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A NOTE ON HEREDITARY RINGS OR NON-SINGULAR
RINGS WITH CHAIN CONDITION

NGUYEN V. DUNG

1. Introduction.

A well-known result of Osofsky [10, 11] states that a ring R is semisimple
artinian iff every cyclic R-module is injective. From this it follows that a right
self-injective right hereditary ring is semisimple artinian. In this paper we shall
extend these results of Osofsky in some ways.

Following Chatters-Hajarnavis [1] a ring R is called right CS if every closed
right ideal of R is a direct summand of Rg. Clearly, the class of right CS rings
includes all right self-injective rings. In Theorem 3.1 we prove that a right CS
right hereditary ring is right noetherian. By the way, this result closely relates to
a result of Goodearl [8] (see also Colby-Rutter [3]) characterizing rings over
which non-singular right modules are projective (Corollary 3.2).

Further we study right hereditary rings R whose injective hulls E(Rg) are
finitely generated. In some cases we are able to show that the rings in question are
right artinian (Theorem 3.4, Corollary 3.7). Finally we give a new characteriz-
ation of semisimple artinian rings as right self-injective rings whose non-zero
singular right modules contain non-zero injective submodules (Theorem 3.8).
This result extends a result of Smith [15, Theorem 2.10].

2. Definitions and notations.

Throughout this paper we consider associative rings with identity and unitary
modules. We write My to indicate that M is a right module over a ring R. To say
that My has finite Goldie dimension means that Mg does not contain infinite
direct sums of non-zero submodules. A submodule K of M is called essential in
Mif K n L 4 0for each non-zero submodule L of M. In this case M is called an
essential extension of K. A submodule C of M is called a closed submodule of M if
Cis the only essential extension of Cin M. A right ideal of R is closed (essential) if
it is closed (essential) as submodule of Ry.
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For a right R-module M, E(M) denotes the injective hull of M, and the
submodule

Z(M) = {xe M |xK = 0 for some essential right ideal K of R}

is called the singular submodule of M. If Z(M) = M, M is called a singular
module. If Z(M) = 0, M is said to be non-singular. A ring R is right non-singular
if Ry is non-singular.

3. Results.
We start with proving the following theorem.
THEOREM 3.1. A right CS right hereditary ring is right noetherian.

PrROOF. Let R be a right CS, right hereditary ring. First we show that R does
not contain an infinite set of non-zero orthogonal idempotents. We do this by
applying the technique of Osofsky in [11]. Assume on the contrary that there is
aninfinite set {e;,i € I} of orthogonal idempotents e¢; + 0in R. Let P be a subset of
Iand put A = @ ¢;R. Since R is right CS, there exists an idempotent f in R such

ieP
that Ay is essential in fR. Clearly we have fe; = e, for all ie P. Let ¢;€ {¢;} with

Jj ¢ P.Since Ris right non-singular, R has a maximal right quotient ring Q whichis
von Neumann regular (see e.g. [9] or [17]). Hence there is an idempotent g of
Q such that Qe; f = Qg. Suppose that fgQ N A # 0. Then there is an x in 4 such
that 0 + x = fgq with ge Q. Hence epfgq = e;fq = 0. Since ge Qe;f we have
gq = 0, implying x = 0, a contradiction. Thus fgQ n A = 0. Since fR is essential
in fQg (see e.g. [9, Chapter 2]), it follows that A is essential in fQg, sO we must
have fgQ = 0,in particular fg = 0. Thereforee;f = e;fg = Ofor all j¢ P. Thus we
can apply [11, Theorem] to arrive at a contradiction: Let B = Y (e;R + ker ¢)

iel
where ¢: R - [] &R, ¢(x) = <{e;x), xe R. Then B is a right ideal of R. Now by
iel
[11, Theorem] Mpg/Bg is not injective for all My > Ry (clearly B + R). But since
Ris right hereditary, E(Rg)/Bg has to be injective. This contradiction shows that
R does not contain an infinite set of non-zero orthogonal idempotents. Hence

there are orthogonal idempotents e,,...,e, in R such that
RR = 81R®...®C"R,

where each ¢;R is an indecomposable right R-module. From this we could use [1,
Proposition 2.3], but we prefer giving a direct proof here for completeness. Let
C be a non-zero closed submodule of ¢;R. Then Cy is closed in Ry too. Hence
Rg = C @ C' for some submodule C’' of Rg. From this we see that Cy is also
a direct summand of e;Ry. It follows that C = ¢;R are uniform right ideals of R.
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Hence Ry has finite Goldie dimension. Since R is right hereditary, by [14,
Corollary 2] we know that R is right noetherian.
The proof of Theorem 3.1 is complete.

Using Theorem 3.1 we can prove the equivalence (a)<>(b) in the following
result given in [3, Theorem 3.2] and [8, Theorem 2.15].

COROLLARY 3.2. For aring R the following conditions are equipvalent:
(a) R is right hereditary and E(Rg) is projective.
(b) Z(Rg) = 0 and every non-singular right R-module is projective.
(¢) R is artinian, serial and hereditary on both right and left sides.

PRrROOF. (b)<>(c) is proved in [8, Theorem 2.15]. (b) = (a) is clear. (a) = (b):
Assume (a). Then every submodule of E(Rg) is projective. Let 4 be any right ideal
of R and B be a maximal essential extension of Az in Ri. Then R/Bg is
a non-singular cyclic right R-module. Using [6, Lemma 4] we see that R/Bg is
embedded in E(Rg). Therefore R/By is projective, so By is a direct summand of
Ry, proving that R is right CS. Hence R is right noetherian by Theorem 3.1. Now
let M be a non-singular right R-module, and let N denote the injective hull of M.
Then N is also non-singular,and N = @ N, where each N, is indecomposable and

iel
injective. Let X; be a non-zero cyclic submodule of N;. Since X; is non-singular we
see by using [6, Lemma 4] that X; is isomorphic to a submodule of E(Rg), and
since N; is uniform, N; can be embedded in E(Rp), too. It follows that each N; is
projective, therefore N is also projective. Since R is right hereditary, M is
projective, proving (b).

We note that if R is a (right non-singular) ring with E(Ry) projective, then
E(RR)is finitely generated. From this and Corollary 3.2 it arises a question: Does
aright hereditary ring R with finitely generated E(Ry) satisfy some kind of chain
conditions on right ideals?

The purpose of the remainder of this paper is to answer this question in some
special cases and to prove a related result. Recall that a module M is called
completely injective if every homomorphic image of M is injective. By the same
proof as that of [4, Proposition] without any change we obtain.

LEMMA 3.3. Let My be a cyclic finitely presented completely injective module
such that Endg(Mpg) is a von Neumann regular right self-injective ring. Then Mg has
finite Goldie dimension.

Now we can give a sufficient condition for a right hereditary ring to be right
artinian,

THEOREM 3.4. Let R be a right hereditary ring such that every closed right ideal



304 NGUYEN V. DUNG

of R is finitely generated and E(Ry) is a direct sum of cyclic submodules. Then R is
right artinian.

ProoF. Suppose that R is as in Theorem 3.4. Then E(Rg)=E, ®... ® E,,
where each E; is cyclic. Since R is right hereditary, in particular right
non-singular, each E;is non-singular. Hence for each i there is a closed right ideal
A;of Rsuch that E; ~ R/A;. Moreover by hypothesis each A, is finitely generated.
From this and since R is right hereditary, each E; is a cyclic finitely presented
completely injective module. Then by [7, Corollary 19.29], each EndgE; is von
Neumann regular and right self-injective. Then by Lemma 3.3, each E; has finite
Goldie dimension. It follows that R has finite right Goldie dimension. Hence R is
right noetherian by [14, Corollary 2]. Since E(RR) is moreover finitely generated,
it follows that R is right artinian by [18, Theorem A].

The proof of Theorem 3.4 is complete.

Next we consider right non-singular rings with cyclic injective hulls. The
following lemma is similar to [12, Lemma 1.7].

LEMMA 3.5. Let R be a ring such that E(Ry) is cyclic. If Ry does not contain an
infinite direct sum of isomorphic submodules, then R is right self-injective.

PRrROOF. Let R be a ring such that E(Rg) ~ R/A for some right ideal 4 of R.
Then there is a short exact sequence

0->A—R—2 ERg)—0.

Take c € R such that ¢(c) = 1 where 1 is the identity of R. Suppose that cx € A for
some xe R. Then 0 = ¢(cx) = ¢(c)x = x. It follows that cxe 4 iff x = 0 and
hence cR n A = 0. Now assume that Ry does not contain an infinite direct sum of
(non-zero) isomorphic submodules. Consider the infinite sum of submodules c’A:

* A+cA+cPA+...+C"A+...

Clearly ¢"4 ~ A for all n. Suppose that there are xo,...,x, in 4 such that
Xo+cxX;+...+cx, =0 Then —x¢ =c(x; +... + ¢c""!x,). It follows that
xo =0 and x; + cx; + ... + ¢""!x, = 0. From this we can easily verify that
Xo = X; = ... = x, = 0, proving that the sum (*) is direct, a contradiction to the
assumption in case 4 + 0. Hence 4 = 0, showing that R is right self-injective.

PROPOSITION 3.6. Let R be a right non-singular ring such that E(Rg) is a cyclic
finitely presented completely injective right R-module. Then R is semisimple ar-
tinian.

ProoF. Clearly E(Rg)is non-singular, hence S = Endg E(Rg) is von Neumann
regular and right self-injective. From Lemma 3.3 we obtain that S is semisimple
artinian. On the other hand, Lemma 3.5 shows that R is right self-injective.
Hence R is semisimple artinian.
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COROLLARY 3.7. If R is a right hereditary ring such that E(RR) is cyclic and
finitely presented, then R is semisimple artinian.

QUESTION. Let R be a right hereditary ring such that E(Ry) is cyclic. Is
R necessarily semisimple artinian?

Following Goodearl [8], a ring R is defined to be a right SI ring if every
singular right R-module is injective. If every singular cyclic right R-module is
injective, then R is called right RIC by Smith [15, 16]. Recently Osofsky and
Smith [13] have proved that every right RIC ring is right SI. Now a ring R is
called right weakly SI (briefly, right WSI) if every singular right R-mod-
ule # 0 contains a non-zero injective submodule. Clearly right SI rings are right
WSI, but we do not know if the converse holds.

Let R be a right SI ring. Then for each essential right ideal B of R, R/B is
semisimple (see [8, Theorem 3.11]). From this and [5, Theorem 5] we see that
a right or left self-injective right SI ring is quasi-Frobenius. Then using [15,
Theorem 2.10] we obtain that R is semisimple artinian. For right WSI rings we
have the following result.

THEOREM 3.8. A right self-injective, right WSI ring is semisimple artinian.

ProOOF. Let R be a right self-injective, right WSI ring, and let Z denote the
singular submodule of Rg. Suppose that Z $ 0. Then Z contains a non-zero
injective right ideal of R which is clearly projective, a contradiction. Hence Z = 0,
or with other words, R is right non-singular. Hence R is a von Neumann regular
ring (see [7, Corollary 19.28]).

Let 4 be a countably generated right ideal of R which is not finitely generated.
Since Ry is injective, there exists an indempotent e of R such that E(4g) = eR. Let
C=A®(1 — e)R. Then Cy is countably generated and essential in Ry with
C # R.Now, since R/Cy is a non-zero singular right R-module, by hypothesis we
have R/Cy = I @ N for some non-zero injective module I and a module N. Then
there is a right ideal D of R such that C = D = R, D/C ~ N and R/D =~ I. Since
Ny is cyclic and Cg is countably generated, it follows that Dy is also countably
generated. Clearly, D 4 R and Dy is not finitely generated, for otherwise Dg
would be a direct summand of Rg, a contradiction to the fact that D is essential in
Rg. Now by using [7, Proposition 19.25] and by an easy induction proof we see
that there is an infinite set of orthogonal idempotents {e;}2, in R such that

a0
D = @ ¢;R. Then by [10, Lemma 5] we see that R/Dp is not injective, a contra-
i=1
diction to R/Dg ~ I injective. This shows that every countably generated right
ideal of R is finitely generated. Then, since R is von Neumann regular, R is
semisimple artinian.
The proof of Theorem 3.8 is complete.
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