bad }}=$ Volume $\prod_{v \in S} A\left(k_{v}\right)$. Finally, \rangle denotes
the height pairing $[1,3]$

$$
\left\rangle: A(k) \times A^{\prime}(k) \rightarrow \mathbb{R}\right.
$$

with $A^{\prime}(k)=\operatorname{Pic}^{0}(A)$.
The purpose of this note is to deduce (0.2) from (0.1), and thus to give a purely volume-theoretic interpretation of Birch and Swinnerton-Dyer. An element $\alpha \in \operatorname{Pic}(A)$ corresponds to a \mathbb{T}_{m}-torseur $X_{\alpha} \rightarrow A$. If $\alpha \in \operatorname{Pic}^{0}(A)=A^{\prime}(k), X_{\alpha}$ is a group extension of A by G_{m}. We construct in this way an extension

$$
\begin{equation*}
0 \rightarrow \mathrm{~T} \rightarrow \mathrm{X} \rightarrow \mathrm{~A} \rightarrow 0 \tag{0.3}
\end{equation*}
$$

where T is the split torus with character group $\cong A^{\prime}(k)$ /torsion. An important point is that the "logarithmic modulus" map factors

The product formula shows log.mod. $(T(k))=(0)$, so by restriction to global points, we obtain

$$
A(k) \cong X(k) / T(k) \mapsto \operatorname{Hom}\left(A^{\prime}(k), \mathbb{R}\right),
$$

or again

$$
\begin{equation*}
A(k) \times A^{\prime}(k) \rightarrow \mathbb{R} \tag{0.4}
\end{equation*}
$$

Using the axiomatic characterization of Neron's local pairings [1,3], we show that (0.4) is the height pairing. From this it follows without difficulty that $X(k)$ is discrete and cocompact in $X\left(\mathbf{A}_{k}\right)$, and that (0.1) for X implies (0.2) for A.

It seems likely that this technique will lead to height pairings in many new situations, e.g., for algebraic cycles other than zero cycles and divisors. I hope to return to this question in the future. I am indebted to W . Messing for several helpful discussions regarding the Neron model.

1. The Global Construction

Let A be an abelian variety over a number field k. Let N be the Neron model of A over the ring of integers $\mathcal{O}_{k}, N^{0} \subset N$ the largest open subgroup scheme whose fibres are connected. Let A^{\prime} be the dual abelian variety, $N^{\prime}=$ Neron model of A^{\prime}. It is known (cf. [11], p. 53) that

$$
\begin{equation*}
N^{\prime} \cong \operatorname{Ext}_{C \text {-group scheme }}^{1}\left(N^{0}, \mathbb{G}_{m}\right) . \tag{1.1}
\end{equation*}
$$

In particular, if we fix once for all a splitting

$$
\begin{equation*}
A^{\prime}(k)=B \oplus A^{\prime}(k)_{\mathrm{tors}} \tag{1.2}
\end{equation*}
$$

and use $A^{\prime}(k)=N^{\prime}\left(\mathcal{O}_{k}\right)$, we can build an extension over \mathcal{O}_{k}

$$
\begin{equation*}
0 \rightarrow T \rightarrow X \rightarrow N^{6} \rightarrow 0, \tag{1.3}
\end{equation*}
$$

where T is the k-split torus with character group B. Let A_{k} denote the adeles of k. Since $H^{1}\left(\operatorname{Sp} R, \mathbb{G}_{m}\right)=(0)$ for R local, we get exact sequences

$$
0 \rightarrow T(k) \rightarrow X(k) \rightarrow A(k) \rightarrow 0
$$

$$
\begin{equation*}
0 \rightarrow T\left(\mathbf{A}_{k}\right) \rightarrow X\left(\mathbf{A}_{k}\right) \rightarrow N^{0}\left(\mathbf{A}_{k}\right) \rightarrow 0 . \tag{1.4}
\end{equation*}
$$

Define $T^{1} \subset T\left(\mathbf{A}_{k}\right)$ by the exact sequence

$$
\begin{equation*}
0 \rightarrow T^{1} \rightarrow T\left(\mathbf{A}_{k}\right) \xrightarrow{i} \operatorname{Hom}(B, \mathbb{R}) \rightarrow 0 \tag{1.5}
\end{equation*}
$$

where l is induced from the usual logarithmic modulus map from the ideles to \mathbb{R}. Define further, for v a place of k

$$
X_{v}^{1}= \begin{cases}X\left(\mathcal{O}_{v}\right) & v \text { non-archimedean } \tag{1.6}\\ X\left(k_{r}\right)_{\text {max. compact }} & v \text { archimedean }\end{cases}
$$

$$
\tilde{X}^{1}=T^{1} \cdot \prod_{v} X_{v}^{1} \subset X\left(\mathbf{A}_{k}\right) .
$$

Finally, let X^{1} be the rational saturation of \hat{X}^{1}, i.e.,

$$
\begin{equation*}
X^{1}=\left\{a \in X\left(\mathbf{A}_{k}\right) \mid \exists n \geqq 1, n \in \mathbb{Z}, n a \in \tilde{X}^{1}\right\} . \tag{1.7}
\end{equation*}
$$

(1.8) Lemma. There exists a diagram with exact rows and columns

Proof. It suffices to show $X^{1} \cap T\left(\mathbf{A}_{k}\right)=T^{1}$, and $X^{1} \rightarrow N^{0}\left(\mathbf{A}_{k}\right)$. The first point is straightforward, using that $T\left(\mathbf{A}_{k}\right) / T^{1}$ is torsion-free, and l is trivial on $T\left(\mathcal{O}_{v}\right)$ and $T\left(k_{v}\right)_{\text {max. compact }}$. For the second, note that the image of \tilde{X}^{1} in $N^{0}\left(\mathbf{A}_{k}\right)$ contains $A\left(k_{v}\right)=N^{0}\left(\mathcal{O}_{v}\right)$ for almost all v and the cokernel

$$
W_{\mathrm{def}}^{=} N^{0}\left(\mathbf{A}_{k}\right) / \operatorname{Im}\left(\tilde{X}^{1} \rightarrow N^{0}\left(\mathbf{A}_{k}\right)\right)
$$

is finite. It follows easily that $X\left(\mathbf{A}_{k}\right) / \tilde{X}^{1} \cong \operatorname{Hom}(B, \mathbb{R}) \oplus W$. Replacing \tilde{X}^{1} by X^{1} eliminates torsion in the quotient, and the lemma follows by diagram chasing. Q.E.D.

Combining (1.4) and (1.8), and using the fact that $T(k) \subset T^{1}$ (product formula) we get

$$
A(k) \cong X(k) / T(k) \rightarrow X\left(\mathbf{A}_{k}\right) / T(k) \rightarrow \operatorname{Hom}(B, \mathbb{R})
$$

and hence a pairing

$$
\left\rangle: A(k) \times A^{\prime}(k) \rightarrow \mathbb{R} .\right.
$$

(1.9) Theorem. The above pairing coincides with the height pairing.

We postpone the proof until the next section.
(1.10) Theorem. $X(k) \subset X\left(\mathbf{A}_{k}\right)$ is discrete and cocompact.

Proof. Let $U=X(k) \cap X^{1} \subset X\left(\mathbf{A}_{k}\right)$. Since the height pairing is perfect, we get $0 \rightarrow T(k) \rightarrow U \rightarrow A(k)_{\text {tors }} \rightarrow 0$, and hence exact sequences

$$
\begin{align*}
& 0 \rightarrow T^{1} / T(k) \rightarrow X^{1} / U \rightarrow N^{0}\left(\mathbf{A}_{k}\right) / A(k)_{\text {tors }} \rightarrow 0 \\
& 0 \rightarrow X^{1} / U \rightarrow X\left(\mathbf{A}_{k}\right) / X(k) \rightarrow \frac{\operatorname{Hom}(B, \mathbb{R})}{\operatorname{Image} A(k)} \rightarrow 0 \tag{1.11}
\end{align*}
$$

The image of $A(k)$ in $\operatorname{Hom}(B, \mathbb{R})$ is known to be discrete and cocompact (perfectness of height pairings), and compactness is known for $T^{1} / T(\mathrm{k})$ (classical theorem about ideles) and $N^{0}\left(\mathbf{A}_{k}\right)$. The assertions of the theorem follow. Q.E.D.

What about the Tamagawa number of X ? With notation as in the introduction, let $r=r k A^{\prime}(k)$. We choose convergence factors in the sense of [10] for the measure on $X\left(\mathbf{A}_{k}\right)$:

$$
\begin{array}{ll}
\left(1-q_{v}^{-1}\right)^{r} L_{v}(A, 1)^{-1} & \begin{array}{l}
v \text { non-archimedean, } A \text { has good } \\
\text { reduction at } v,
\end{array} \\
\left(1-q_{v}^{-1}\right)^{r} & \begin{array}{l}
v \text { non-archimedean, } A \text { does not } \\
\text { have good reduction at } v, \\
1
\end{array} \\
v \text { archimedean. } \tag{1.12}
\end{array}
$$

These correspond to convergence factors $\left(1-q_{v}^{-1}\right)^{r}$ on $T\left(\mathbf{A}_{k}\right)$ and $L_{v}(A, 1)^{-1}$ on $N^{0}\left(\mathbf{A}_{k}\right)(v$ good reduction place $)$. Writing $\zeta_{k}(s)$ for the zeta function of k we get from (1.11)

$$
\begin{align*}
& \text { Volume }\left(T^{1} / T(k)\right)=\lim _{s \rightarrow 1}\left(\zeta_{k}(s)(s-1)\right)^{r} \\
& \operatorname{Vol} . N^{0}\left(\mathbf{A}_{k}\right)=\underbrace{\operatorname{Vol} \cdot\left(A\left(K \otimes_{\mathbb{Q}} \mathbb{R}\right)\right)}_{V_{\infty}} \underbrace{\prod_{r \text { bad }} \operatorname{Vol} . A\left(k_{v}\right)}_{V_{\text {bad }}} \tag{1.13}
\end{align*}
$$

$$
\operatorname{Vol} .\left(X^{1} / U\right)=\frac{1}{\# A(k)_{\text {tors }}} \lim _{s \rightarrow 1}\left(\zeta_{k}(s)(s-1)\right)^{r} V_{\infty} V_{\text {bad }}
$$

$$
\text { Vol. }\left(X\left(\mathbf{A}_{k}\right) / X(k)\right)=\frac{1}{\# A(k)_{\text {tors }} s \rightarrow 1} \lim _{k}\left(\zeta_{k}(s)(s-1)\right)^{r} V_{\infty} V_{\text {bad }} R
$$

where R is the absolute value of the discriminant of the height pairing.
We assume now that $\lim _{s \rightarrow 1} \zeta_{k}(s)^{r} L(A, s) \neq 0, \infty$, i.e., that the L-function of X has no zero or pole at $s=1$ as predicted by the Tamagawa number conjecture, or equivalently that the L-function of A has a zero of order $r=r k A(k)$ as predicted by Birch and Swimmerton-Dyer. To define the Tamagawa number $\tau(X)$ we eliminate the (non-canonical) choice of convergence factors by dividing the volume computed above by $\lim _{s \rightarrow 1} \zeta_{k}(s)^{r} L(A, s)$, getting

$$
\begin{equation*}
\tau(X)=\frac{1}{\# A(k)_{\mathrm{tors}}} \lim _{s \rightarrow 1} L(A, s)^{-1}(s-1)^{r} V_{\infty} V_{\mathrm{bad}} R . \tag{1.14}
\end{equation*}
$$

Conjecture (0.2) is thus equivalent to

$$
\begin{equation*}
\tau(X) \stackrel{?}{=} \frac{\# A^{\prime}(k)_{\mathrm{tors}}}{\# M(A)} \tag{1.15}
\end{equation*}
$$

(1.16) Lemma. $\operatorname{III}(A) \cong I I I(X)$ and $A^{\prime}(k) \cong \operatorname{Pic}(X)_{\text {tors }}$.

Proof. The first isomorphism follows from chasing the diagram

For the second isomorphism, note that if T is a split torus over a ring R with character group \hat{T}, then taking units in the ring of regular functions on T yields an exact sequence

$$
0 \rightarrow R^{*} \rightarrow R[T]^{*} \rightarrow \hat{T} \rightarrow 0
$$

Let $\pi: X \rightarrow A$ be the projection. The above sequence globalizes

$$
0 \rightarrow \mathbb{G}_{m, A} \rightarrow \pi_{*} \mathbb{G}_{m, X} \rightarrow B_{A} \rightarrow 0
$$

where B_{A} is the constant Zariski sheaf on A with stalk B. The boundary map

$$
B=\Gamma\left(A, B_{A}\right) \rightarrow H^{1}\left(A, \mathbb{G}_{m}\right)=\operatorname{Pic} A
$$

is the natural inclusion, so we obtain

$$
H^{1}\left(A, \pi_{*} \mathrm{G}_{m, X}\right) \cong(\operatorname{Pic} A) / B
$$

Locally over $A, Z \cong \mathbb{G}_{m}^{r} \times A$, so $R^{1} \pi_{*} \mathbb{G}_{m, X}=(0)$ and we find

$$
\operatorname{Pic} X \cong(\operatorname{Pic} A) / B
$$

and a similar result holds for torsion. Q.E.D.
Combining (1.15) and (1.16) yields
(1.17) Theorem. The Birch and Swinnerton-Dyer conjecture holds for A if and only if

$$
\tau(X)=\frac{\# \operatorname{Pic}(X)_{\mathrm{tors}}}{\# I I(X)}
$$

2. The Local Neron Pairing

The purpose of this section is to prove (1.9). Let k be a local field, A an abelian variety over $k, N=$ Neron model of $A, N^{0} \subset N$ the subgroup scheme with connected fibres. The Néron model of the dual variety $A^{\prime}=\operatorname{Ext}^{1}\left(A, \mathbb{G}_{m}\right)$ is then $N^{\prime}=\operatorname{Ext}_{\mathscr{C}}^{1}\left(N^{0}, \mathbb{G}_{m}\right)([11]$, p. 53). Thus given a divisor Δ on A defined over k and algebraically equivalent to 0 , we get a corresponding extension

$$
\begin{equation*}
0 \rightarrow \mathbb{G}_{m} \rightarrow X_{\Delta} \rightarrow N^{0} \rightarrow 0 . \tag{2.1}
\end{equation*}
$$

If \mathscr{L}_{A} is the line bundle associated to Δ,

$$
X_{\Delta} \cong V\left(\mathscr{L}_{4}\right)-(0-\text { section })
$$

as a G_{m}-torseur. The extension (2.1) depends only on the linear equivalence class of Δ.

Restricting to $\mathrm{Sp} k$, the extension (2.1) is split as a torseur over $A-|\Delta|(|\Delta|$ $=\operatorname{Supp} 4$)

where σ_{A} is canonical up to translation by $\mathbb{G}_{m, k}(k)=k^{*}$ (choosing σ_{A} is tantamount to choosing a rational section of \mathscr{L}_{Δ} corresponding to the divisor Δ). Let $Z_{A, k}=$ group of zero cycles $\mathfrak{M}=\sum n_{i}\left(p_{i}\right)$ on A defined over k such that $\sum n_{i} \operatorname{deg} p_{i}=0$ and $\operatorname{Supp} \mathfrak{H} \subset A-|\Delta|$. We get a homomorphism

$$
\begin{equation*}
\sigma_{\Delta}: Z_{\Delta, k} \rightarrow X_{\Delta}(k) . \tag{2.3}
\end{equation*}
$$

Define

$$
\begin{aligned}
X_{\Delta}^{1} & = \begin{cases}X_{\Delta}\left(S p \mathcal{O}_{k}\right) & k \text { non-archimedean } \\
X_{\Delta}(k)_{\text {max.compact }} & k \text { archimedean }\end{cases} \\
\mathbb{G}_{m}^{1} & = \begin{cases}\mathcal{O}_{k}^{*} & k \text { non-archimedean } \\
\left(k^{*}\right)_{\text {max compact }} & k \text { archimedean },\end{cases} \\
F & = \begin{cases}\mathbb{Z} & k \text { non-archimedean, } N=N^{0} \\
\mathbb{Q} & k \text { non-archimedean, } N \neq N^{0} \\
\mathbb{R} & k \text { archimedean } .\end{cases}
\end{aligned}
$$

(2.4) Lemma. Assume either v archimedean or $N=N^{0}$. Then there is a diagram with exact rows and columns

Proof. The map labeled l is either the logarithm or the valuation map. As in the proof of (1.8), the only thing we need to show is $X_{4}^{1} \rightarrow A(k)$. In the nonarchimedean case we have $A(k) \cong N(\mathcal{O})=N^{0}(\mathcal{O})$. Surjectivity $X_{\Delta}^{1}=X(\mathcal{O}) \rightarrow N^{0}(\mathcal{O})$ follows from $H^{1}\left(S p \mathcal{O}, \mathbb{G}_{m}\right)=(0)$. In the archimedean case, the existence of an exponential implies the connected component of 0 in $A(k)$ is contained in the image of X_{Δ}^{1}. Factoring out by X_{Δ}^{1}, we obtain an extension of a finite group by \mathbb{R}. Such an extension is necessarily split, so we get

$$
0 \rightarrow X_{\Delta}^{1} \rightarrow X_{\Delta}(k) \rightarrow \mathbb{R} \oplus(\text { finite }) \rightarrow 0 .
$$

Since X_{4}^{1} is maximal compact, (finite) $=(0) . \quad$ Q.E.D.
Suppose now $N \neq N^{0}$, and let $A(k)_{0}=\operatorname{Image}\left(X_{\Delta}^{1} \rightarrow A(k)\right)$. Note $A(k) / A(k)_{0}$ is finite, and we have a diagram (defining Y)

In particular $Y \otimes \mathbb{Q} \cong \mathbb{Q}$ (canonically) so we get $X_{A}(k) \rightarrow Q$.
In any of the above cases, let $\psi_{A}: X_{A}(k) \rightarrow F$ be the map just defined, and for $\mathfrak{M} \in Z_{A, k}$ define

$$
\begin{equation*}
\langle\Delta, \mathfrak{N l}\rangle_{\text {local }}=\psi_{\Delta} \sigma_{\Delta}(\mathfrak{N l}) . \tag{2.6}
\end{equation*}
$$

When the given ground field is the completion of a global field at some place v, we write $\left\rangle_{v}\right.$ instead of $\left\rangle_{\text {local }}\right.$.
(2.7) Theorem. Let k be a number field. Let $a \in A(k), a^{\prime} \in A^{\prime}(k)$. Let Δ (resp. $\left.\mathfrak{A}\right)$ be a divisor algebraically equivalent to zero defined over k (resp. a zero cycle of degree 0 defined over k) on A such that $[\Delta]=a^{\prime}($ resp. \mathfrak{A} maps to $a \in A(k)$). Assume further that Supp 4 and Supp \mathfrak{A} are disjoint. Then

$$
\left\langle a, a^{\prime}\right\rangle=\sum_{\substack{v \text { place } \\ \text { of } k}}\langle\Delta, \mathfrak{M}\rangle_{v},
$$

where $\left\langle a, a^{\prime}\right\rangle$ is defined as in (1.9).

Proof. Consider the global extension

$$
0 \rightarrow T \rightarrow X \rightarrow N^{0} \rightarrow 0
$$

as in section 1 and push out along $a^{\prime} \in \hat{T}$ to get

$$
0 \rightarrow \mathbb{G}_{m} \rightarrow \mathrm{X}_{\Delta} \rightarrow N^{0} \rightarrow 0
$$

We can think of $\sigma_{\Delta}: Z_{4, k} \rightarrow X_{\Delta}(k)$ just as in the local case. The problem therefore reduces to showing the map

$$
\begin{equation*}
X_{\Delta}\left(\mathbf{A}_{k}\right) \rightarrow \mathbb{R} \tag{2.8}
\end{equation*}
$$

defined via the techniques of Sect. 1 coincides with the sum of the local maps

$$
\psi_{A, v}: X_{A}\left(k_{v}\right) \rightarrow F=\left\{\begin{array}{l}
\mathbb{Z} \\
\mathbb{Q} \\
\mathbb{R}
\end{array}\right.
$$

defined in the beginning of this paragraph.
Finally, this point is clear from the diagram
(2.9)

Néron has shown [3] that the height pairing can be written as a sum of local terms. With notation as in (2.7)

$$
\begin{equation*}
\left\langle a, a^{\prime}\right\rangle=\sum_{v}\langle\Delta, \mathfrak{N}\rangle_{\varepsilon, \text { Neron }} . \tag{2.10}
\end{equation*}
$$

(2.11) Proposition. $\langle\Delta, \mathfrak{I}\rangle_{v}=\langle\Delta, \mathfrak{M}\rangle_{v, \text { Neron }}$.

Proof. We write $v: k_{v}^{*} \rightarrow \mathbb{R}$ for the logarithmic valuation, normalized in accordance with the global product formula. Let $D_{a}(A)_{k}$ denote the group of divisors on A algebraically equivalent to zero and defined over k. The local Néron pairing is characterized by the following properties:
$(1)\left\rangle_{v, \text { Neron }}:\left\{(\Delta, \mathfrak{H}) \in D_{a}(A)_{k} \times Z_{k}(A)| | \Delta|\cap| \mathfrak{M} \mid=\emptyset\right\} \rightarrow \mathbb{R}\right.$
(2) $\left\rangle_{v, \text { Neron }}\right.$ is bilinear, assuming all terms in the desired equality are defined.
(3) If $\Delta=(f)$, then $\langle\Delta, \mathfrak{Q}\rangle_{v, \text { Neron }}=v(f(\mathfrak{H}))$, where for $\mathfrak{H}=\sum n_{i}\left(p_{i}\right), f(\mathfrak{Q})$ $=\prod_{i} f\left(p_{i}\right)^{n_{2}}$.
(4) $\langle\Delta, \mathfrak{T}\rangle_{v, \text { Neron }}=\left\langle\Delta_{a}, \mathfrak{A}_{a}\right\rangle_{v, \text { Neron }}$, where $a \in A\left(k_{v}\right)$ and the subscript indicates translation by a.
(5) For $\Delta \in D_{a}(A)_{k_{v}}$ and $x_{0} \in A\left(k_{v}\right)-|\Delta|$, the map

$$
x \mapsto\left\langle\Delta,(x)-\left(x_{0}\right)\right\rangle_{v, \text { Neron }}
$$

is bounded on every v-bounded subset of $A\left(k_{v}\right)-|\Delta|$.
(Here v-bounded subset means subset of a coordiante neighborhood on which v (coordinate functions) are bounded.)

We show that the pairing $(\Delta, \mathfrak{d}) \longmapsto\langle\Delta, \mathfrak{H}\rangle v$, satisfies condition (1)-(5), except that (4) will be proven only for $a \in N^{0}(\mathcal{O}) \subset A(k)$.
(2.12) Lemma. $\left\rangle_{v}\right.$ satisfies (3).

Proof. Let $\Delta=(f)$. Then $X_{\Delta} \cong \mathbb{G}_{m} \times N^{0}$ and

$$
\begin{gathered}
\sigma_{\Delta}: A-|\Delta| \rightarrow \mathbb{G}_{m} \times A \\
\sigma_{\Delta}(a)=(f(a), a) .
\end{gathered}
$$

Since $\psi_{\Delta}=v$ on $\mathbb{G}_{m}\left(k_{v}\right)=k_{v}^{*}$, the lemma follows. Q.E.D.
(2.13) Lemma. $\left\rangle_{v}\right.$ satisfies (2), i.e., it is bilinear.

Proof. Bilinearity in $\mathfrak{G} \in Z_{k}(A)$ holds by definition. We must show

$$
\left\langle\mathfrak{U}, A_{1}\right\rangle+\left\langle\mathfrak{H}, A_{2}\right\rangle=\left\langle\mathfrak{N}, A_{1}+A_{2}\right\rangle
$$

whenever $\Delta_{i} \in D_{a}(A)$ and $|\mathfrak{U}| \cap\left(\left|A_{1}\right| \cup\left|A_{2}\right|\right)=\emptyset$. Note that $\sigma_{A_{1}+\Delta_{2}}$ can be taken to be the "sum" in the sense of torseurs of $\sigma_{\Delta_{1}}$ and $\sigma_{\Delta_{2}}$, i.e., the rational section of $\mathscr{L}_{\Delta_{1}+A_{2}}$ can be taken to be the tensor or rational sections of $\mathscr{L}_{\Delta_{1}}$ and $\mathscr{L}_{\Delta_{2}}$. The diagram

commutes, where X_{12} is the pullback as indicated. Defining X_{12}^{1} in the same way as X_{Δ}^{1} above, one finds

$$
\left(X_{12}(k) / X_{12}^{1}\right) \otimes \mathbb{Q} \cong\left[\left(k^{*} / \mathbb{G}_{m}^{1}\right) \times\left(k^{*} / \mathbb{G}_{m}^{1}\right)\right] \otimes \mathbb{Q}
$$

and the $\operatorname{map} X_{12}(k) / X_{12}^{1} \rightarrow X_{\Delta_{1}+\Delta_{2}}(k) / X_{\Delta_{1}+\Delta_{2}}^{1}$ corresponds to addition on $k^{*} / \mathbb{G}_{m}^{1}$. The assertion of the lemma now follows. Q.E.D.
(2.14) Lemma. Let $a \in N^{0}(\mathcal{O}) \subset A(k)$. Then $\langle\Delta, \mathfrak{Q}\rangle=\left\langle\Delta_{a}, \mathfrak{M}_{a}\right\rangle$.

Proof. Let $\delta_{a}: N^{0} \rightarrow N^{0}$ be translation by a. There is a map of G_{m}-torseurs τ_{a} : $X_{\Delta} \rightarrow X_{A_{a}}$ such that the diagram

commutes for suitable choice of $\sigma_{A}, \sigma_{A_{a}}$.
The key point is that we may choose τ_{a} such that $\tau_{a}\left(X_{A}^{1}\right) \subset X_{A_{a}}^{1}$. This is clear in the non-archimedean case because $X_{\Delta}^{1}=X_{A}(\mathcal{O})$ and it suffices to take τ_{a} defined over \mathcal{O}. In the archimedean case, choose $\tilde{a} \in X_{A_{a}}^{1}$ lying over a and consider the composition

Modifying τ_{a} by an element of k^{*} we may assume $\delta_{-\ldots}{ }_{a} \tau_{a}$ is the identity on k^{*}, whence an isomorphism of groups $X_{4}(k) \longrightarrow X_{\Delta_{a}}(k)$. Thus $\delta_{-\tilde{a}}{ }^{\circ} \tau_{a}\left(\mathrm{X}_{\Delta}^{1}\right)=X_{\Delta_{a}}^{1}$. Since $\tilde{a} \in X_{\Delta_{a}}^{1}$ we get $\tau_{a}\left(\mathrm{X}_{4}^{1}\right)=\mathrm{X}_{A_{a}}^{1}$.

Since subtracting \tilde{a} does not change the image of a point in $X_{A_{a}}$ under $\psi_{A_{a}}$, the above discussion actually shows that for any zero cycle z on X_{4} defined over k we have $\psi_{\Delta}(z)=\psi_{A_{a}} \tau_{a}(z)$. Thus

$$
\begin{aligned}
\left\langle\Delta_{a}, \mathfrak{A}_{a}\right\rangle_{v} & =\psi_{A_{a}}\left(\sigma_{A_{a}} \delta_{a}\right)(\mathfrak{A})=\psi_{A_{a}}\left(\tau_{a} \sigma_{A}\right)(\mathfrak{A l}) \\
& =\psi_{A} \sigma_{A}(\mathfrak{A})=\langle\Delta, \mathfrak{A}\rangle_{v} . \quad \text { Q.E.D. }
\end{aligned}
$$

(2.15) Lemma. The pairing $\left\rangle_{\text {, }}\right.$, satisfies condition (5).

Proof. The assignment $x \mapsto\left\langle\Delta,(x)-\left(x_{0}\right)\right\rangle_{v}$ is continuous, and v-bounded sets are compact. Q.E.D.

Proof. of (2.11). Let $\{\Delta, \mathfrak{M}\}=\langle\Delta, \mathfrak{H}\rangle_{v, \text { Neron }}-\langle\Delta, \mathfrak{M}\rangle_{v}$. We have $\{(f), \mathfrak{M}\}=0$ so we may define

$$
\left\}: A^{\prime}(k) \times Z_{k}(A) \rightarrow \mathbb{R} .\right.
$$

Let $Z_{k}(A)^{0} \subset Z_{k}(A)$ be those zero cycles $\sum n_{i}\left(p_{i}\right)$ such that $p_{i} \in N^{0}(\mathcal{O}) \subset A(k)$. There is a natural surjection $Z_{k}(A)^{0} \rightarrow N^{0}(\mathcal{O})$ with kernel generated by elements (a_{1} $\left.+a_{2}\right)-\left(a_{1}\right)-\left(a_{2}\right)+(0), a_{i} \in N^{0}(\mathcal{O})$. Translation invariance implies $\}$ factors
through $\left\}: A^{\prime}(k) \times N^{0}(\mathcal{O}) \rightarrow \mathbb{R}\right.$. The image under $\{\Delta, \cdot\}$ of a subgroup of $N^{0}(\mathcal{O})$ contained in a v-bounded neighborhood of 0 is trivial by (5). It follows that $\}$ $=0$. Q.E.D.

References

1. Lang, S.: Les formes bilinéaires de Néron et Tate. Sem. Bourbaki, no. 274, 1964
2. Manin, Ju., Zarkin, Y.G.: Heights on families of abelian varieties. Mat. Sbornik 89, 171-181 (1972)
3. Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Annals of Math. 82, 249-331 (1965)
4. Ono, T.: Arithmetic of algebraic tori. Ann. of Math., 74, 101-139 (1961)
5. Ono, T.: On the Tamagawa number of algebraic tori. Ann. of Math., 78, 47-73 (1963)
6. Sansuc, Thèse, Paris (1978)
7. Tate, J.: The arithmetic of elliptic curves. Invent. Math. 23, 179-206 (1974)
8. Tate, J.: On the conjecture of Birch and Swimmerton-Dyer and a geometric analog. Sem. Bourbaki No. 306, Feb. 1966
9. Tate, J.: Letter to Serre, June 21, 1968
10. Weil, A.: Adèles and algebraic groups. Institute for Advanced Study, Princeton, 1961
11. Mazur, B., Messing, W.: Universal extensions and one-dimensional crystalline cohomology. Lecture Notes in Math. No. 370, Berlin-Heidelberg-New York: Springer 1974

Received September 27, 1979

[^0]: * Partially supported by the National Science Foundation under NSF MCS 7701931

