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Abstract
The short-time asymptotic behavior of option prices for a variety of models with jumps has received much
attention in recent years. In the present work, a novel third-order approximation for ATM option prices under the
CGMY Lévy model is derived, and extended to a model with an additional independent Brownian component.
Our results shed new light on the connection between both the volatility of the continuous component and the
jump parameters and the behavior of ATM option prices near expiration.
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1 Introduction

Stemming in part from its importance for model calibration and testing, small-time asymptotics of option prices
have received a lot of attention in recent years (see, e.g., [2], [3], [7], [8], [9], [12], and references therein). In the
present paper, we study the small-time behavior for at-the-money (ATM) call (or equivalently, put) option prices

T(t) =B (S, — So)" = SoE (X —1)", >0, (1.1)
under the exponential Lévy model
Sy = Spe™r, t>0, (1.2)
with X := Ly + oWy, where (L¢)>0 is a CGMY Lévy process while (W,);>¢ is an independent standard Brownian
motion. Throughout, z+ := rlyy>0y and x7 = w1y, .0y denote the positive and negative parts of a real . The
first order asymptotic behavior of (1.1) in short-time takes the form:
1
lim ¢t~ —E(S, — So)t =E(Z), (1.3)
t—0 SO

where Z is a symmetric a-stable random variable with & = Y under P. When o # 0, Z ~ N(0,0?) (Y = 2) and,
thus, E(Z1) = o/v2m (see [9] and [12]). When o = 0, the characteristic function of Z is explicitly given (see [3]

and [12]) by
() ).
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E (emz) = exp (—ZCF(—Y)

In that case, (see (25.6) in [11]),

E(Z*+) = i1 (1 - }1/) (20r(—y)

™




Moreover (see [4]), in the pure-jump CGMY case (0 = 0), the second-order asymptotic behavior of the ATM call
option price (1.1) in short-time is of the form

1 1
S—]E(St —So)t =ditv +dat +o(t), t—0, (1.4)
0
while in the case of a non-zero independent Brownian component (o # 0),
1 . _
S E(S: = S0t = dit? + dot’ T + 0 (t¥) Ct—0, (1.5)
0

for different constants d; and ds, which are determined explicitly in the sequel. For extensions of these results to a
more general class of Lévy processes, we refer the reader to [5].

In this note, we derive the third-order asymptotic behavior of the ATM option prices in the CGMY model
both with and without a Brownian component. As in [4] and [5], the main ingredient in our approach is a change
of probability measure under which the process (L¢);>o becomes a stable Lévy process. There is an important
motivation to consider the third-order expansion. As shown in the numerical examples provided in [5], though
being a significant improvement over the first-order expansion, in some cases, the second-order expansion is not
that accurate unless t is relatively small, especially under the presence of a Brownian component. Indeed, as it
turns out, in the latter situation, the first two terms of the expansion do not even reflect the relative intensities of
the negative or positive jumps (as dictated by the parameters G and M).

The remaining of the paper is organized as follows. Section 2 contains preliminary results on the CGMY model,
some probability measure transformations, and asymptotic results for stable Lévy processes which will be needed
throughout the paper. Section 3 establishes the third-order asymptotics of the ATM call option price under both
the pure-jump CGMY model (0 = 0) and the CGMY model with an additional independent non-zero Brownian
component (o # 0). The proofs of our main results are deferred to the Appendix.

2 Setup and preliminary results

Throughout, W = (W,);>0 and L = (L;);>0 respectively stand for a standard Brownian motion and a CGMY Lévy
process independent of each other (cf. [1]) defined on a complete filtered probability space (2, F, (F¢)i>0,P). As
usual, we denote the parameters of L by C; G, M > 0 and Y € (0,2) so that the Lévy measure of L is given by

Ce M= Cel®
v(de) = <$1+Y lipsoy + W 1{w<0}> da.

Hereafter, we assume Y € (1,2), M > 1, zero interest rate, and that P is a martingale measure for the exponential
Lévy model (1.2) with log-return process X; := L; + oWy, t > 0. In particular, the characteristic function of X is
given by

E (eiqu) — exp (icu _ 0-22u2 +OT(-Y) ((M _ ’L"LL)Y + (G+ iU)Y MY - GY)) , (2.1)

with ¢ := —CT(=Y) (M — 1)¥ + (G +1)¥ — MY — G¥) —5?/2. The following terminology will be needed in what
follows:

M*=M-1, G'=G+1, "=c+0° ¢):=Muzly.g—Grlicy, vi(de)=ev(d). (2.2)

We will make use of two density transformations of the Lévy process (see [11, Definition 33.4]). Hereafter, P*
and P are probability measures on (£2, F) such that for any ¢t > 0:

¥ |7, = dIP‘}—t = et (2.3)
dP| 7, ' dP* ’ '

where



Throughout, E* and E denote the expectations under P* and I?’, respectively.

From the density transformation and the Lévy-1t6 decomposition of a Lévy process ([11, Theorems 19.2 and
Theorem 33.1]), (X¢)¢>0 can be written as

X, =L +oW;, t>0, (2.4)

where, under P*, (W}*);>0 is again a Wiener process while (L});>¢ is still a CGMY process, independent of W*,
but with parameters C, Y, M = M* and G = G*. The Lévy triplet of (X;);>0 under P* is given by (b*, (¢*)2,v*)
with ¢* := ¢ and

v / ) = YD) (@) (2.5)

Similarly, under the measure P, the process (Lj)i>o is a stable Lévy process and (W;);>¢ is still a Wiener process
independent of L*. Concretely, setting

v(dz) == Clz|~Y ~ldu, b=0b* —|—/ z(v —v*)(de),
|z <1
under ]I~D, (X¢)e>0 is a Lévy process with Lévy triplet (l~), 02,7). In particular,

F:=EX; = —CT(=Y) (M - 1) +(G+1)Y = MY —aY) + (2.6)

and the centered process
Zy: =Ly —t3, t>0, (2.7)

Zy)u>0, for any ¢ > 0.

is symmetric and strictly Y-stable under P, and thus, is self-similar; i.e., (t71/Y Zy),, >0 2z (
= #{(s,AX;) € dt x dz} of

The process (Uy)i>0 can be expressed in terms of the jump-measure N (dt,dz) :
(X1)i>0 and its compensator N(dt,dx) := N(dt,dx) — ﬂ(dx)dt (under P), namely,

U= U, +nt = MUY —GU™ +nt, t>0, (2.8)
where
U(p) / / N (ds, dx), Ut(n) / / N(ds,dz), (2.9)
0,00) 0,0)
o
n:=C ( Mz 1+M*) Y- 1da?+C/ —1—G*x)|x\_y_1dx
0+
=CIL(-Y) (M*)Y +(G*)Y). (2.10)

Finally, let us also note the following decomposition of the process X in terms of the previously defined processes:
X, =Z+t9+ oWy =UP + U™ + 5 + oWy (2.11)

To conclude this section, we recall some well-known results of stable Lévy processes needed in the sequel.

First, note that, under P, (Ut(p ))tzo and (—Ut(n))tzo are independent and identically distributed one-sided Y'-stable
processes with scale, skewness, and location parameters given by C|cos(nY/2)|T'(=Y), 1, and 0, respectively. The

common transition density of U ) and U( ") is hereafter denoted by pu(t,z), t > 0. The following second-order
approximation of py(1,z) is well-known? (see e.g., (14.34) in [11]):

2
pu(l,z) =Cax Y71 - % sin(2rY)0(Q2Y + DI (=Y)2 2" ' o (2?71, 22— oo (2.12)
T

In particular,
~ ~ 7/ —(n C C?
P (Ul(p) > x) =P (_U1( ) > x) = ?m_y ~ 9 sin2rY) L 2Y)T2(-Y)z™? +0(27?), z— . (2.13)

s

The following result sharpens (2.12) and (2.13). Its proof is presented in the Appendix.

In terms of the parameterization (a,3,7,c) introduced in [11, Definition 14.16], (a,B,7,c) of Ul(m and —Ul(n) is
(¥, 1,0, C] cos(mY/2)[T(=Y)).



Lemma 2.1. There exist constants 0 < k1, ke < 00 such that, for any x > 0,

(1) ]f"(Ul(p)Zx) :]TVD<—Uf")2 x) <z, (i) |P (U{p)2x> —%x_y <hrox™?Y. (2.14)

= 'I@ (—Ul(n)z :r) — %x_y

Similarly, the tail distribution and the probability density of Z;, hereafter denoted by pz(1,z), admit the
following asymptotic behaviors? (see (14.34) in [11]),

P(Z, > _ O O nmyyeos? (C) Ty 4+ )2y -2 2.1
1_z)—Yz Wysm(ﬂ' ) cos 5 2Y + 1)I*(-Y)= +o0(27%"), z— o0, (2.15)

2
pz(l,2) =Cz Y71 — 2 sin(7Y’) cos? <7T2Y> LY + DI2(-Y)e 2 o (z72 1), 22— oo, (2.16)
T

As in the proof of Lemma 2.1, there exists a constant 0 < k3 < oo such that, for any z > 0,
P(Zy > 2) < ksz Y. (2.17)

Finally, the following identity will also be of use:

f{‘j (e_ﬁ‘> _ E (e_tl/th) _E* (e_tl/yj\/l*l‘/vl(p)> E* (etl/YG*Ul(n)> _ ent. (218)

3 The main results

In this section, we present the high-order asymptotic behavior for at-the-money call option prices (1.1). The proofs
of all the results are deferred to the Appendix.

Let us first describe the asymptotics in the pure-jump CGMY model (o = 0), with the following notations:

w())), o)

dy :=E(Z)" = %r (1 - ;) (2CF(Y)

dy 1= —— (M-1)Y = MY —(G+1)" +GY), (3.2)
2T (i 4 1) 1Y -+
S _ _
dsy = 5 - < 2CT(-Y) cos( 5 )) , (3.3)
1~ N2 o/ . C(M*+1)Y  COG*)Y
dsa i= 5 (<21+ +01) 1{z;+ﬁl<0}> —/0 w <]P’ (2t +0i 2 w) - — = S dw. (34)

Theorem 3.1. Under the exponential CGMY model (1.2) without Brownian component, ast — 0,

1
< E(S: —50)" = dit¥ + dot + dsit?~V + dgot¥ + 0 (tQ*%) +o (t%) . (3.5)
0

In particular, if 1 <Y < 3/2, the third-order term is d31t2’%, while if 3/2 <Y < 2, the third-order term is dggt%.

Next, we consider the asymptotic behavior of the ATM Black-Scholes implied volatility, which hereafter is
denoted by &.

Proposition 3.2. Let d3 = dgll{ygg} + d321{y2%}. Then, under the exponential CGMY model (1.2) without
Brownian component, ast — 0,

. dlt%*%+d2t%+d3t%*%+o(t%*%), if 1<y <3,
——6(t) = (3.6)
v2m Ayt =% +dat? +dsttF 40 (tv—%) . ifd<vy<a

V)

2In terms of the parametrization in [11, Definition 14.16], («, 8, T,c) of Z1 therein is (Y,0,0,2C| cos(nY/2)|T'(=Y)).



We now analyze the case of a CGMY model with non-zero Brownian component. In that instance, it was shown
in [4] (see also [5] for extensions) that the second order correction term for the ATM European call option price is
given via

1 1 3—Y 3—Y
(S, — So)t = dit? + dot”T 40 (tT ) . 0, (3.7)
So
with
Col™Y _ c2 T gy Y
::E* *+:L d ::7]}3 *1Y :7F 1—— . .
di=E W) = Zo= di= Ty (w51Y) TRV (Y —1) 2 (38)

As seen in the previous expressions, the first-order term only synthesizes the information about the continuous
volatility parameter o, while the second-order term incorporates also the information on the tail index parameter
Y and the overall jump-intensity parameter C. However, these two-terms do not reflect the relative intensities of
the negative or positive jumps (as given by the parameters G and M). This fact suggests the need of a high-order
approximation as described in the following theorem and illustrated in Figure 1 below.

Theorem 3.3. Let

C2cos? () I2(—Y)2Y 3T (Y — &
day = —CT(=Y) (G+1)Y = GY), dgpi= —— (%) W(UQYL V=3) (3.9)

Then, under the exponential CGMY model (1.2) with non-zero Brownian component, ast — 0,

1 1 -y 5 5
?E(St — So)+ =dit2 + thST + dz1t + d32t§_y + O(t) +o0 (ti_y). (310)
0

In particular, if 1 <Y < 3/2, the third-order term is dsit, while if 3/2 <Y < 2, the third-order term is d372tgfy'
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Figure 1: Comparisons of ATM call option prices with the first-, second-, and third-order approximations for
Y = 1.2 (left panel) and Y = 1.6 (right panel). In both cases, C' = 0.5, G =2, M = 3.6, and o = 0.5.

Our final proposition gives the small-time asymptotic behavior for the ATM Black-Scholes implied volatility,
denoted again by &, under the generalized CGMY model. Unlike the pure-jump case, we can only derive the
second order asymptotics using Theorem 3.3. In fact, the first order term of the ATM call option price under the
generalized CGMY model is the same as the one under the Black-Scholes model. The third-order term of & requires
higher order asymptotics of the ATM call option price.

Proposition 3.4. Let ds = d311{y§%}‘i’d321{y2%}. Then, under the exponential CGMY model (1.2) with non-zero
Brownian component, ast — 0,

1 a+d2t1*%+d3t%+o(t%>, if 1<Y <3,

——5(t) = (3.11)

vam oot 4 dst2Y 40 (127Y), if E<y <2



A  Proofs

For simplicity, throughout all the proofs, we fix Sy = 1.

Proof of Lemma 2.1. From the leading term in the expansion (2.13), there exists N > 0 such that, for any = > 0,

~ (- ~ 2C NY
P (Ul(p) > SC) =P (Ul(p) > x) (1{1.2]\/} + 1{J)<N}) < 71‘ 1{x>N} + v Lzeny < (QC’Y + NY) ,

and the first relationship in (2.14) follows by setting x; = 2CY ! + NY. Similarly, from (2.13), there exists N > 0
such that, for any = > 0,

~ /- C

‘]P’ (Ul(p) > x) — ?ny

Y

~ 7/ _ C B
P(0)) 2 ) - go Y‘ (Lazny + 1zeny)
C? ~ C
< — Isin(2nY) | TY)T* (=Y )oY Lz ny + (IP (U{P) > x) + ny> 1)
2
< (C lsin(27Y)| T(2Y)T?(=Y) + N?¥ + ONYYI) 2,
™

The second identity in (2.14) follows by setting kg = C? [sin(27Y)|T(2Y)I2(-Y) /7 + N?¥ + CNYY L. O

Proof of Theorem 3.1 Set 7, := t!~/Y5 and ¥ := —CT(-Y) (MY + (G*)¥) and note that dy =9 +n+7/2 in
view of (2.6). For future reference, it is also convenient to write ¥ as

Y *\Y 00 —t%v _
9= CM +(G")7) / ¢ ; lv_de, (A1)
Y 0 t1*7

which follows from the identity (see (14.18) in [11]):

Y

o] [es] —t%v -1
~-YT(-Y)=T(1-Y)= / (ev—1)y Vdy= / %v_ydv. (A.2)
0 0

Let us start by noting the following decomposition for the ATM option price (1.1) derived from (2.3), (2.8), (2.11),

(2.18), and the fact that (1 — e )T =1 — ¢ :

Int) =E (eXt (1- e_Xt)—i_) = ¢ MK ( (1 —e Xj)) =1—¢"E (e‘ﬁt_X:r> .
Set
Ay(t) =t~ Y]E( ~(O=x) _ (ﬁt _X;)) . Ag(t) =t (IE (x;) _fa(z;)) .

Then, recalling that E(U;) = 0 and E(Z;") = tl/YIEZfL7 we have the decomposition:
Aty =3 (e ) - B(z)) - ds
¥ 14t~/ _p ~

- (t%*lAl(t) - 19) n <t¢1A2(t) - ;) n %E (e*Ut*Xf) — gty Ay () -tV E ()

= AL() + As(t) + As(t) — Au() — As(t). (4.3)
We shall prove that Ay (t) = O(t¥ 1) and Ay = O(t'~¥) and, hence, ¥ Ay (t) = O(t). These results, in turn, imply
that A;(t) = O(t) = o(A1(t)) = o(Aa(t)), i = 3,4, and As(t) = O(tv) = 0o(A1(t)) = o(As(t)). So, it remains to
analyze the asymptotic behaviors of A;(t) and As(t). These two cases are analyzed in two steps:
Step 1. Using the identity E (1—eV=V)=[T(v-1) P(V >y)dy — Iy~ (ev — 1)P(V < —y)dy together

with the change of variables v = t~/Yy, we can write

1 1
Pt PV
Al(t): f[@(t th +U12U)d11—'l9 — TP(t YXt +U1S—’U>d’l}
0 tl Y 0 tl Y

= Bi(t) — Bs(t). (A4)



For Bs(t), note that

B t oo tYU_1~ ~ o ~
lim 22() zlim/ eilp((zlwt)*wl < —v) dv:/ oP (Zf”rUlé—v) dv (A.5)
0 0

t—0 ¢y —1 t—0 tvy

where the second equality follows from the dominated convergence theorem, which applies in view of the following
direct consequence of (2.18):

1 1

1~ - tYv_ 1. _ ,._ 1 - ~ .

P (t_%Xf—i—Ul < —v) < € —P (U1 < —v) <wvetY Ve "R (e_Ul) < e”ve(ty 1)” < eMpe /2,
tvy ty

We now analyze the asymptotic behavior of By (t), which is shown to be O(t¥~1). To this end, we decompose
=¥ By (t) as

7th CM Y
tlval(t):/ ( Z1 4+ >0, Zl+’}/t+U1>v)— Yoy )d’U
0

7th 1 ~ _ . C(G*)Y
> _\T )
+/0 (P(Zl+'yt<0,Z1+%+U1_fu> o >dv
= Bu(t) + 312( )s (A.6)

where we have used t~'/Y X, = Z; + 4, and (A.1). As suggested by the previous equation, the limit of each of the
terms therein can be obtained by passing lim;_,¢ into the various integrals. We now proceed to show that the latter
operation is indeed valid. We begin with analyzing Bi1(t), for which we first apply the decomposition

IF(ZlJr% >0, Zy+ 4+ U4 Zv) :ﬁ(U{MU{"H% >0, MUY — GO™ + 3, Zv)

~ +GU™ —5 v+ M*%,
_p(g® Y (n) _
<U1 M B 7w
S (7 - ~(n + M™%
P(OP 45 >-0m>2T2 0
+ (1 L N Ve

where we have used that Z; = U + U™ and U, = M*U® — G*U{™. We then write:

et o VGO =5y _ v M| OMY
Bult)= [ “—-—= g > 2T T - d AT
n(®) /0 v ( (1 = M T S TG vov | (A7)
00 otV Y —( — v+ M*5,
(0P s, > g™ > T ) A.
+/0 t% (Ul + Y = Ul = Mia ) U ( 8)

By (2.14-i), for any v > 0 and ¢ small enough (so that G*|%| < 1 and M*|3:| < 1), the expression inside the integral
in (A.8), which we denote b(121) (t;v), is such that

~ [ v+ M*5 \ = n v+ M . _
‘b(Q) t; ’U)‘ S’U]P’ (Ul(p) > Wczt - ’Y) ( U( )Z M) Svl{U§1}+U1{U>1} mm{l,/{%(M—I— G)QYU 2Y},

where k1 € (0,00) is given as in (2.14-i). Hence, by the dominated convergence theorem,

~ N ) (n) v
tlg% ; b11 (t;v) dv /0 oP <U >-U; ZM G) dv. (A.9)

We now bound the expression inside the integral in (A.7), which we denote bgll) (t;v). It suffices to consider v > 1,
since |b\Y (t;0)] < v(1 + CY MY v=Y), which is integrable on {v < 1}. We also let ¢ be small enough so that



[9¢] < 1, G*|%| < 1 and M*|%;| < 1. Then, for any v > 1,

~ (- v— Gy —4 cMY
o) <o [ o) ‘P (00 2 S22 1 ey - T

L VENe] YooY Y
v+M* 5
MG ~ (- v—Gy — % cCMY
< Ly [P (0" > - d
_U[m pU(ay)‘ < 1 bl M Y(’U_Gy_ﬁ’t)y )
v+M* 5
MTC oMY oy .y CMY ~ () _ v+ M
+U[m pu(l,y) % (v =Gy —3)"" —v |dy+YvY—1]P Uy S Vel
.= DM (v) + D (v) + D) (v). (A.10)
Next, since
~ v+ M* 7, ~ ~ -
v-Gy—% v Goaa T v—G% v+ M*,
> = fi < A1l
M C M T ey Ve (A.11)
the first integral in (A.10) can be bounded, using (2.14-ii), via:
v+M* 5y
MFG 1.\ M?Y
Dt(l)(v) < HQU/ M dy < k(M + G v1=2Y | for any v > 1, (A.12)
— 00 - -t

where k2 € (0,00) is given as in (2.14-ii). Moreover, using the convexity and monotonicity of the function f(z) =
27Y on (0,00) and (A.11), the second integral in (A.10) can be upper estimated as

v+ M* 5,
prae=cia e
D@ () < CMYU/ T (L)Y Gy + Al dy < CMY Y (GE ‘U{p) n 1) . (A.13)
Finally, by (2.14-1), the last term in (A.10) can be upper bounded via
Dt(g)(v) < OMYY W= for any v > 1. (A.14)
Combining (A.10) and (A.12)-(A.14), and by the dominated convergence theorem,
0 o r7(n) Y
- (1) . _ (e s VG0 smy v ) _CM
th_r)% ; biy (t;v) dv /0 v (]P’ <U1 > Y U;"” < VLG oy dv. (A.15)

Putting together (A.9) and (A.15), we obtain

oo e} 7(n) Y
, _ [T (s _pms Y _ St TGU s v |\ _OM
lim By (1) /0 UIP(UI >0 _M+G)dv /0 U<IP’<U1 > U S e |y |

S . oMY
= — > — . .
/0 v (IP’ (Z1 >0, 7+ 0, > v) 7 ) dv (A.16)

Applying the same arguments to the decomposition
. - - — _ G*A . —in _M*U(P) _ — G*A
P (Z1i+3<0, Zi+5+Th 2v) =P (—U{ '~ 520> M) +P (—Uf >t P < S,

it can be shown that

o0 [e%e] *_(P) *\Y
, _ [T (_gmspms Y _ 5(_pgms oMU mpy v | _CGT)
}%Bu(t) /0 v]P’( U, >U, M—|—G>dv /0 v(]P’( U, > e , Uy S Ve oy dv

S _ oG
= — > _—_—— . .
/O v (IP’ (zl <0, 7+ 0, > v) o ) dv (A.17)




Combining (A.6), (A.16), and (A.17), we obtain

(A.18)

2 < = ~ cCMY  C(GY)Y
: 1—-5 _ + > _ _
thmot Y By(t) = /0 v [IP’ (Zl +U; > v) Vor Ny ] dv.

Combining (A.4), (A.5) and (A.18) together with the identity [~ vP(V < —v)dv=E (V7)?) /2, we get

lim t17¥ A, (1) = — /Ooo v (ﬁ (Zl+ +0; > v) oM C(G*)Y) dv — %E ({(zi + 171)_D = dzo. (A.19)

t=0 YooY YooY

Step 2. Now, we analyze the behavior of Ay = ¢v 1A, (t) —4/2. By the self-similarity of (Z;):>o,

Az(t):E((lety_zj) :/ooo (ﬁ(zl >u—%) - P(Z zu)) duz/ooo/ui~ pz(w) dw du,

where for simplicity we have written pz(u) for the density pz(1,u) of Z;. By the symmetry of Z;, /2 =

ﬁfooo pz(u)du, and thus,
/1 [
Aa(t) :’Y/ <~/ pz(w)dw—pz(u)) du.
0 Tt u—"yt

The identity pz(w) = pz(u) + (w — u) fol Py (u+ B(u—w))dB, followed by the change of variables v = 4, (w — u),
gives

Aot =1/0°O;t Uu:t(“’_“) (/Olp’z(wrﬁ(u—w))dﬁ) dw]duzw/f U_iv(/olp’zmwatv)dﬁ) dv}du.

By Fubini’s theorem and recalling that 7, = ¢ ~1/Y

Aa(t) = 73 /01 ’ (/01 | vt 5) dudﬂ) do = 520 % /01 v (/Olpz (B7ot=¥) d@) v,

It is now clear that Y
W=7 pz(0)
2
Next, using the power series representation of pz(z) around z = 0 as given in (14.30) in [11], it follows that
32pz(0)/2 reduces to the expression ds; in (3.3). Finally, combining (A.19) and (A.20) with (A.3) (together with
the remarks thereafter), we obtain (3.5). O

lim t%ilAQ = d371. (A20)
t—0

Proof of Proposition 3.2. The small-time asymptotic behavior of the ATM call-option price Cpg(t, o) at maturity
t under the Black-Scholes model with volatility o and zero interest rate (and fixing for simplicity Sy = 1), is such
that:

Cps(t,o) = ——t3 — 3 +0(t?), t—0, (A.21)

(see, e.g., [6, Corollary 3.4]). To derive the small-time asymptotics for the implied volatility, we need a result
analogous to (A.21) when o is replaced by &(t). To obtain it, combining first the following representation

0 0
1
Cps(t,0) = F(ovi) with F(8 ;:/ @’(g>dv:—/ exp (—v2/8) dv,
ps(t, ) = F(oV) 0= [ @ (5)av= = [ e (-?/5)
originating in [10, Lemma 3.1], together with the Taylor expansion of F' at § = 0 (see [10, Lemma 5.1]), we get
Ly 1
V2m 2421

Then, since () — 0 as t — 0 (see, e.g., [12, Proposition 5]), we conclude that

F() = 03 +0(6°), 6—0.

Cps(t,6(t) = (j/(%té - 22(\?2; t24+0 ((&(t)té)5> . t—0. (A.22)



Returning to the proof of Proposition 3.2, by comparing the first order terms in (3.5) and (A.22), it follows that
E(Z]) tv ~ (2m)"1/26(t)\/T as t — 0, and thus,

W=

G(t) ~ V2rEB(ZH)tY 7 = otV T3, t— 0. (A.23)

1 1

Next, set 6(t) := 6(t) — o1t ~2. Comparing the first two terms in (3.5) with the first term in (A.22) (noting that
the second term in (A.22) is O(t'T1/Y)) leads to

G(t) ~ \/zcr(—y) (M-1)Y = MY —(G+1)Y +GY)Vt:=02Vt, t—0. (A.24)

Finally, to obtain the third-order expansion, set &(t) := &(t) — o1t¥~% — g9v/t. By comparing the first three terms
in (3.5) with the first term in (A.22), it follows that

o(t) dyt> v i 1<y <3 (r25)
V2w dstv if $<Y <2,
which leads to (3.6). O
Proof of Theorem 3.3. Let .
No(t) == i E(S; —1)" —dy, (A.26)

with constant dy given in (3.8). Let us start by noting the following easy representation

%E(St )t = %E (eXt (1- e*Xt)+) — %E* (1 _ e*Xf) - /Ooo e Viv (t’l/QXt > v) v,

where in the last equality we used the identity E*(1 — e’XtJr) = fooo e *P*(X; > x) dx together with the change of
variables v = t~!/2z. Next, recalling that X, = Ly + oW} =4t + Zy + oW and using the self-similarity of W*
and the change of variables y = v — t'/27, it follows that

Ay(t) = / e~ Viy—tip* (UWf >y+ féZt) dy — / P (eWy > y) dy.
0

1
—t25

Furthermore, by changing the probability measure P* to Iﬁ’, recalling that U; = ﬁt +nt, and using the self-similarity
of both (Z;)>0 and (Uy)>0, we get

M= [ (Y st = [ B gy )
— 'Y -

_ o —(n+A)t © vy |m (v O _mf—tvO
e /0 e Y |:]E (e ll{oWI*Zy—ﬂl’_%Z1}> E(e 11{0Wf>y}):| dy

0 L 0o
—(n+3)t —Vityg [ —tY Ui “Ft—vViy _ 1\ Pp *
+e /\/ﬁe E(e l{onzy—txlfézl}) dy+/0 (6 1) P(cW{ > y)dy
= Ay (t) + A2(t) + As(t). (A.27)

1/2

For A,(t), by changing variables to u = t~/?y and the dominated convergence theorem,

0 q

0 L ~
cog—1 — Tipy o= (A —tufy [ —tY Uy L _ L0
}gr(l)t 2 Ag(t) }g%e /_:y e "E (e 1{UW1*>\/Eutyzzl}) du /—& 5 du 5" (A.28)
It is also clear that
” % eI ViY ] o~ 0%~ 2 o? A
1 2 A =i - * > = — * > = —— * = —— .
fim = Ay(t) = Jimy | e BoW] > )y /0 yBoW; > y)dy = - TR (W) = - (A29)

10



It remains to analyze the asymptotic behavior of A;(t). To this end, let us first decompose it as follows:

- 1~ o’W{‘+t%7%ZI
A (t) = e MNIE [ e7tY Ui 1.1 eV dy
{szo,aW;thv 3 leo} o
- _ oW/
e~ (MR [ =tV Ui 11 e Vi dy
{ocowi<—tv -2z} |
1 _1
()t g TWIHT A
nrvy - 1 _
te E 1{0<—0W*<tY 221}/0 € dy
Bu(t) - Ba(t) + Bs(t) (A.30)
We analyze each of the above three terms in three steps:
Step 1. First, by the change of variable u = t'/2=1/Yy — gt!/2=1/Y ¥ 4 (}17
1~ . Ur+2: 1
Bi(t) = e~ DYy —3F | e VieWi L1 et du
{WfZO,an-{—tY 3 leo} 7,

Vg, L 17 * Ui+7: L
= 67(n+’7)tt77§]E ei\/{a-wl 1{W1*ZO, ZIZO} A <6tyu — 1) du
1

ﬁl 1
L i~ . 1
— e Ny 3R [ VIeWT 11 et 1) du
{WI*ZO,—t2 vawl*gzlgo} Gii

1 1~

—(+A)t -1 —VioW;
e ey (le{WfZO,let%)lfan}e 1)'

Next, by Fubini’s theorem and the independence of Wi and (71, 171),

Ny~ * 1 ~ ~ ~
B](t) = t%_%e_(n-‘r’)/)t]E (e_ﬂawl 1{W1*>0}) / <€_tyu — 1) P (Zl >0, U <u<U + Z1> du
- R
2

11 ~ > L ~ 11 ~ ~ 6_2157
—t77567("+7)t/ [/ (etY"—I)P(—t2Yw< <0,U,+7Z2 <u<U)du] e VivZ T gy
; ; <Z; < 1 1Su<s U J2no?

A
—(m Nty —3 ] —toW;
te b 2E<Z11{W1*>0,Zl>t%3/aw;}e 1)

= Bll(t) — Blg(t) + Blg(t), (A31)

where above we had used the symmetry of Z; and the following consequence thereof:

E(atni) (8 (1 cnn)) =B (80 ncab) B (B0

In order to obtain the asymptotic behavior of By1(t), consider

0 1 ~ ~ ~
Bﬂ)(t) ::/ (e—tYu — 1) P (Zl >0, U, <u<l —|—Z1) du,

oo 1 ~ ~ ~
B ) ::/0 <e—”" - 1) IP(Zl >0,0, <u<U +Zl> du.

For Bﬁ) (), we use similar arguments as in (A.5). Concretely, for u < 0, by (2.18),

e"tYu_q

~ ~ ~ 1 . 1 ~ ~ “
TP (Zl Z 0, U1 S u S U1 —|—Z1) S (—u) e_tyu]P (U1 S u) S (—u)e(lity>uE (e_Ul) S 67] (—u) ez
Y

11



and thus, by the dominated convergence theorem,

0
BY @) =+ / (—u)P (21 >0,u< U+ Zl) du+o(t?), t—0. (A.32)

— 00

For BS) (), we use arguments similar to those used to obtain (A.16). Concretely, let
Bﬁl)(t) = / (e—tvu _ 1) P (Z1 >0,u< (71 + Zl> du
0

1
1 ooe—t7u_1 ~ ~ CM
—v [ - IP(Z >0, u<U Z)—i
/o t ( e A T

Y
>du—t1—¢cr(—Y)MY7

-

where in the second equality we had used the identity (A.2). The integral on the right-hand side of the previous
equation is precisely the first integral defined in (A.6), and thus, in light of (A.16),

BEY () = =¥ OT(=Y)MY + O(t¥), t—0.

Using similar arguments, it can be shown that

oo 1 . -
B () = / (e”“ - 1) P (21 >0,u< U1) du = —t'=FCT(-Y) (M) +01t¥), t— 0.
0

Therefore,

BY(t) = '~ vCT(-Y) (MY — (M*)Y) +O(tV), t—0,
which, together with (A.32), implies that the term By (¢) introduced in (A.31) is such that

1
Bii(t) = —§t%CF(—Y) (MY — (M*)Y) +O(t¥ %), t—0. (A.33)

To deal with Bya(t), we first make the change of variables x = t¥u in the integral appearing in this term so that

w2

e [ o )B(-hh i Vo <0 de| eV e 27
Biao(t) =t 2e /0 {/R(e 1)]P’ t2 vyw< 1 <0, U1+, <t vx<U dx]e de.
We shall prove that Bia(t) = o(t'/?) as t — 0. To this end, let
w2
BYw = [ m(l—e‘x)lﬁ(—t%—%w<z <0,0,+7 <t—%x<ﬁ)dx eV E 2T g,
12 o 0 >~ 41 x Y, U1 1= >~ U1 W )
w2
B (t) = /°° [/0 ("= D)B (-t Fw<z2 <0 T+ 21 <t Vo <) dw} eV T gy,
M=) | S4 <0, stves Nz
For Bg) (t), since by (2.14-i), for any = > 0 and t > 0,
1~ 11 ~ 1 ~ 1~ /7~ 1 1~ = tf%:c 1~ — tféx
f]P’(—t”* <71<0, Ui+ 2, <t~ <U) <—]P’(U >y )<7IP’ (P) > P>
t Porwsash Uibarst vesth) s gt 2t e s g AR TR
<2k ((M*)Y + (G*)Y) oY, (A.34)
by the dominated convergence theorem,
wQ
I C! 1/~ U A -~ 11 ~ 1 ~ e 207
- = — — — < < < < . .
g%th(t) /0 UO (1—e™7) g%tp( t2 vw< 72, <0, U +2, <t Yx_Ul) dz de (A.35)
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.

Moreover, for any ¢t > 0, w > 0 and = > 0, Pi(z,w) := P (ft%* w< 7 < 0,[71 +Z <t vz < l~]1> is such that

Pi(z,w) =P (_t%—%w <OP 40" <o, (M +1)UP + (1-6) U™ <t~ va< MUY - G*Ul("))
~( ¥ ) Yo (M )t Y Yo+ G U™

IA

M+ G = Mt G : e

IN

1 1 1 1

= t™vzx )\ 5 (Y M -G (M*+1)t2"vYw _ —(p)

P{—— < — P < .
(M*—i—G* =0 ) < M* (M*+ G*) -t

Hence, in view of (2.14-i),

1 ~
1%irr(l) ;Pt(x, w) <k (M* 4G9 7Y lim P (A.36)
e

t—0

Combining (A.35) and (A.36) leads to Bg)(t) = o(t). For Bg) (t), note that, for any ¢t > 0, w > 0 and = < 0,

1 1=/~ a1 1= tva 1= tva
z < = < <= - Pl - L
P w) < tP(UlJFZlJ Yx) = tP<U1 )) N tP( U3

Using that M, G > 0, it follows

1 2~ tva 2=/ _gw tva
-P <IPlUOW <— =" | <ZE(e™ —_— t—0.
r t(x,w)ft ( B 2(M*—|—G*)>t (e )exp{2(M*+G*)}—>0, -0

Therefore, by the dominated convergence theorem,

i 2820 = [ " (e D (1im Lp de| £27 qw =0
tl_r)l’(l); 12()_ 0 _Oo(e - ) tg%; t(wi) €z \/W w =V,

which in turn implies that

Bio(t) = t~Ee— (At (B@ (t) - B (t)) = o(t}), t—o. (A.37)
Finally, we deal with B;3(t) and analyze the asymptotic behavior of the following expression:

Y
2

Bua(t) i= £ Bualt) - 0 (w7 ). (A.38)

2(Y — 1)

First, Bis(t) is further decomposed as:

Big(t) = 1= v [e(””)tﬁ <6ﬂawfl{wl*zo} / , #pz(l2) dZ) -E (1{sz0} / , dZ)}
t t

—¥owr 2TY oW
_ t%+%7% (67(n+&)t . 1) IE <eﬁgwf1{wl*20} /1 . sz(l,Z) dZ)
t2" Y oWy
+tETY IR ((eﬁ"wf - 1) Liw; >0y /1 ,#pz(l2) dz)
t2"Y oWy

+t3TY IR (1{W1*>0} /1 ) 2 (pz(1,2) —Cz~¥71) dz)

1 2 3
= B (t) + B3 (1) + B (). (A.39)
As shown next,

By (t)=0(@), B3 (t)=0(1), t—0. (A.40)



Indeed, for B%) (t), we first rewrite the expectation as

_ 0o 0o 0o T 252
7 [ o—viewiq, . / 2pz(1,2) dz :/ (/ 2pz(1, 2 dz) e Vv E 2T g, A4l
( =0 t%*%gwl* pZ( ) 0 12V w pZ( ) 2mo? ( )

Next, by (2.16), there exists H; > 0 such that, for any z > Hy,

pz(l,2) <2C27Y 1. (A.42)

Hence, for any w > 0,

(S
-

o0
Y = 1_
/t%_i 2Cu du—i—l{t ,%w<H1}H1]P’ (Z1 > t2 w))

where to derive the second term in the last inequality we used that P(Z; > t2~vw) < HY7Y/(tz=vw)Y !, when
t2~vw < Hy. Together with (A.41) and since Y € (1,2), we obtain the first relationship in (A.40). The second
relationship therein is obtained using similar arguments.

It remains to deal with B%g)(t), which can be rewritten as:

3) 1 y,1 3 ¥ 2| 1 _w? _v_1
Bz (t) = Ft7 e A 27r02€ 22 dw | |2] (pz(1, 2) — C|2| )dz
Ly o é/ / Y % S L —y-1
= ¢ty 2 22 |z 1,2) = C|z dz du, A .43

where we change variables u = tz=vw /|z| and apply the Fubini Theorem in the second equality. For simplicity, we
write pz(z) instead of pz(1, z) hereafter. Next, denoting the characteristic function of Z; by pz(z), we have

1

pz(z) =F (\/ﬂ

p2) () Porte) = F (i) ). (A.44)

where F(h)(z) := F Jg € "*h(v)dv denotes the Fourier transformation of h € L1(R). Also, regarding |z|¥ =2 as
a tempered distribution, it is known that
27 = F (K 2 72) (2),
with K := —2sin(m(Y — 2)/2)[(Y — 1)/v/27. In particular, by definition,
[ o ds = [ K al 27 (o)) da. (A.45)
R R

for any Schwartz function ¢. Thus, combining (A.43)-(A.45),
1l vy 1. 3 ! t%_% (T 12,2 1 C
B ) = 7t7+7_5/ /f ———e 252 x (— P () — — xY_2> dz du
13 ( ) 2 0 - W ( ) mpZ( ) K| |

1 Y 1 3 1 tli%a2z2 1 C
= 77t7+77§/ /ufle_ 2u? < oy (x) + — |z Yz) dz du.
L N = (o) + Ll
Recalling that pz(z) = e=*" with ¢ := 2C| cos(rY/2)|T(=Y), we have:

1 N/ C Y -2 CY(Y - 1) —leL‘IY Y -2 1
—— pr(x) + =z =———— "¢ x +
Tz Pzl + glel Jon ="+

YV -1
(Cy|x|Yfl)26fc|z|Y + c ( )|.Z’|Y72 (1 - 67c|x|y) ,
V2

C
(cy|x‘Y—1)2e—c|L|Y + ?‘le—Q

5~
3
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where in the last equality we used C/K = ¢Y (Y — 1)/v/27. Hence,

—62Y2

Bg)(t) = t%+%7%/ / e Yﬂ = a2 27 g du
_ zzz
+ cY(2Y trty—3 / / z¥ 2 (1 - e_“’“'y> dz du
T
=BV (1) + B (1), (A.46)

For BS )( t), changing variables v = t2~v oz /u,

2Y -2 11 Y
9vr0 1 oo 1_1 tY "2 uv v—3
3,1 c’Y? vy 1 3 4 _»2 [tY T 20u 70( = ) ty "2u
B§3 )(t):— tzty 2/ / u e 2 e dv du
0 Jo o

2 o

272 1 o]

c’Y _Y _ w2 NP LTS S O _
:_2 — 1t1 2/ (/ e 2U2Y 26 co t ut v d’l}) 2Y Qdu.

Yi¥eh - 0 0

Hence, by the dominated convergence theorem,

A2Y? ~ (|W*|2y_2) _ 7202}’2 cos? (ZX) I?(-Y)
)o2Y =1 1 \/%(QY — 1)o2Y-1

lim ¢= 71B§§’1)(t) =—

E([Wi?7?). (A47
10 2V27(2Y — 1)o <| il ) (A.47)

Similarly, for BS’Z)@),

CY(Y B 1) ! > 2 t%féuv Y2 _ (t% %u’u)y téf%u
ng)(t) =Tty i / u e T ( > 1-e 7 dv du
0 0 g

_ 7CY(Y 7 1) /1 /OC 67%’01/72 1— 6750'_Yt1’%uyvy dv UY72 du.
27TUY_1 0 0

Again, by the dominated convergence theorem,

_RY(Y — 1) (|W1*|2y_2):_202y(y—1)cos2(%)r?(—Y)E(|W1*|2y_2)_ (A.48)

lim ¢ ' B2 (1) =

t—0 2V/2m(2Y —1)o2Y — i V2m(2Y — 1)o2Y -1
Combining (A.39), (A.40) and (A.46)-(A.48),
Yy _ 1~ 2C?Y cos? (ZX) T2 (-Y) ~
LY _ 2 w22\ _
lim %~ Bya 1) N E (\W1 | ) = dl;. (A.49)
Combining (A.31), (A.33), (A.37), (A.38) and (A.49), the asymptotic behavior for By (t), as t — 0, is given by
_ 1 _ Y _ Y s - (B Co' ™ ~ w1-Y i
Bi(t) = 2CI‘( Y) (MY —(M*)Y) t2 +t <B13(t) + V=1 1>IE <|W1 | ) +o(t2)
1 Y _ (Y ik =% (=% A% Co'™" iy 1
= —5CT(=Y) (MY = (M")Y) 4+ ( 5y + oft )+2(Y_1)]E(|W1| )) +oth)
_ g G0 (W) 7% 4 d 127 4 o(t2) + oY) (A.50)
2 3 2(Y _ 1) 1 31 ’ .

setting df := CT(=Y) (MY — (M*)Y).

Step 2. Next, we analyze Bs(t) by decomposing it as:

By(t) = e~ (1Dt /OOOIE ((e g 1> e

o Vivw o2ty
}> Vi Vo

1_1
t2 Y w
- > L 1—eViw ¢202
—(n+y)t 45—
+e /o P ( < —t2 w) 7 Tm?
:= Ba1(t) + Baa(t). (A.51)
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We begin with proving that Bai (t) = o (t1/2) as t — 0. To this end, consider first

2
1 —e Vv ¢ 207

Vit V 27r02

D g = T ( [tV T
b21 (t7w) =E ((6 ' 1) 1{Zl<t%)1/w,l~/1<0}> )

Note that, for any 0 < ¢t < 1 and w > 0, by (2.18),

—1.(1),. _—im -
t72byy (tw) =t 2E<1{Z1<té¢w U1<0}/ (¥ O <u<0}® “du)

O e [ oW 4w
Bm(t).f/O b ()

where

0 - 0 1 11
gt*%/ e P <U1 gt*%u) dugE(e*Ul)t*%/ e ) gu—en 112
— 0 — oo —ty
Since Y € (1,2), by the dominated convergence theorem,
w2 11
1 t_%B(l)(t) ™ (1 . 2b(1)( )) we” 207 dw < 1, I tvoz 0
T N N e = IS

Next, consider
1—e Viv 72,2

o2

Vit vV 27r02

2 > 2
B0 = [0 )
where b§21) (t;w) is defined and further decomposed as:
@ ) B e~V T _
b21 (t,w) —E((@ 1 1) {Zl< tg_‘)l/w,U120})
1 ~
= —tv U Y7 YE (U
= ((e ! +tYU1> 1{Z1S—t%_7w U1>0}) S <U11{Zl< t§_7w U1>0}>

Note that (since 1 <Y < 2)ast— 0,

1—e Viw o202

o2

1 [ i~ (= 1 1~ |~ o0 -
<t 2 Y ~ <tv.:2 —_— .
O_t 2/0 tYE<U11{Z1<t§§1’w,U1>O ) \/, W _tY 2E‘U1‘/O 27T02 dw — 0

Moreover, by (2.14-i) and the decomposition U, = M*Ut(p) — G*Ut("), for any ¢t > 0 and w > 0,

e

1 ~ 1

i —tY U, i[{ —u

E ((e 1+ 1) 1{Z1§—t%_§1/w,(7120}) =E /o (1 € )dUI{Zlg—t%—%w,ﬁlzo}

Hence, by the dominated convergence theorem,

U72
O<t_% OO]E e_t%ﬁl—l—i—t%ﬁ 1 - - —Vitw e 202
< ; 1 {zlg—tf’vw,Ulzo} \f W

<2Vt (M* + G \/1?/ (1—e) ufydu/ we 262 dw—0, t—0.
0 0

M‘N
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In light of (A.53)-(A.55) and (A.56), Bg) (t) = o(t'/?). Together with (A.52), and since By, (t) = e_("“‘:*)t(Béi) )+
Bg)(t)(t)), we conclude that

. _1
lim 7% By, () = 0. (A.57)

Finally, we analyze Bas(t) defined via (A.51). To this end, let

~ y Co' =Y
BQQ(t) = tfilBQQ(t) - ;T (|W1 |1 Y)

Y _(»,7+5/)t oo 1— e—\/ZaWI*
=t A Bl Yocowyit-tyy | P21 2) 42
Y = Y-—1
3 /0 IE(JWl U, )cz dz

X1 —(+A)t ©[1—e VoW
=tz (6 71)\/0' E Tl{ogawfst%iéz} pZ(l,Z)dZ

o [T (M )y 1,2)d
+1 0 \/{: — oWV {0§0W{‘§t%_%z} pZ(aZ) z

¥ < 1 —vy—
+t2 1/0 E(0W1 {0<UW*<t7_§Z}) (pz(l,z) - Cz 1) dz
= By (1) + BS (1) + BS) (1), (A.58)

where we used the symmetry of Z; in the second equality. As shown next, the first two terms in (A.58) are such
that

By (1) = O(t), By (t)=0(W1), t—0. (A.59)

Indeed, for the first relation above, note that, by (2.17),

© _ (] e~ VieW;
/0 Bl Locowpzet 1y | P2(12)d2

~ % o 11 e 202 1_Y 1_y € 202
S]E(O’Wll{ogawl*gt%_%zl}) :A ’U)P(Zl>t2 YU}) deﬁngt 2 /(; w ﬁdw

The second relationship in (A.59) follows in a similar fashion.

w? _w

It remains to deal with Bég)(t), which can be rewritten as:

1 _1
3 1 v 2l w —w —r=
@ﬂ)—?Qlé / ¢%p@%“m (pz(1,2) = Clo| 7" 71) dz
1 vy, 1.3 Foly2.
,t7+775/ / S 1,2) = Clz|771) dz du,
. \/W (p2(1,2) = Clz| )

where we change variables u = t%_%w/ |z| and apply the Fubini Theorem in the second equality. Using the same
argument given after (A.43), we get

1 Lopoo YT P22 1 c
B (1) = Se¥ i /0 / ]—"( Y%:;e—”w> (@) (%ﬁ%u)KW?) d du

1 Y, 1 _3 1 o tl_%02w2 1 C
:—7t?+7_5/ / e 2u? (A” T +xy_2) dx du
Wor = 27TPz( )+ 51l
3,1 3,2
= BV () + BS2 1), (A.60)
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with

W<
vl

27
cY(Y —1)

. 2v2 1 [e%s) 1_la2m2
Bég’l)(t) ::_th ¥ // BT xQY_Qe_Cdexdm
o Jo
3,2
B () = -

For Bég 2 , changing variables to v = t2~¥ o /u,

2v2 1 0o v
3.1 c’Y _Y _ w2 o . Y -L Y Y _
B! )(t):— A% o= T p2Y 2o VT Tu oY g2y -1 g,
22 Imo2Y -1
YiXeh 0 0

Hence, by the dominated convergence theorem,

lm 513D ) — Y  ~ WY -2 702}/ cos? (ZX) Fz(—Y)E 2y 2
50 2" (1) Aoy 1 Wyl /o2y —1 Wi .

Similarly, for B(3 2)( t),

YV —1) (L] [ _.2 vl
Bé?z)’g)(t) =< ( yfl) / {/ e T oY 2 (1 o T “Y”Y> dv} ¥ ~tdu.
2ro 0 0

Again, by the dominated convergence theorem,

LY 132
pm = By () = Aoy -1

Combining (A.58)-(A.62),

\/2ro2Y -1

Ly g~ C%(2Y — 1) cos? (FX)T2(-Y) ~ .12V —
}g%t 2 1322(75) — \/%02}(/_21) E (|I/V1 |2 2) . d32.
Hence, by combining (A.51), (A.57) and (A.63)

o 1_% ~ CO’l Y 1-Y %

Ba(t) =% (Bualt) + S5~ B (W71) ) ot
-y _
— =% (dgztl_g +o (tl—%) n C;Y E(wr- Y)) +o(t?)
CJI—Y

= L E (W) 8 4 dipt Y 4 o(th) +o(27Y), 0.

Step 3. We finally study the behavior of B3(t) by further decomposing it as:

’UJ2

Ba(t *(WJF:Y)t OOIE 7t%l~h 1)1 l_e\[w 20*
3(t) = e (4ol TV Norrha

_ oVtw
7H-7)t/ ( %—%w) L - eVt e i
\[ \/27T0'2
1~ 1
—tv U tYy (2,40
+e —(n+A)t IE 1 L € t—e ( ' 1) _t%fézl e\/{w €
B [Hesi-ta) 7
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Y 1_3 1 > t17%02:22 Y
tzty =2 T (1 —e " ) dzdu.
2 0 0

(Y —1) 7 <|W1*‘2Y72) _ _02(Y — 1) cos? (%) FQ(—Y)E (\Wf|2y72> .

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)



First, note that the term Bsy(t) is similar to the term By () in (A.51) and, thus, using arguments similar to those

leading to (A.63) gives,

Co'~Y
2Y

Next, the term Bsy(t) is similar to the term By3(t) introduced in (A.31) and, thus, using arguments similar to those
leading to (A.49) gives,

Bsy(t) = — E (Wi Y) ¢ % — dipt®> Y +o(t>7Y), t—0. (A.66)

Col~Y

m]ﬁ (W) 7% 4 d, 27 +o(t2) + o(t*7Y), ¢ —0. (A.67)

Bsy(t) =

It remains to analyze Bsi(t) and Bss(t). For Bsi(t), note that the expectation appearing therein can be written as

~ oo . ~ Yo 5
B|(e "M OG0 )1,y | =R (e @O MY )y
{-o-0{M<—t2i -V w} {040 <—t2"vw} |

where ([7'1(13)7 ﬁl(n)) = (—U'l(n), —Ul(p)) 2 (Ul(p)7 Ul(n)). Thus, Bs;(t) is the same as the term By (t) defined in (A.51)
but with the role of the parameters M* and G* reversed. In other words, if we write Baj(t; M*, G*) := B (t) to
emphasize the dependence on the parameters M* and G*, we have that Bsi(t) = Ba2i(¢t; G*, M*). Therefore, in
view of (A.57),

lim ¢ 2 By (t) = 0. (A.683)

t—0

To finish, we further decompose B33(t) as:

L Z1+171 t% ; e 207
S LA e =1 )du| eV —=duw
{Z17t2 w 7, Gy

o 0 . - - T 252
:t_%e_(ﬂ'ﬁ)t/ [/ e v -1 ]P’(Z1 >t v, U, St_%x§Z1+U1> dx} eViv E 2T gy
MG =

— 00

Bas(t) = e—(n+’v)t/ E
0

+t—%e—(n+’v)t/ [/ (e7®=1) P (Z1 >3 v, U St Yo < Zi+ (71) dfﬂ] ) (A.69)
0 0

When z < 0, by (2.18), for any ¢ > 0 and w > 0,

~ ~ ~ ~ [~ ~ 1
P(w,z) =P (Zl > t%_éw, U, < v < Zi+ U1) <P (U1 < t_7x) <E (e_U1> el YT =gt V7,

Hence, for 0 <t <1 and since 1 <Y < 2,

0 < t-le— ()t /Oo

0 ~ 11 ~ 1 ~ e 202
U (" -)P(z =t Fuw i<t Ya<z+ D) dx} eViu dw
0

— 00

- 0 _1 o0 e 202
< t_le_("+7)te’7/ (e_” — 1) et Y"cdx/ wev dw
— 00 0
2 w
ty 1 . o0 e 202
= n 67(’7+7)te’7/ we® dw— 0, t—0. (A.70)
1—tv 0 2mo?

For the second integral in (A.69), using arguments similar to those leading to (2.14-i), there exists a constant
K € (0,00), such that

1P (tiéx < Zi+ 171> < /%afy, for any x > 0,

and thus, by the dominated convergence theorem,

lim ¢~ te~ (Mt (e_z -1
t—0 0 0

= / U (7" —1) <lim 5 (Zl >t v, Uy <t Ve < Zi+ a)) dx] 27 . (A.71)
0 0

t—0 t
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It remains to compute the limit in the above integrand. For any ¢ > 0, x > 0 and w > 0,

1 1~/ () w11 - —(n) _ 1 - ~(n
TPiw,z) = gIED(U{W + UM >t vw, MUY — U™ <t-va < MUY - GU! >)

e B B 1 e
L% <U1<p> s el P m) po(L,4) du.
R

M M*
Note that
t_%x—Gu < t_%x—G*u - t_%x t%_% < Yo — G*u - t_%w—M*t%_%w
u s w+u< —mm u < ,
M B M~ -~ M+G M* M+ G
t%f% n <t*%x—Gu N t*%x—Mt%*yw
w+u u
- M M+ G
Hence,

_ 1 1_1
t Yao-—M*t2 Y w

t 1
1 e — oy t¥r—Gru
— R
+ t /;7%171Wt%7%w7 ]P(tz TerestTs M* pU(l,u)du

M+G
=N(tw,z) + Lt w, ). (A.72)
For the first integral in (A.72), note that for any ¢ > 0, x > 0 and w > 0,
1 1 1 1
t—vox— Mt vw t"vx t"Yx 1 x — Mw+/t 22
< =t Yr—-—Gu>0 — >0 & < ——.
“STTMA G M+G @ rotu=0 M+G M2w?

Hence, by (2.13) and the dominated convergence theorem, for any z > 0, w > 0 and u < t~v (z — Mw)/(M + G),

1~ (t—vz—Gu _ t—vz — G*u
1 M = 1 —_ _— < + < —_—
thrr(l)ll(t,w,x) /RpU(l,u) Lhr% tP( <U; < )

1 —1/Y 1y du
t x— Mt w
{ug M+G }

1 )Y -1/ AU
{ugt ]\/I+Ct; }

1 <ff1/Ym—Mt*1/Yw du
US—""""nm+Gc

-5 (MY - (M*)Y) a7, (A.73)

) Pk FEUTLYS S O b G
L B ) TV —Gru
OS%/; P<t Fw+u< O < —p )pu(Lu)du
M+G
15 (50 o b\ 5 g o VT = Mt
<7P< Mty )P 07" = =0, t—=0. A4
S A R T (A.74)

Combining (A.71)-(A.74), and using (A.2),

2
e_(77+'7)t o0 o0 ~ 1_ 1 ~ 1 ~ e\/zwef;ﬁ CP(_Y) Y Y
im —r_ >tV <t vz< - = T dw=—"" —(M*
lim ~— /0 [/0 (1) B(Zi= i Pw,Ti<t Yle+U1>dx] Vol — (M=),
which, together with (A.70), leads to:

lim ¢~ 2 Bag(t) = ——> (A.75)
t—0
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where dj = CT(=Y) (MY — (M*)""). Hence, by combining (A.65)-(A.68) and (A.75), we get

ds 1 Col™Y - il _y _ 1 _
Bg(t):—gtz +mE(|W1|1 V72 4 (dy —diyy) 7Y +0(t2) +o(t*7Y), t—0. (A.76)

We are now in position of obtaining the higher-order asymptotic expansion. First, by combining (A.30), (A.50),
(A.64) and (A.76),

CalfY

Ay(t) = —djt7 + YD

E (W) 7% 4 2(dyy — dip) 27 +0(t2) +o(t>™Y), t—0.
By combining the previous expression with (A.27)-(A.29),

g 2
vy o 1 Cc = _ _x _ 1 _
Ao(t): <2_4_dg> t2 +mE (|W1|1 Y) tl 2 +2( gl_ 32)t2 Y+O(t2)+0(t2 Y), t—>0,

which yields (3.11), by noting that the coefficient of the first term above reduces to the expression ds; in (3.9) and
that d32 = Q(dgl — déQ) O

Proof of Proposition 3.4. When the diffusion component is present, [12, Proposition 5] implies that §(¢) — o as
t — 0. In particular, &(¢)t'/2 — 0 as t — 0 and, thus, (A.22) above still holds. Let &(t) := 6(t) — o, then &(t) — 0
ast — 0, and (A.22) can be written as

R _ 0 .1 a(t) 1 a(t)3
CBs(t,o(t))—mt —&-mt YW

By comparing (3.7)-(3.8) and (A.77), and since the third term in (A.77) is O(t*/?), we have

240 <t§> ot (A7)

=Y 1y ) ~
2zo" g (1— Y) e VAU R}
Y - 1)J/x 2 V2
and, therefore,
021_%01_3/ Y Y Y
(1)~ ————T (1 - = |t:"2 :=0yt!™2, t—0. A.78
10~ Sty T (1-5) 1 et oo (A7)

Y

Next, set 5(t) := 6(t) — 0 — o1t! =2, then (A.77) can be rewritten as:

o 1 Y sy &(t)%_6(t)3 s
osttatt) = Foib 4 Sy grzr (103 ) 5+ Tt - o

We can finally deduce (3.11) by comparing the first three terms in (3.10) with (A.79). O

N 217§ 1-Y .
0 44, 82770 r<1 +O(t§), t0.  (A.79)
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