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Introduction 

Let G be an algebraic group defined over a number field k. By choosing a lifting 
of G to a group scheme over 6' s c k, the ring of S-integers for some finite set of 
places S of k, we may define G(C,~), where (5~, c k~ is the ring of integers in the v- 
adic completion of k for all non-archimedean places vr In this way, we can 
define the adelic points G(Ak). Since different choices of lifting will change G(C,,) 
for only a finite number of v, G(Ak) is intrinsically defined independent of the 
choice of Cs-scheme structure. 

It may happen that G(k)cG(Ak) is discrete. This will be the case, for 
example, if G is affine. If so, we may try to compute the volume of G(Ak)/G(k ). 
Writing I F =  residue field at v, q,,= ~IF,,, N,,= ,t~ GOF,,), the natural volume form 
gives Vol(G(C~))=N~q~_ ~ for all v6S. It can happen that [IN,,q~71 does not 

converge (example: G=G,,), but in many cases there is an 'L-function L(G,s) 
available such that L(G,s)= l~L,,(G,s) where the product converges absolutely 

yeS 

for ReS>>0 and extends meromorphically to the whole plane with L,,(G, 1)= q''. 
N,, 

Suppose limL(G,s)(s-1)-r+O, oc. The Tamagawa number z(G) is defined by 

modifying the measure on G(Ak) so VoI(G((~,,))=I, all yeS, computing the 
measure of G(Ak)/G(k), and then multiplying by limL(G,s)(s-1) -r. For more 

details, the reader should see [10]. 
The Tamagawa number has been computed for all except a few particularly 

stubborn affine algebraic groups, and takes the value (see [10, 4-6]) 

Pic(G) 
~ ( 6 )  = 

/ / / ( 6 )  ' 

where Pic(G) = Picard group, and// /(G) = Ker(H 1 (k/k, G(/~))) ~ I ]  H l(k,,/k~,, G(k)). 
Moreover, r<0 ,  and r = 0  if G(Ak)/G(k) is compact. " 
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Suppose now that G is not necessarily affine, but that G(k) is discrete in 
G(Ak). One conjectures that ///(G) is finite. (This is not known for a single 
abelian variety G!) Pic(X) may be infinite but Pic(X)tor~o . is finite and one may 

Pic(G)tors 
(0.1) Conjecture. z(G)= Moreover, r_<0 and r = 0  if and only if 

G(Ak)/G(k) has finite volume. 
We refer to this in the sequel as the Tamagawa number conjecture. 
Consider now the case of an abelian variety A. Conjecture (0.1) makes sense 

only if A(k) is finite. The Hasse-Weil L-function L(A,s)= I-[L~,(A,s), where S 
yes 

= set of bad reduction places, and 

1 
Lv(A, s) = det(1 - q]~ Fv] H~t(A~, , Ql)) (F~,= geometric frobenius). 

Birch and Swinnerton-Dyer conjecture that L(A,s) has a zero of order r 
= r k A ( k )  at s = l  (so r > 0 )  and that 

4 ~ / / / ( A ) . d e t ( ) .  V~-Vba d 
(0.2) lim L(A, s)(s - l) - r -  , 

s~l ~ A(k)tors" :~ Pic(A)tors  

where V~ =Volume A(k| and Vb,d=Volume [IA(k,,). Finally, ( ) denotes 
the height pairing [1,3] ~s 

( ) : A(k) • A'(k) ~, ~. 

with A'(k) = Pic~ 
The purpose of this note is to deduce (0.2) from (0.1), and thus to give a 

purely volume-theoretic interpretation of Birch and Swinnerton-Dyer. An ele- 
ment a6Pic(A) corresponds to a G,,-torseur X ~ A .  If a6Pic~ X~ is a 
group extension of A by Gm. We construct in this way an extension 

(0.3) 0 - + T  ~ X ~  A-+0 

where T is the split torus with character group ~-A'(k)/torsion. An important 
point is that the "logarithmic modulus" map factors 

0-~ T(Ak)-~ X(Ak) 

log. ] / 
mod. i 

Horn (A'(k), ~,) 

The product formula shows log.mod.(T(k))=(0), so by restriction to global 
points, we obtain 

A(k)_~ X(k)/T(k)- -~ Hom (A'(k), IR), 
or again 

(0.4) A(k) • A'(k) --, ]R. 
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Using the axiomatic characterization of Neron 's  local pairings [1, 3], we show 
that (0.4) is the height pairing. F rom this it follows without  difficulty that X(k)  is 
discrete and cocompac t  in X(Ak) , and that (0.1) for X implies (0.2) for A. 

It seems likely that this technique will lead to height pairings in many new situations, e.g., for 
algebraic cycles other than zero cycles and divisors. I hope to return to this question in the future. I 
am indebted to W. Messing for several helpful discussions regarding the Neron model. 

1. The Global Construction 

Let A be an abelian variety over a number  field k. Let N be the Neron model of 
A over the ring of integers ~o k, N O ~ N the largest open subgroup scheme whose 
fibres are connected. Let A' be the dual abelian variety, N' = Neron  model of A'. 
It is known (cf. [11], p. 53) that 

(1.1) N , ~  1 N o : Exte-group scheme( , [~m)" 

In particular, if we fix once for all a splitting 

(1.2) A'(k)=B| 

and use A'(k)= N'(((k), we can build an extension over (5 k 

(1.3) 0--, T ~  X --, N ~  

where T is the k-split torus with character group B. Let A k denote the adeles of 
k. Since HI(Sp R, Gm)=(0) for R local, we get exact sequences 

0--~ T ( k ) - ~  X ( k ) - - ,  A(k) ~ 0  
(1.4) 

0 --, T(Ak)--, X(Ak) ~ N~ ~ 0. 

Define T i c  T(A k) by the exact sequence 

(1.5) O ~  T1 -+ T(Ak) t , Hom(B,  I R ) ~ 0  

where l is induced from the usual logari thmic modulus  map from the ideles to 
IR. Define further, for v a place of k 

- 1 (X(C,,) v non-archimedean 
(1.6) a~ = 

' ~ X ( k r )  . . . . . . .  pact /3 archimedean 

X ' =  T ' .  [IX~, c X(Ak). 
v 

Finally, let X 1 be the rational saturation of  ~ 1  i.e., 

(1.7) X 1 = { ae  X (Ak) I ~n > 1, ne  TZ, nae 21}.  
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(1.8) Lemma. There exists a diagram with exact rows and columns 

0 0 

' I ! 
I 

l 
+ 

T 1 X 1 

T(Ak) X(Ak) 

Hom(B, IR) = Hom(B, IR) 

0 0 

- - - -  N ~ ,0 

- -  N~ ,0 

Proof It suffices to show X l c ~ T ( A k ) = T  1, and XI--~,N~ The first point is 
straightforward, using that T(Ak)/T 1 is torsion-free, and l is trivial on T((9,,) and 
T(k,) . . . . . . .  pacr For the second, note that the image of X1 in N~ contains 
A(k~,) = N~ for almost all v and the cokernel 

W = N~ (X~ -+ N~ 
def 

is finite. It follows easily that X(Ak)/f(  1 ~-Hom(B,F,)@W.. Replacing .~1 by X 1 
eliminates torsion in the quotient, and the lemma follows by diagram 
chasing. Q.E.D. 

Combining (1.4) and (1.8), and using the fact that T(k) ~ T ~ (product formula) 
we get 

A(k) ~- X(k)/T(k)-+ X(Ak)/T(k ) -~ Horn (e, IR) 

and hence a pairing 
( ): A(k)xA'(k)-~tR.  

(1.9) Theorem. The above pairing coincides with the height pairing, 

We postpone the proof until the next section. 

(1.10) Theorem. X(k)cX(Ak)  is discrete and cocompact. 

Proof Let U=X( k ) c ~ XI~X(Ak ) .  Since the height pairing is perfect, we get 
0-~ T(k)--~ U ~ A(k)tors-~ 0, and hence exact sequences 

0-+ T a / T ( k ) ~  Xa/U --~ N~ ~ 0 

(1.t 1) Horn(B, IR) 
o-)  x ' / u  -~ X(A~)/X(k)~ ~0 

Image A(k) 
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The image of A(k) in Hom(B, IR) is known to be discrete and cocompact 
(perfectness of height pairings), and compactness is known for T1/T(k) (classical 
theorem about ideles) and N~ The assertions of the theorem 
follow. Q.E.D. 

What  about the Tamagawa number of X? With notation as in the in- 
troduction, let r=rkA'(k).  We choose convergence factors in the sense of [10] 
for the measure on X(Ak): 

(1 - q ~  ~)" L~,(A, 1) - '  

(1.12) (1 - q,71) ~ 

1 

v non-archimedean, A has good 
reduction at v, 

v non-archimedean, A does not 
have good reduction at v, 

v archimedean. 

These correspond to convergence factors ( 1 -  q,71)r on T(Ak) and L,,(A, 1)-1 on 
N~ (v good reduction place). Writing ~k(S) for the zeta function of k we get 
from (1.11) 

Volume (T1/T(k)) = lira (~k(s)(s- 1)) r 
s ~ l  

Vol. N~ Vol. (A(K | �9 I ]  Vol. A(k,,) 
~'bad 

(1.13) v~ 
Vbad 

1 
Vol. (X1 /U) -  lim (~k(S)(S -- 1)) r V~ Vb, d 

1 
Vol. (X(Ak)/X(k)) 4f- A(k)tor~�9 s~lim((k(S)(S-- 1))*V'~ VbadR 

where R is the absolute value of the discriminant of the height pairing. 
We assume now that lim(k(SF L(A, s)4:0, oe, i.e., that the L-function of X has 

no zero or pole at s = 1 as predicted by the Tamagawa number conjecture, or 
equivalently that the L-function of A has a zero of order r=rk A(k) as predicted 
by Birch and Swimmerton-Dyer. To define the Tamagawa number v(X) we 
eliminate the (non-canonical) choice of convergence factors by dividing the 
volume computed above by lim(k(S)~L(A,s), getting 

s ~ l  

1 
(1.14) v(X) - -  lim L(A, s)- l ( s -  1) r V~, Vb,oR. 

# A(k) t . . . . .  t 

Conjecture (0.2) is thus equivalent to 

(1. |5) "c(X) ? ~ A'(k)t~ 
#Ill(A) " 

(1.16) Lemma.  III(A)-~III(X) and A'(k)~Pic(X),ors. 
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Proof The first isomorphism follows from chasing the diagram 

0 

J 
re(x) 

0 -+ H'(k,/k,X) 

1 
0 , ~H'([cjk, , ,X) 

v 

0 

, Ill(A) 0 

l i. 
H'(~/<A) , H2(~/k, TI 

For the second isomorphism, note that if T is a split torus over a ring R with 
character group T,, then taking units in the ring of regular functions on T yields 
an exact sequence 

O~ R*-~ R[T]*--~ T--~O. 

Let n: X--~A be the projection. The above sequence globalizes 

O--+ ~ m , A  ~ TC , Gm,X- -~  B A - ~  O 

where B A is the constant Zariski sheaf on A with stalk B. The boundary map 

B = F(A, BA) --~ H'(A, elm) = Pic A 

is the natural inclusion, so we obtain 

H 1 (A, 7r, G,,, x) ~ (Pic A)/B. 

Locally over A, Z~_G~, x A, so Rl~,Ci , , .x=(0)  and we find 

Pic X ~ (Pic A)/B 

and a similar result holds for torsion. Q.E.D. 

Combining (1.15) and (1.16) yields 

(1.17) Theorem. The Birch and Swinnerton-Dyer conjecture holds for A if and 
only if 

Pic(X),ors ~(x)- 
~m(x) 

2. The Local Neron Pairing 

The purpose of this section is to prove (1.9). get k be a local field, A an abelian 
variety over k, N = N e r o n  model of A, N ~  the subgroup scheme with 
connected fibres. The N6ron model of the dual variety A '=Ext l (A,~m)  is then 
N'=Ext~(N~ ([11], p. 53). Thus given a divisor A on A defined over k and 
algebraically equivalent to 0, we get a corresponding extension 

(2.1) O--~Gm-+ X a-~ N~ ~O. 
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If L/; n is the line bundle associated to A, 

X n _~ V(SeA) -- (0-section) 

as a Gm-torseur. The extension (2.1) depends only on the linear equivalence class 
of A. 

Restricting to Spk, the extension (2.1) is split as a torseur over A - I A I  (]A] 
= Supp A) 

(2.2) 0-~ t13,,,k ~ X A , k ~  A 4 0  

\ U O'A \ 
\ 

 A-IAI 
where a A is canonical up to translation by ~ , k ( k ) = k *  (choosing a n is tan- 
tamount to choosing a rational section of 5e~ corresponding to the divisor A). 
Let ZA,k=grou p Of zero cycles ~ l = ~ n i ( P i  ) on A defined over k such that 

~ n i d e g p i = 0  and Supp 9,1~A-[AI .  We get a homomorphism 

(2.3) an: Z n,k---~ X n(k). 

Define 
1 (X~(SpCk) k non-archimedean 

X3 = IXA(k) . . . . . . .  pact k archimedean, 

( 0 "  k non-archimedean G,1, 
( ( k )  . . . . . . .  p~ct k archimedean, 

F =  
i k non-archimedean, N = N O 

k non-archimedean, N =t= N O 

k archimedean. 

(2.4) Lemma. Assume either v archimedean or N = N  ~ Then there is a diagram 

with exact rows and columns 

0 0 

O _  xi 

, k* - - - - 4  Xn(k ) 

1 
F = F 

- - - ~  A (k) - - ~  0 

, A ( k ) - - - - ~  o 

0 0 
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Proof The map labeled I is either the logarithm or the valuation map. As in the 
proof  of (1.8), the only thing we need to show is X~--~A(k). In the non- 
archimedean case we have A(k) ~ N(C) = N~ Surjectivity X~ = X(C)--~ N~ 
follows from HI(SpC, IBm)=(O). In the archimedean case, the existence of an 
exponential implies the connected component  of 0 in A(k) is contained in the 
image of X~. Factoring out by X~, we obtain an extension of a finite group by 
IR. Such an extension is necessarily split, so we get 

0 --+ X~ -~ X ~(k) -~ IR Q (finite) -~ O. 

Since X~ is maximal compact, ( f in i te )=(0) .  Q .E .D .  
Suppose now N=t=N ~ and let A(k )o=Image (X l~ A(k ) ) .  Note A(k)/A(k)o is 

finite, and we have a diagram (defining Y) 

0 

l 
0 - - - - ~ 1 1 3 ~  - 

l 
0 , k* 

r 

1 
0 - , T z  

1 
0 

0 0 

J 1 
X~ + A(k)o ,0 

J 
- - . X ~ ( k ) - -  ~ A ( k )  - , 0  

--, Y ------~ A(k)/A(k)o ,0 

0 0 

In particular Y |  (canonically) so we get XA(k)---~ Q. 
In any of the above cases, let @A: XA(k)~ F be the map  just defned, and for 

2IeZ~, k define 

(2.6) (A ,  ~[)local = I]/d O'A(~[)' 

When the given ground field is the completion of a global field at some place v, 
we write ( )v instead of ( )local" 

(2.7) Theorem. Let k be a number field. Let aeA(k), a' eA'(k). Let A (resp. 9,1) be 
a divisor algebraically equivalent to zero defined over k (resp. a zero cycle of 
degree 0 defined over k) on A such that [A] = a '  (resp. 9,1 maps to aeA(k)). Assume 
further that Supp A and Supp 9,1 are disjoint. Then 

(a,a')= Z (A,gJ)~, 
vplace 

ofk 

where (a,a ' )  is defined as in (1.9). 
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Proof Consider the global extension 

O ~  T ~  X ~ N~ 

as in section 1 and push out along a ' e T  to get 

0-+ ~ - ~  Xa--* N~ 

We can think of aa: Za ,k~  Xa(k ) just as in the local case. The problem therefore 
reduces to showing the map 

(2.8) X A ( A k ) ~ I R  

defined via the techniques of Sect. 1 coincides with the sum of the local maps 

{i ~a,~: X ~(k~,)-~ F= 

defined in the beginning of this paragraph. 
Finally, this point is clear from the diagram 

(2.9) 

G~,k 

"/'v 

0-~ Ker (sum)- -  

- - - ,  x A & ) / [ I x ' ~ , ~ ,  ~ o  
t~ 

, X~(AO/X~ 

(2.8) 

s u m  
, IR 

Neron has shown [3] that the height pairing can be written as a sum of local 
terms. With notation as in (2.7) 

(2.10) Ca, a '>  = Y" ( ~ ,  ~L , .N  . . . .  - 
v 

(2.11) Proposit ion.  (A,  ~I)~ = CA, ~l)~ N . . . .  �9 

Proof We write v: k v - * N  for the logarithmic valuation, normalized in accor- 
dance with the global product formula. Let D,(A) k denote the group of divisors 
on A algebraically equivalent to zero and defined over k. The local N6ron 
pairing is characterized by the following properties" 

(1) ( ) v , N  . . . .  :{(A,9"I)~Da(A)k• 
(2) ( )v,N . . . .  is bilinear, assuming all terms in the desired equality are 

defined. 

(3) If A=( f ) ,  then (A, gJ)~.N ....  =v(f(9.1)), where for ~ f(oA) 

= I]J'(Pi)"'. 
i 

(4) (A, 9.I)~,N .. . .  --CA., '~I.)~.N ... . .  where a~A(k~) and the subscript indicates 
translation by a. 

, [ I N •  LI Q - - , 0  
p a l c h ,  v n o n - a r c h  
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(5) For AeD,(A)k ~ and xoeA(k, ,)- lA[,  the map 

X ~ (A,  (X) -- (X0))t, N . . . .  

is bounded on every v-bounded subset of A(k~,)-[A[. 

(Here v-bounded subset means subset of a coordiante neighborhood on which v 
(coordinate functions) are bounded.) 

We show that the pairing (A, 9.1)~--,(A, N)v satisfies condition (1)-(5), except 
that (4) will be proven only for a~N~ 

(2.12) Lemma.  ( )v satisfies (3). 

Proof. Let A = (f).  Then X j - - ~ , ,  • N O and 

a~: A-IAI-*f fJm • A 

aA(a)=(f(a),a). 

Since ~Pa = v on ~3,,(k~,)= k*, the lemma follows. Q.E.D. 

(2.13) Lemma. ( )v satisfies (2), i.e., it is bilinear. 

Proof. Bilinearity in ~I~Zk(A ) holds by definition. We must show 

(9.L A1) + (gA, A2)=(gA,  AI + A2) 

whenever AI~Da(A ) and [9~I~(IAII~{A2J)=0. Note that crA~+a 2 can be taken to 
be the " sum"  in the sense of torseurs of aa, and a~2, i.e., the rational section of 
~A,+A2 can be taken to be the tensor or rational sections of ~,eA, and YJ2" The 
diagram 

O ~  ~ ~ XA~+a 2 ~ N ~ ~ 0  

OA 1 + A2 # \ 
multiply A - I A  11- IA2I 

, N O - , 0  0--+ [~m X [~r m - -  ) X12 --- 

Cartesian ) diagonal 

O~-~ G m X G m ) X AI )( X A2 + N ~ :~ N~ O 

commutes,  where X~2 is the pullback as indicated. Defining X~2 in the same 
way as XA 1 above, one finds 

( X  12 ( k ) / X  112) (~ ~ ~ [ (k* /~1)  x (k#/[~ lm)] ~) 

and the map  X12 ( k )/ X ~ 2--~ X A, + a2 ( k )/ X la, + A2 corresponds to addition on k* / G ~. 
The assertion of the lemma now follows. Q.E.D. 

(2.14) Lemma.  Let aeN~ c A(k). 7hen (A, ~ )  = (A , ,  ~lo). 
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Proof Let 6,: N ~  ~ be translation by a. There is a map of G,,-torseurs z,: 
X a - ,  XAo such that the diagram 

XA ~ ~Xaa 
6A O A a /  

A 

6~ 

commutes for suitable choice of %,  a a .  
The key point is that we may choose ~ such that z~(X1A)cX 1 This is clear A a �9 

in the non-archimedean case because X~=XA((9 ) and it suffices to take % 
defined over ~. In the archimedean case, choose aeXlao lying over a and 
consider the composition 

I 
4 6~ "[ a ,, 1 

A(k) . . . .  A(k) - ,  A(k) 

Modifying z,, by an element of k* we may assume 6 ,or , ,  is the identity on k*, 
whence an isomorphism of groups X A ( k ) - - , X  A (k). Thus a _ a o r o ( x ~ ) - x  1 a - -  da" 

Since aeXiAo we get ~a(X~)= X~c ,- 
Since subtracting a does not change the image of a point in XAo under Oao, 

the above discussion actually shows that for any zero cycle z on X A defined over 
k we have [[IA(Z)=I/IAa "Ca(Z ). Thus 

(Ao, ,~~ = 4%(%~ ao)(~) = 4'~o(~O ~) ( '~ )  
= ~a %(9~)= (A, ~15,,. Q.E.D. 

(2.15) Lemma.  The pairing ( ),, satisJi'es condition (5). 

Proof The assignment x ~ (A,(x)-(Xo)}, , is continuous, and v-bounded sets are 
compact. Q.E.D. 

Proof of  (2.11). Let {A, N} = (A, '~I>,,.N . . . .  - -  ( a ,  ~ | > , , ,  We have {(J),9.1}=0 so 
we may define 

{ }: A'(k) x Z~IA)-, ~ .  

Let Zk(A)~ Zk(A ) be those zero cycles ~ ni(pi ) such that pieN~ A(k). There 
is a natural surjection Zt(A)~176 with kernel generated by elements (a 1 
+a2)-(aO-(a2)+(O),  aieN~ Translation invariance implies { } factors 
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through { }: A'(k) x N~ The image under {A, "} of a subgroup of No((9 ') 
contained in a v-bounded neighborhood of 0 is trivial by (5). It follows that { } 
=0. Q.E.D. 
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