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Abstract

We consider a homogeneous fractional Sobolev space obtained by completion of the space

of smooth test functions, with respect to a Sobolev–Slobodeckiı̆ norm. We compare it to the

fractional Sobolev space obtained by the K -method in real interpolation theory. We show

that the two spaces do not always coincide and give some sufficient conditions on the open

sets for this to happen. We also highlight some unnatural behaviors of the interpolation space.

The treatment is as self-contained as possible.
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1 Introduction

1.1 Motivations

In the recent years, there has been a great surge of interest toward Sobolev spaces of fractional

order. This is a very classical topic, essentially initiated by the Russian school in the 1950s of

the last century, with the main contributions given by Besov, Lizorkin, Nikol’skiı̆, Slobodeckiı̆

and their collaborators. Nowadays, we have a lot of monographies at our disposal on the

subject. We just mention the books by Adams [1,2], by Nikol’skiı̆ [25] and by Triebel [30–

32]. We also refer the reader to [31, Chapter 1] for an historical introduction to the subject.

The reason for this revival lies in the fact that fractional Sobolev spaces seem to play

a fundamental role in the study and description of a vast amount of phenomena, involving

nonlocal effects. Phenomena of this type have a wide range of applications; we refer to [10]

for an overview.

There are many ways to introduce fractional derivatives and, consequently, Sobolev spaces

of fractional order. Without any attempt of completeness, let us mention the two approaches

which are of interest for our purposes:

• a concrete approach, based on the introduction of explicit norms, which are modeled on

the case of Hölder spaces. For example, by using the heuristic

δs
hu(x) :=

u(x + h) − u(x)

|h|s
∼ “derivative of order s”, for x, h ∈ R

N ,

a possible choice of norm is

(∫ ∥∥δs
hu
∥∥p

L p

dh

|h|N

) 1
p

,

and more generally

(∫ ∥∥δs
hu
∥∥q

L p

dh

|h|N

) 1
q

, for 1 ≤ q ≤ ∞.

Observe that the integral contains the singular kernel |h|−N ; thus, functions for which

the norm above is finite must be better than just merely s-Hölder regular, in an averaged

sense;

• an abstract approach, based on the so-called interpolation methods. The foundations

of these methods were established at the beginning of the 1960s of the last century, by

Calderón, Gagliardo, Krejn, Lions and Petree, among others. A comprehensive treatment

of this approach can be found for instance in the books [3,4,29] and references therein.

In a nutshell, the idea is to define a scale of “intermediate spaces” between L p and

the standard Sobolev space W 1,p , by means of a general abstract construction. The main
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A note on homogeneous Sobolev spaces of fractional order 1297

advantage of this second approach is that many of the properties of the spaces constructed

in this way can be extrapolated in a direct way from those of the two “endpoint” spaces

L p and W 1,p .

As mentioned above, actually other approaches are possible: a possibility is to use the Fourier

transform. Another particularly elegant approach consists in taking the convolution with a

suitable kernel (for example, heat or Poisson kernels are typical choices) and looking at the

rate of blowup of selected L p norms with respect to the convolution parameter. However, we

will not consider these constructions in the present paper; we refer the reader to [31] for a

wide list of definitions of this type.

In spite of the explosion of literature on Calculus of Variations settled in fractional Sobolev

spaces of the last years, the abstract approach based on interpolation seems to have been

completely neglected or, at least, overlooked. For example, the well-known survey paper

[14], which eventually became a standard reference on the field, does not even mention

interpolation techniques.

1.2 Aims

The main scope of this paper is to revitalize some interest toward interpolation theory in

the context of fractional Sobolev spaces. In doing this, we will resist the temptation of any

unnecessary generalization. Rather, we will focus on a particular, yet meaningful, question

which can be resumed as follows:

Given a concrete fractional Sobolev space

of functions vanishing “at the boundary” of a set,

does it coincide with an interpolation space?

We can already anticipate the conclusions of the paper and say that this is not always true.

Let us now try to enter more in the details of the present paper.

Our concerns involve the so-called homogeneous fractional Sobolev–Slobodeckiı̆ spaces

D
s,p
0 (Ω). Given an open set Ω ⊂ R

N , an exponent 1 ≤ p < ∞ and a parameter 0 < s < 1,

this space is defined as the completion of C∞
0 (Ω) with respect to the norm

u �→ [u]W s,p(RN ) :=
(∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+s p
dx dy

) 1
p

.

Such a space is the natural fractional counterpart of the homogeneous Sobolev spaceD
1,p
0 (Ω),

defined as the completion of C∞
0 (Ω) with respect to the norm

u �→
(∫

Ω

|∇u|p dx

) 1
p

.

The space D
1,p
0 (Ω) has been first studied by Deny and Lions in [13], among others. We recall

that D
1,p
0 (Ω) is a natural setting for studying variational problems of the type

inf

{
1

p

∫

Ω

|∇u|p dx −
∫

Ω

f u dx

}
,

supplemented with Dirichlet boundary conditions, in the absence of regularity assumptions

on the boundary ∂Ω . In the same way, the space D
s,p
0 (Ω) is the natural framework for

studying minimization problems containing functionals of the type
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1298 L. Brasco, A. Salort

1

p

∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+s p
dx dy −

∫

Ω

f u dx, (1.1)

in the presence of nonlocal Dirichlet boundary conditions, i.e., the values of u are prescribed

on the whole complement R
N \Ω . Observe that even if this kind of boundary conditions

may look weird, these are the correct ones when dealing with energies (1.1), which take into

account interactions “from infinity.”

The connection between the two spaces D
1,p
0 (Ω) and D

s,p
0 (Ω) is better appreciated by

recalling that for u ∈ C∞
0 (Ω), we have (see [5] and [26, Corollary 1.3])

lim
sր1

(1 − s)

∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+s p
dx dy = αN ,p

∫

Ω

|∇u|p dx,

with

αN ,p =
1

p

∫

SN−1
|〈ω, e1〉|p dH

N−1(ω), e1 = (1, 0, . . . , 0).

On the other hand, as s ց 0 we have (see [24, Theorem 3])

lim
sց0

s

∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+s p
dx dy = βN ,p

∫

Ω

|u|p dx,

with

βN ,p =
2 N ωN

p
,

and ωN is the volume of the N -dimensional unit ball. These two results reflect the “inter-

polative” nature of the space D
s,p
0 (Ω), which will be, however, discussed in more detail in

the sequel.

Indeed, one of our goals is to determine whether D
s,p
0 (Ω) coincides or not with the real

interpolation space X
s,p
0 (Ω) defined as the completion of C∞

0 (Ω) with respect to the norm

‖u‖
X

s,p
0 (Ω) :=

(∫ +∞

0

(
K (t, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t

) 1
p

.

Here K (t, ·, L p(Ω), D
1,p
0 (Ω)) is the K -functional associated with the spaces L p(Ω) and

D
1,p
0 (Ω), see Sect. 3 for more details.

In particular, we will be focused on obtaining double-sided norm inequalities leading to

answer our initial question, i.e., estimates of the form

1

C
[u]W s,p(RN ) ≤ ‖u‖

X
s,p
0 (Ω) ≤ C [u]W s,p(RN ), u ∈ C∞

0 (Ω).

Moreover, we compute carefully the dependence on the parameter s of the constant C . Indeed,

we will see that C can be taken independent of s.

1.3 Results

We now list the main achievements of our discussion:

1. the space D
s,p
0 (Ω) is always larger than X

s,p
0 (Ω) (see Proposition 4.1) and they do not

coincide for general open sets, as we exhibit with an explicit example (see Example 4.4);
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A note on homogeneous Sobolev spaces of fractional order 1299

2. they actually coincide on a large class of domains, i.e., bounded convex sets (Theo-

rem 4.7), convex cones (Corollary 4.8), Lipschitz sets (Theorem 4.10);

3. the Poincaré constants for the embeddings

D
s,p
0 (Ω) →֒ L p(Ω) and D

1,p
0 (Ω) →֒ L p(Ω),

are equivalent for the classes of sets at point 2 (Theorem 6.1). More precisely, by setting

λs
p(Ω) = inf

u∈C∞
0 (Ω)

{
[u]p

W s,p(RN )
: ‖u‖L p(Ω) = 1

}
, 0 < s < 1,

and

λ1
p(Ω) = inf

u∈C∞
0 (Ω)

{∫

Ω

|∇u|p dx : ‖u‖L p(Ω) = 1

}
,

we have

1

C

(
λ1

p(Ω)
)s

≤ s (1 − s) λs
p(Ω) ≤ C

(
λ1

p(Ω)
)s

.

Moreover, on convex sets the constant C > 0 entering in the relevant estimate is universal,

i.e., it depends on N and p only. On the other hand, we show that this equivalence fails

if we drop any kind of regularity assumptions on the sets (see Remark 6.3).

As a byproduct of our discussion, we also highlight some weird and unnatural behaviors of

the interpolation space X
s,p
0 (Ω):

• the “extension by zero” operator X
s,p
0 (Ω) →֒ X

s,p
0 (RN ) is not an isometry for general

open sets (see Remark 4.6) and the two norms

‖ · ‖
X

s,p
0 (Ω) and ‖ · ‖

X
s,p
0 (RN ),

may not be equivalent on C∞
0 (Ω). This is in contrast with what happens for the spaces

L p(Ω), D
1,p
0 (Ω) and D

s,p
0 (Ω);

• the sharp Poincaré interpolation constant

Λs
p(Ω) = inf

u∈C∞
0 (Ω)

{
‖u‖p

X
s,p
0 (Ω)

: ‖u‖L p(Ω) = 1
}
, 0 < s < 1

is sensitive to removing sets with zero capacity. In other words, if we remove a compact

set E ⋐ Ω having zero capacity in the sense of X
s,p
0 (Ω), it may happen that (see

Lemma 5.4)

Λs
p(Ω\E) > Λs

p(Ω).

Again, this is in contrast with the case of D
1,p
0 (Ω) and D

s,p
0 (Ω).

Remark 1.1 As recalled at the beginning, nowadays there is a huge literature on Sobolev

spaces of fractional order. Nevertheless, to the best of our knowledge, a detailed discussion

on the space D
s,p
0 (Ω) in connection with interpolation theory seems to be missing. For this

reason, we believe that our discussion is of independent interest.

We also point out that for Sobolev spaces of functions not necessarily vanishing at the

boundary, there is a very nice paper [11] by Chandler-Wilde, Hewett and Moiola comparing

“concrete” constructions with the interpolation one.
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1.4 Plan of the paper

In Sect. 2 we present the relevant Sobolev spaces, constructed with the concrete approach

based on the so-called Sobolev–Slobodeckiı̆ norms. Then in Sect. 3 we introduce the homo-

geneous interpolation space we want to work with. Essentially, no previous knowledge of

interpolation theory is necessary.

The comparison between the concrete space and the interpolation one is contained in

Sect. 4. This in turn is divided in three subsections, each one dealing with a different class of

open sets. We point out here that we preferred to treat convex sets separately from Lipschitz

sets, for two reasons: the first one is that for convex sets the comparison between the two

spaces can be done “by hands,” without using any extension theorem. This in turn permits to

have a better control on the relevant constants entering in the estimates. The second one is

that in proving the result for Lipschitz sets, we actually use the result for convex sets.

In order to complement the comparison between the two spaces, in Sect. 5 we compare

the two relevant notions of capacity, naturally associated with the norms of these spaces.

Finally, Sect. 6 compares the Poincaré constants.

The paper ends with three appendices: the first one contains the construction of a coun-

terexample used throughout the whole paper; the second one proves a version of the

one-dimensional Hardy inequality; and the last one contains a geometric expedient result

for convex sets.

2 Preliminaries

2.1 Basic notation

In what follows, we will always denote by N the dimension of the ambient space. For an

open set Ω ⊂ R
N , we indicate by |Ω| its N -dimensional Lebesgue measure. The symbol

H
k will stand for the k-dimensional Hausdorff measure. Finally, we set

BR(x0) =
{

x ∈ R
N : |x − x0| < R

}
,

and

ωN = |B1(0)|.

2.2 Sobolev spaces

For 1 ≤ p < ∞ and an open set Ω ⊂ R
N , we use the classical definition

W 1,p(Ω) :=
{

u ∈ L p(Ω) :
∫

Ω

|∇u|p dx < +∞
}

.

This is a Banach space endowed with the norm

‖u‖W 1,p(Ω) =
(
‖u‖p

L p(Ω) + ‖∇u‖p

L p(Ω)

) 1
p
.

We also denote by D
1,p
0 (Ω) the homogeneous Sobolev space, defined as the completion of

C∞
0 (Ω) with respect to the norm

u �→ ‖∇u‖L p(Ω).

123



A note on homogeneous Sobolev spaces of fractional order 1301

If the open set Ω ⊂ R
N supports the classical Poincaré inequality

c

∫

Ω

|u|p dx ≤
∫

Ω

|∇u|p dx, for every u ∈ C∞
0 (Ω),

then D
1,p
0 (Ω) is indeed a functional space and it coincides with the closure in W 1,p(Ω) of

C∞
0 (Ω). We will set

λ1
p(Ω) = inf

u∈C∞
0 (Ω)

{
‖∇u‖p

L p(Ω) : ‖u‖L p(Ω) = 1
}
.

It occurs λ1
p(Ω) = 0 whenever Ω does not support such a Poincaré inequality.

Remark 2.1 We remark that one could also consider the space

W
1,p
0 (Ω) :=

{
u ∈ W 1,p(RN ) : u = 0 a.e. in R

N \Ω
}

.

It is easy to see that D
1,p
0 (Ω) ⊂ W

1,p
0 (Ω), whenever D

1,p
0 (Ω) →֒ L p(Ω). If in addition

∂Ω is continuous, then both spaces are known to coincide, thanks to the density of C∞
0 (Ω)

in W
1,p
0 (Ω), see [20, Theorem 1.4.2.2].

2.3 A homogeneous Sobolev–Slobodecki space

Given 0 < s < 1 and 1 ≤ p < ∞, the fractional Sobolev space W s,p(RN ) is defined as

W s,p(RN ) :=
{

u ∈ L p(RN ) : [u]W s,p(RN ) < +∞
}

,

where the Sobolev–Slobodeckiı̆ seminorm [ · ]W s,p(RN ) is defined as

[u]W s,p(RN ) :=
(∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+s p
dx dy

) 1
p

.

This is a Banach space endowed with the norm

‖u‖W s,p(RN ) =
(
‖u‖p

L p(RN )
+ [u]p

W s,p(RN )

) 1
p
.

In what follows, we need to consider nonlocal homogeneous Dirichlet boundary conditions,

outside an open set Ω ⊂ R
N . In this setting, it is customary to consider the homogeneous

Sobolev–Slobodeckiı̆ space D
s,p
0 (Ω). The latter is defined as the completion of C∞

0 (Ω) with

respect to the norm

u �→ [u]W s,p(RN ).

Observe that the latter is indeed a norm on C∞
0 (Ω). Whenever the open set Ω ⊂ R

N admits

the following Poincaré inequality

c

∫

Ω

|u|p dx ≤
∫∫

RN ×RN

|u(x) − u(y)|p

|x − y|N+s p
dx dy, for every u ∈ C∞

0 (Ω),

we get that D
s,p
0 (Ω) is a functional space continuously embedded in L p(Ω). In this case, it

coincides with the closure in W s,p(RN ) of C∞
0 (Ω). We endow the space D

s,p
0 (Ω) with the

norm

‖u‖
D

s,p
0 (Ω) := [u]W s,p(RN ).
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1302 L. Brasco, A. Salort

We also define

λs
p(Ω) = inf

u∈C∞
0 (Ω)

{
‖u‖p

D
s,p
0 (Ω)

: ‖u‖L p(Ω) = 1
}
,

i.e., this is the sharp constant in the relevant Poincaré inequality. Some embedding properties

of the space D
s,p
0 (Ω) are investigated in [18].

Remark 2.2 As in the local case, one could also consider the space

W
s,p
0 (Ω) :=

{
u ∈ W s,p(RN ) : u = 0 a.e. in R

N \Ω
}

.

It is easy to see that D
s,p
0 (Ω) ⊂ W

s,p
0 (Ω), whenever D

s,p
0 (Ω) →֒ L p(Ω). As before, if ∂Ω

is continuous, then both spaces are known to coincide, again thanks to the density of C∞
0 (Ω)

in W
s,p
0 (Ω), see [20, Theorem 1.4.2.2].

2.4 Another space of functions vanishing at the boundary

Another natural fractional Sobolev space of functions “vanishing at the boundary” is given

by the completion of C∞
0 (Ω) with respect to the localized norm

[u]W s,p(Ω) =
(∫∫

Ω×Ω

|u(x) − u(y)|p

|x − y|N+s p
dx dy

) 1
p

.

We will denote this space by D̊s,p(Ω) and endow it with the norm [‖u‖
D̊s,p(Ω)

:= [u]W s,p(Ω)].
We recall the following

Lemma 2.3 Let 1 < p < ∞ and 0 < s < 1. For every Ω ⊂ R
N open bounded Lipschitz

set, we have:

• if s p > 1, then

D
s,p
0 (Ω) = D̊s,p(Ω);

• if s p ≤ 1, then there exists a sequence {un}n∈N ⊂ C∞
0 (Ω) such that

lim
n→∞

‖un‖
D̊s,p(Ω)

‖un‖
D

s,p
0 (Ω)

= 0.

Proof The proof of the first fact is contained in [7, Proposition B.1].

As for the case s p ≤ 1, in [15, Section 2] Dyda constructed a sequence {un}n∈N ⊂ C∞
0 (Ω)

such that

lim
n→∞

‖un‖
D̊s,p(Ω)

= 0 and lim
n→∞

‖un − 1Ω‖L p(Ω) = 0.

By observing that for such a sequence we have

lim
n→∞

‖un‖
D

s,p
0 (Ω) ≥

(
λs

p(Ω)
) 1

p
lim

n→∞
‖un‖L p(Ω) =

(
λs

p(Ω) |Ω|
) 1

p
,

we get the desired conclusion, by observing that λs
p(Ω) > 0 for an open bounded set, thanks

to [8, Corollary 5.2]. ⊓⊔
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Remark 2.4 Clearly, we always have

‖u‖
D̊s,p(Ω)

≤ ‖u‖
D

s,p
0 (Ω), for every u ∈ C∞

0 (Ω).

As observed in [16], the reverse inequality

‖u‖
D

s,p
0 (Ω) ≤ C ‖u‖

D̊s,p(Ω)
, for every u ∈ C∞

0 (Ω), (2.1)

is equivalent to the validity of the Hardy-type inequality
∫

Ω

|u(x)|p

(∫

RN \Ω
|x − y|−N−s p y

)
dx ≤ C

∫∫

Ω×Ω

|u(x) − u(y)|p

|x − y|N+s p
dx dy.

A necessary and sufficient condition for this to happen is proved in [16, Proposition 2]. We

also observe that the failure of (2.1) implies that in general the “extension by zero” operator

T0 : D̊s,p(Ω) → D̊s,p(RN ),

is not continuous. We refer to [16] for a detailed discussion of this issue.

Remark 2.5 The space D̊s,p(Ω) is quite problematic in general, especially in the case s p ≤ 1

where it may fail to be a functional space. A more robust variant of this space is

D̃s,p(Ω) = “closure of C∞
0 (Ω) in W s,p(Ω)”.

By definition, this is automatically a functional space, continuously contained in W s,p(Ω).

It is a classical fact that if Ω is a bounded open set with smooth boundary, then

D̃s,p(Ω) = W s,p(Ω), for s p < 1,

see [32, Theorem 3.4.3]. Moreover, we also have

D̃s,p(Ω) = D
s,p
0 (Ω), for s p �= 1,

see, for example, [7, Proposition B.1].

3 An interpolation space

Let Ω ⊂ R
N be an open set. If X(Ω) and Y (Ω) are two normed vector spaces containing

C∞
0 (Ω) as a dense subspace, we define for every t > 0 and u ∈ C∞

0 (Ω) the K -functional

K (t, u, X(Ω), Y (Ω)) := inf
v∈C∞

0 (Ω)

{
‖u − v‖X(Ω) + t ‖v‖Y (Ω)

}
. (3.1)

We are interested in the following specific case: let us take 0 < s < 1 and 1 < p < ∞, we

choose

X(Ω) = L p(Ω) and Y (Ω) = D
1,p
0 (Ω).

Then we use the notation

‖u‖
X

s,p
0 (Ω) :=

(∫ +∞

0

(
K (t, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t

) 1
p

, u ∈ C∞
0 (Ω).

It is standard to see that this is a norm on C∞
0 (Ω), see [4, Section 3.1]. We will indicate by

X
s,p
0 (Ω) the completion of C∞

0 (Ω) with respect to this norm.
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1304 L. Brasco, A. Salort

The first result is the Poincaré inequality for the interpolation space X
s,p
0 (Ω). The main

focus is on the explicit dependence of the constant on the local Poincaré constant λ1
p .

Lemma 3.1 Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R
N be an open set. Then for every

u ∈ C∞
0 (Ω) we have

(
λ1

p(Ω)
)s

‖u‖p

L p(Ω) ≤ p s (1 − s) ‖u‖p

X
s,p
0 (Ω)

. (3.2)

Proof We proceed in two stages: we first prove that

‖u‖p

L p(Ω)
�

∫ +∞

0

(
K (t, u, L p(Ω), L p(Ω))

t s

)p dt

t
,

and then we show that the last integral is estimated from the above by the norm X
s,p
0 (Ω).

First stage Let us take u ∈ C∞
0 (Ω), for every t ≥ 1 and v ∈ C∞

0 (Ω)

‖u‖L p(Ω) ≤ ‖u − v‖L p(Ω) + t ‖v‖L p(Ω).

By taking the infimum, we thus get

‖u‖L p(Ω) ≤ K (t, u, L p(Ω), L p(Ω)).

By integrating with respect to the singular measure dt/t , we then get

∫ +∞

1

(
K (t, u, L p(Ω), L p(Ω))

t s

)p dt

t
≥
∫ +∞

1

t−s p ‖u‖p

L p(Ω)

dt

t
=

‖u‖p

L p(Ω)

s p
. (3.3)

We now pick 0 < t < 1, by triangle inequality we get for every v ∈ C∞
0 (Ω)

t ‖u‖L p(Ω) ≤ t ‖u − v‖L p(Ω) + t ‖v‖L p(Ω)

≤ ‖u − v‖L p(Ω) + t ‖v‖L p(Ω).

By taking the infimum over v ∈ C∞
0 (Ω), we obtain for u ∈ C∞

0 (Ω) and 0 < t < 1

t ‖u‖L p(Ω) ≤ K (t, u, L p(Ω), L p(Ω)).

By integrating again, we get this time

∫ 1

0

(
K (t, u, L p(Ω), L p(Ω))

t s

)p dt

t
≥
∫ 1

0

t p−s p ‖u‖p

L p(Ω)

dt

t
=

‖u‖p

L p(Ω)

(1 − s) p
. (3.4)

By summing up (3.3) and (3.4), we get the estimate

‖u‖p

L p(Ω) ≤ p s (1 − s)

∫ +∞

0

(
K (t, u, L p(Ω), L p(Ω))

t s

)p dt

t
. (3.5)

Second stage Given u ∈ C∞
0 (Ω), we take v ∈ C∞

0 (Ω). We can suppose that λ1
p(Ω) > 0;

otherwise, (3.2) trivially holds. By definition of λ1
p(Ω), we have that

‖u − v‖L p(Ω) + t ‖v‖L p(Ω) ≤ ‖u − v‖L p(Ω) + t (λ1
p(Ω))

− 1
p ‖∇v‖L p(Ω).

If we recall the definition (3.1) of the K -functional, we get

K (t, u, L p(Ω), L p(Ω))p ≤

⎛
⎝‖u − v‖L p(Ω) +

t

(λ1
p(Ω))

1
p

‖∇v‖L p(Ω)

⎞
⎠

p

,
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A note on homogeneous Sobolev spaces of fractional order 1305

and by taking infimum over v ∈ C∞
0 (Ω) and multiplying by t−s p , we get

t−s p K (t, u, L p(Ω), L p(Ω))p ≤ t−s p K

⎛
⎝ t

(λ1
p(Ω))

1
p

, u , L p(Ω), D
1,p
0 (Ω)

⎞
⎠

p

.

We integrate over t > 0, by performing the change of variable τ = t/(λ1
p(Ω))

1
p we get

∫ +∞

0

(
K (t, u, L p(Ω), L p(Ω))

t s

)p dt

t
≤

1

(λ1
p(Ω))s

‖u‖p

X
s,p
0 (Ω)

.

By using this in (3.5), we prove the desired inequality (3.2). ⊓⊔

We will set

Λs
p(Ω) = inf

u∈C∞
0 (Ω)

{
‖u‖p

X
s,p
0 (Ω)

: ‖u‖L p(Ω) = 1
}

,

i.e., this is the sharp constant in the relevant Poincaré inequality. As a consequence of (3.2),

we obtain (
λ1

p(Ω)
)s

≤ p s (1 − s)Λs
p(Ω). (3.6)

Proposition 3.2 (Interpolation inequality) Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R
N be

an open set. For every u ∈ C∞
0 (Ω) we have

p s (1 − s) ‖u‖p

X
s,p
0 (Ω)

≤ ‖u‖p (1−s)

L p(Ω)
‖∇u‖s p

L p(Ω)
. (3.7)

In particular, we also obtain

p s (1 − s)Λs
p(Ω) ≤

(
λ1

p(Ω)
)s

. (3.8)

Proof We can assume that u �≡ 0; otherwise, there is nothing prove. In the definition of the

K -functional K (t, u, L p(Ω), D
1,p
0 (Ω)), we take v = τ u for τ > 0; thus, we obtain

K (t, u, L p(Ω), D
1,p
0 (Ω)) ≤ inf

τ>0

[
|1 − τ | ‖u‖L p(Ω) + t τ ‖∇u‖L p(Ω)

]

= min
{
‖u‖L p(Ω), t ‖∇u‖L p(Ω)

}
.

By raising to the power p and integrating for t > 0, we get

‖u‖p

X
s,p
0 (Ω)

≤
∫ +∞

0

min
{
‖u‖p

L p(Ω)
, t p ‖∇u‖p

L p(Ω)

}

t s p

dt

t

= ‖∇u‖p

L p(Ω)

∫ ‖u‖L p (Ω)
‖∇u‖L p (Ω)

0

t p (1−s) dt

t

+ ‖u‖p

L p(Ω)

∫ +∞

‖u‖L p (Ω)
‖∇u‖L p (Ω)

t−s p dt

t

= ‖u‖p (1−s)

L p(Ω)
‖∇u‖s p

L p(Ω)

[
1

p (1 − s)
+

1

s p

]
.

We thus get the desired conclusion (3.7). The estimate (3.8) easily follows from the definition

of Poincaré constant. ⊓⊔
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1306 L. Brasco, A. Salort

From (3.6) and (3.8), we get, in particular, the following

Corollary 3.3 (Equivalence of Poincaré constants) Let 1 < p < ∞ and 0 < s < 1. For every

Ω ⊂ R
N open set we have

p s (1 − s)Λs
p(Ω) =

(
λ1

p(Ω)
)s

.

In particular, there holds

D
1,p
0 (Ω) →֒ L p(Ω) ⇐⇒ X

s,p
0 (Ω) →֒ L p(Ω).

Remark 3.4 (Extensions by zero in X
s,p
0 ) We observe that by interpolating the “extension by

zero” operators

T0 : D
1,p
0 (Ω) → D

1,p
0 (RN ) and T0 : L p(Ω) → L p(RN ),

which are both continuous, one obtains the same result for the interpolating spaces. In other

words, we have

‖u‖p

X
s,p
0 (RN )

≤ ‖u‖p

X
s,p
0 (Ω)

, for every u ∈ C∞
0 (Ω).

This can be also seen directly: it is sufficient to observe that C∞
0 (Ω) ⊂ C∞

0 (RN ); thus, we

immediately get

K (t, u, L p(RN ), D
1,p
0 (RN )) ≤ K (t, u, L p(Ω), D

1,p
0 (Ω)),

since in the K -functional on the left-hand side the infimum is performed on a larger class.

By integrating, we get the conclusion.

However, differently from the case of D
1,p
0 (Ω), L p(Ω) and D

s,p
0 (Ω), in general for

u ∈ C∞
0 (Ω) we have

‖u‖p

X
s,p
0 (RN )

< ‖u‖p

X
s,p
0 (Ω)

.

In other words, even if u ≡ 0 outside Ω , passing from Ω to R
N has an impact on the

interpolation norm.

Actually, if Ω has not smooth boundary, the situation can be much worse than this. We

refer to Remark 4.6.

4 Interpolation versus Sobolev–Slobodeckiı̆

4.1 General sets

We want to compare the norms of D
s,p
0 (Ω) and X

s,p
0 (Ω). We start with the simplest estimate,

which is valid for every open set.

Proposition 4.1 (Comparison of norms I) Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R
N be

an open set, then for every u ∈ C∞
0 (Ω) we have

1

2p (1−s) N ωN

‖u‖p

D
s,p
0 (Ω)

≤ ‖u‖p

X
s,p
0 (Ω)

. (4.1)

In particular, we have the continuous inclusion X
s,p
0 (Ω) ⊂ D

s,p
0 (Ω).
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A note on homogeneous Sobolev spaces of fractional order 1307

Proof To prove (4.1), we take h ∈ R
N \{0} and ε > 0, then there exists vh,ε ∈ C∞

0 (Ω) such

that

‖u − vh,ε‖L p(Ω) +
|h|
2

‖∇vh,ε‖L p(Ω) ≤ (1 + ε) K

(
|h|
2

, u, L p(Ω), D
1,p
0 (Ω)

)
. (4.2)

Thus, for h �= 0 we get1

(∫

RN

|u(x + h) − u(x)|p

|h|N+s p
dx

) 1
p

≤
(∫

RN

|u(x + h) − vh,ε(x + h) − u(x) + vh,ε(x)|p

|h|N+s p
dx

) 1
p

+
(∫

RN

|vh,ε(x + h) − vh,ε(x)|p

|h|N+s p
dx

) 1
p

≤ 2 |h|−
N
p

−s ‖u − vh,ε‖L p(Ω)

+ |h|1− N
p

−s ‖∇vh,ε‖L p(Ω)

≤ 2 |h|−
N
p

−s

(
‖u − vh,ε‖L p(Ω) +

|h|
2

‖∇vh,ε‖L p(Ω)

)
.

By using (4.2), we then obtain

∫

RN

|u(x + h) − u(x)|p

|h|N+s p
dx ≤ 2p (1 + ε)p

(
K (|h|/2, u, L p(Ω), D

1,p
0 (Ω))

|h|s

)p
1

|h|N
.

We now integrate with respect to h ∈ R
N and use spherical coordinates. This yields

∫∫

RN ×RN

|u(x + h) − u(x)|p

|h|N+s p
dx dh

≤ 2p (1 + ε)p

∫

RN

(
K (|h|/2, u, L p(Ω), D

1,p
0 (Ω))

|h|s

)p
dh

|h|N

= 2p (1 + ε)p N ωN

∫ +∞

0

(
K (t/2, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t
.

By making the change of variable t/2 = τ and exploiting the arbitrariness of ε > 0, we

eventually reach the desired estimate. ⊓⊔

Corollary 4.2 (Interpolation inequality for D
s,p
0 ) Let 1 < p < ∞ and 0 < s < 1. Let

Ω ⊂ R
N be an open set. For every u ∈ C∞

0 (Ω) we have

s (1 − s) ‖u‖p

D
s,p
0 (Ω)

≤
2p (1−s) N ωN

p
‖u‖p (1−s)

L p(Ω)
‖∇u‖s p

L p(Ω)
. (4.3)

1 In the second inequality, we use the classical fact

∫

RN
|ϕ(x + h) − ϕ(x)|p dx =

∫

RN

∣∣∣∣∣

∫ 1

0
〈∇ϕ(x + t h), h〉 dt

∣∣∣∣∣

p

dx

≤ |h|p

∫

RN

∫ 1

0
|∇ϕ(x + t h)|p dt dx

= |h|p

∫ 1

0

(∫

RN
|∇ϕ(x + t h)|p dx

)
dt = |h|p ‖∇ϕ‖

L p(RN )
.
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1308 L. Brasco, A. Salort

Proof It is sufficient to combine Propositions 4.1 and 3.2. ⊓⊔

Remark 4.3 For p ց 1, the previous inequality becomes [7, Proposition 4.2]. In this case,

the constant in (4.3) is sharp for N = 1.

For a general open set Ω ⊂ R
N , the converse of inequality (4.1) does not hold. This means

that in general we have

X
s,p
0 (Ω) ⊂ D

s,p
0 (Ω) and X

s,p
0 (Ω) �= D

s,p
0 (Ω),

the inclusion being continuous. We use the construction of “Appendix A”, in order to give a

counterexample.

Example 4.4 With the notation of “Appendix A”, let us take2

E = R
N \

⎛
⎝ ⋃

z∈ZN

(F + z)

⎞
⎠ , with F =

[
−

1

4
,

1

4

]N−1

× {0}.

For every ε > 0, we take un ∈ C∞
0 (Ω̃n) ⊂ C∞

0 (E) such that

[un]p

W s,p(RN )
< λs

p(Ω̃n) + ε and

∫

E

|un |p dx = 1.

Here the set Ω̃n is defined by

Ω̃n =
⋃

z∈ZN
n

(
Ω + z

)
=
[
−n −

1

2
, n +

1

2

]N

\
⋃

z∈ZN
n

(F + z).

On the other hand, by Corollary 3.3 we have

‖un‖p

X
s,p
0 (E)

≥ Λs
p(E)

∫

E

|un |p dx

=

(
λ1

p(E)
)s

p s (1 − s)

∫

E

|un |p dx =

(
λ1

p(E)
)s

p s (1 − s)
:=

1

C
.

where we also used (A.4), to infer that λ1
p(E) > 0. By Lemma A.1, we have that λs

p(Ωn)

converges to 0 for s p < 1, so that

lim inf
n→∞

‖un‖p

X
s,p
0 (E)

≥
1

C
and lim sup

n→∞
[un]p

W s,p(RN )
≤ ε.

Since ε > 0 is arbitrary, we obtain

lim
n→∞

‖un‖p

D
s,p
0 (E)

‖un‖p

X
s,p
0 (E)

= 0, for 1 < p < ∞ and s <
1

p
.

2 In dimension N = 1, we simply take E = R\Z.
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4.2 Convex sets

We now prove the converse of (4.1), under suitable assumptions on Ω . We start with the

case of a convex set. The case Ω = R
N is simpler and instructive; thus, we give a separate

statement. The proof can be found, for example, in [28, Lemma 35.2]. We reproduce it, for

the reader’s convenience. We also single out an explicit determination of the constant.

Proposition 4.5 (Comparison of norms II: R
N ) Let 1 < p < ∞ and 0 < s < 1. For every

u ∈ C∞
0 (RN ) we have

‖u‖p

X
s,p
0 (RN )

≤
(

N (N + 1)
)p 2p

N ωN

‖u‖p

D
s,p
0 (RN )

.

In particular, we have that D
s,p
0 (RN ) = X

s,p
0 (RN ).

Proof Let u ∈ C∞
0 (RN ), we set

U (h) =
(∫

RN

|u(x + h) − u(x)|p dx

) 1
p

, h ∈ R
N ,

and observe that by construction

∫

RN

U (h)p

|h|N+s p
dh = [u]p

W s,p(RN )
.

We also define

U (̺) =
1

N ωN ̺N−1

∫

{h∈RN : |h|=̺}
U dH

N−1, ̺ > 0;

thus, by Jensen’s inequality we have

∫ +∞

0

(
U

̺s

)p
d̺

̺
≤

1

N ωN

∫ +∞

0

(∫

{h∈RN : |h|=̺}
U p dH

N−1

)
d̺

̺N+s p

=
1

N ωN

∫

RN

U (h)p

|h|N+s p
dh =

1

N ωN

[u]p

W s,p(RN )
.

(4.4)

We now take the compactly supported Lipschitz function

ψ(x) =
N + 1

ωN

(1 − |x |)+,

where ( · )+ stands for the positive part. Observe that ψ has unit L1 norm, by construction.

We then define

ψt (x) =
1

t N
ψ
( x

t

)
, for t > 0.

By observing that ψt ∗ u ∈ C∞
0 (RN ), from the definition of the K -functional, we get

K (t, u, L p(RN ), D
1,p
0 (RN )) ≤ ‖u − ψt ∗ u‖L p(RN ) + t ‖∇ψt ∗ u‖L p(RN ).
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We estimate the two norms in the right-hand side separately: for the first one, by Minkowski

inequality and Fubini Theorem we get

‖u − ψt ∗ u‖L p(RN ) =
∥∥∥∥
∫

RN

[u(·) − u(· − y)]ψt (y) dy

∥∥∥∥
L p(RN )

≤
∫

RN

(∫

RN

|u(x) − u(x − y)|p dx

) 1
p

ψt (y) dy

=
∫

RN

U (−y) ψt (y) dy ≤
N + 1

ωN t N

∫

Bt (0)

U (−y) dy

=
N (N + 1)

t N

∫ t

0

U ̺N−1 d̺ ≤
N (N + 1)

t

∫ t

0

U d̺.

For the norm of the gradient, we first observe that∫

RN

∇ψt (y) dy = 0;

thus, we can write

∇ψt ∗ u = (∇ψt ) ∗ u =
∫

RN

∇ψt (y) [u(x − y) − u(x)] dy.

Consequently, by Minkowski inequality we get

‖∇ψt ∗ u‖L p(RN ) =
∥∥∥∥
∫

RN

∇ψt (y) [u(· − y) − u(·)] dy

∥∥∥∥
L p(RN )

≤
∫

RN

(∫

RN

|u(x − y) − u(x)|p dx

) 1
p

|∇ψt (y)| dy

≤
N + 1

ωN t N+1

∫

Bt (0)

U (−y) dy ≤
N (N + 1)

t2

∫ t

0

U d̺.

In conclusion, we obtained for every t > 0

K (t, u, L p(RN ), D
1,p
0 (RN )) ≤

2 N (N + 1)

t

∫ t

0

U d̺. (4.5)

If we integrate on (0, T ), the previous estimate gives

∫ T

0

(
K (t, u, L p(RN ), D

1,p
0 (RN ))

t s

)p
dt

t
≤
(

2 N (N + 1)
)p
∫ T

0

(∫ t

0

U d̺

)p

t−p−s p dt

t
.

If we now use Lemma B.1 with α = p + s p for the function

t �→
∫ t

0

U d̺,

we get

∫ T

0

(
K (t, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t
≤
(

2 N (N + 1)

s + 1

)p ∫ T

0

(
U

t s

)p
dt

t

≤
(

2 N (N + 1)

s + 1

)p 1

N ωN

[u]p

W s,p(RN )
,

where we used (4.4) in the second inequality. By letting T going to +∞, we get the desired

estimate. ⊓⊔
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Remark 4.6 (Extensions by zero in X
s,p
0 (Ω)…reprise) We take the set E ⊂ R

N and the

sequence {un}n∈N ⊂ C∞
0 (E) as in Example 4.4. We have seen that

lim
n→∞

‖un‖
D

s,p
0 (E)

‖un‖
X

s,p
0 (E)

= 0, for s <
1

p
.

By observing that

‖un‖
D

s,p
0 (E) = ‖un‖

D
s,p
0 (RN ),

and using Proposition 4.5, we obtain

lim
n→∞

‖un‖
X

s,p
0 (RN )

‖un‖
X

s,p
0 (E)

= 0,

as well, still for s p < 1. This shows that the “extension by zero” operator

T0 : X
s,p
0 (E) → X

s,p
0 (RN ),

is not an isometry and, even worse, the two norms

‖ · ‖
X

s,p
0 (E) and ‖ · ‖

X
s,p
0 (RN ),

are not equivalent on C∞
0 (E). This is in contrast with the case of L p(E), D

1,p
0 (E) and

D
s,p
0 (E).

We denote by

RΩ = sup
x∈Ω

dist(x, ∂Ω),

the inradius of an open set Ω ⊂ R
N . This is the radius of the largest open ball inscribed in

Ω . We introduce the eccentricity of an open bounded set Ω ⊂ R
N , defined by

E(Ω) =
diam (Ω)

2 RΩ

.

Observe that this is a scaling invariant quantity. By generalizing the construction used in [9,

Lemma A.6] for a ball, we have the following.

Theorem 4.7 (Comparison of norms II: bounded convex sets) Let 1 < p < ∞and 0 < s < 1.

If Ω ⊂ R
N is an open bounded convex set, then for every u ∈ C∞

0 (Ω) we have

‖u‖p

X
s,p
0 (Ω)

≤ C ‖u‖p

D
s,p
0 (Ω)

, (4.6)

for a constant C = C(N , p, E(Ω)) > 0, which blows up as E(Ω) → +∞. In particular, we

have X
s,p
0 (Ω) = D

s,p
0 (Ω).

Proof The proof runs similarly to that of Proposition 4.5 for R
N , but now we have to pay

attention to boundary issues. Indeed, the function ψt ∗ u is not supported in Ω , unless t is

sufficiently small, depending on u itself. In order to avoid this, we need to perform a controlled

scaling of the function. By keeping the same notation as in the proof of Proposition 4.5, we

need the following modification: we take a point x0 ∈ Ω such that

dist(x0, ∂Ω) = RΩ .
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1312 L. Brasco, A. Salort

Without the loss of generality, we can assume that x0 = 0. Then we define the rescaled

function

ut = u

(
RΩ

RΩ − t
x

)
, 0 < t <

RΩ

2
.

We observe that

support(ut ) =
RΩ − t

RΩ

Ω,

and by Lemma C.1, we have

dist

(
RΩ − t

RΩ

Ω, ∂Ω

)
≥
(

1 −
RΩ − t

RΩ

)
RΩ = t .

This implies that

ψt ∗ ut ∈ C∞
0 (Ω), for every 0 < t <

RΩ

2
.

We can now estimate the K -functional by using the choice v = ψt ∗ ut , that is

K (t, u, L p(Ω), D
1,p
0 (Ω)) ≤ ‖u − ψt ∗ ut‖L p(Ω)

+ t ‖∇ψt ∗ ut‖L p(Ω), for every 0 < t <
RΩ

2
.

Let us set

Ωt = {x ∈ R
N : dist(x,Ω) < 2 t},

then we have that for every x ∈ Ω ,

y �→ ψt (x − y) has support contained in Ωt .

By using this and Jensen’s inequality, we obtain

‖u − ψt ∗ ut‖p

L p(Ω) ≤
∫

Ω

∫

Ωt

∣∣∣∣u(x) − u

(
R

R − t
y

)∣∣∣∣
p 1

t N
ψ

(
x − y

t

)
dy dx .

Thus, by using a change of variable and Fubini theorem, we get

∫ RΩ/2

0

(
‖u − ψt ∗ ut‖L p(Ω)

t s

)p dt

t

≤
∫ RΩ/2

0

∫

Ω

∫

Ωt

t−s p

∣∣∣∣u(x) − u

(
RΩ

RΩ − t
y

)∣∣∣∣
p 1

t N
ψ

(
x − y

t

)
dy dx

dt

t

=
(

RΩ − t

RΩ

)N ∫ RΩ/2

0

∫

Ω

∫
RΩ

RΩ −t
Ωt

t−s p |u(x) − u(z)|p 1

t N
ψ

(
x

t
−

RΩ − t

RΩ t
z

)
dz dx

dt

t

≤
∫

Ω

∫

Ω̃

|u(x) − u(z)|p

(∫ RΩ /2

0

t−s p−N ψ

(
x − z

t
+

z

RΩ

)
dt

t

)
dz dx,

where we used that

RΩ

RΩ − t
Ωt ⊂ Ω̃ := 2 ΩRΩ/2, for 0 < t <

RΩ

2
.

We now observe that

ψ

(
x − z

t
+

z

RΩ

)
�= 0 ⇐⇒

∣∣∣∣
x − z

t
+

z

RΩ

∣∣∣∣ < 1;
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thus, in particular,

if

∣∣∣∣
x − z

t

∣∣∣∣ ≥ 1 +
∣∣∣∣

z

RΩ

∣∣∣∣ then ψ

(
x − z

t
+

z

RΩ

)
= 0,

i.e., for every x ∈ Ω and z ∈ Ω̃ ,

if 0 < t ≤
|x − z|

1 +
|z|
RΩ

then ψ

(
x − z

t
+

z

RΩ

)
= 0.

This implies that for x ∈ Ω and z ∈ Ω̃ we get

∫ RΩ/2

0

t−s p−N ψ

(
x − z

t
+

z

RΩ

)
dt

t
≤
∫ +∞

0

t−s p−N ψ

(
x − z

t
+

z

RΩ

)
dt

t

=
∫ +∞

|x−z|
1+ |z|

RΩ

t−s p−N ψ

(
x − z

t
+

z

RΩ

)
dt

t

≤
N + 1

ωN (N + s p)

(
1 +

|z|
RΩ

)N+s p

|x − z|−N−s p

≤
N + 1

ωN (N + s p)

(
1 +

diam(Ω̃)

RΩ

)N+s p

|x − z|−N−s p.

Thus, we obtain
∫ RΩ/2

0

(
‖u − ψt ∗ ut‖L p(Ω)

t s

)p dt

t

≤
N + 1

ωN (N + s p)

(
1 +

diam(Ω̃)

RΩ

)N+s p ∫

Ω

∫

Ω̃

|u(x) − u(z)|p

|x − z|N+s p
dx dz

≤
N + 1

ωN (N + s p)

(
1 +

diam(Ω̃)

RΩ

)N+s p

‖u‖p

D
s,p
0 (Ω)

.

(4.7)

Observe that by construction

diam(Ω̃) = 2 diam(ΩRΩ/2) ≤ 2
(

diam(Ω) + 2 RΩ

)
.

We now need to show that
∫ RΩ/2

0

t p

(
‖∇ψt ∗ ut‖L p(Ω)

t s

)p dt

t
≤ C ‖u‖p

D
s,p
0 (Ω)

. (4.8)

We first observe that

∇ψt ∗ ut (x) =
∫

RN

u

(
RΩ

RΩ − t
y

)
1

t N+1
∇ψ

(
x − y

t

)
dy,

and by the divergence theorem
∫

RN

1

t N+1
∇ψ

(
x − y

t

)
dy = 0.

Thus, we obtain as well

−∇ψt ∗ ut (x) =
∫

RN

[
u

(
RΩ

RΩ − t
x

)
− u

(
RΩ

RΩ − t
y

)]
1

t N+1
∇ψ

(
x − y

t

)
dy,
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1314 L. Brasco, A. Salort

and by Hölder’s inequality

‖∇ψt ∗ ut‖p

L p(Ω)
≤
∫

RN

(∫

RN

∣∣∣∣u
(

RΩ

RΩ − t
x

)
− u

(
RΩ

RΩ − t
y

)∣∣∣∣
p 1

t N+1

∣∣∣∣∇ψ

(
x − y

t

)∣∣∣∣ dy

)
×
(∫

RN

1

t N+1

∣∣∣∣∇ψ

(
x − y

t

)∣∣∣∣ dy

)p−1

dx

=
‖∇ψ‖p−1

L1(RN )

t p−1

∫

RN

∫

RN

∣∣∣∣u
(

RΩ

RΩ − t
x

)

− u

(
RΩ

RΩ − t
y

)∣∣∣∣
p 1

t N+1

∣∣∣∣∇ψ

(
x − y

t

)∣∣∣∣ dy dx

≤
‖∇ψ‖p−1

L1(RN )

t p−1

∫

RN

∫

RN

|u (z) − u (w)|p 1

t N+1

∣∣∣∣∇ψ

(
RΩ − t

RΩ t
(z − w)

)∣∣∣∣ dz dw,

for every 0 < t < RΩ/2. This yields

∫ RΩ/2

0

t p

(
‖∇ψt ∗ ut‖L p(Ω)

t s

)p dt

t

≤ (N + 1)p−1

∫ RΩ/2

0

t−s p

∫

RN

∫

RN

|u(z) − u(w)|p 1

t N

∣∣∣∣∇ψ

(
RΩ − t

RΩ t
(z − w)

)∣∣∣∣ dz dw
dt

t

= (N + 1)p−1

∫

RN

∫

RN

|u(z) − u(w)|p

(∫ RΩ/2

0

t−s p 1

t N

∣∣∣∣∇ψ

(
RΩ − t

RΩ t
(z − w)

)∣∣∣∣
dt

t

)
dz dw.

(4.9)

As above, we now observe that

∣∣∣∣∇ψ

(
RΩ − t

RΩ t
(z − w)

)∣∣∣∣ �= 0 ⇐⇒
RΩ − t

RΩ

|z − w|
t

< 1;

thus, in particular, for 0 < t < RΩ/2 we have

1

2

|z − w|
t

> 1 �⇒ ∇ψ

(
RΩ − t

RΩ t
(z − w)

)
= 0.

This implies that for z, w ∈ R
N we have

∫ RΩ/2

0

t−s p 1

t N

∣∣∣∣∇ψ

(
RΩ − t

RΩ t
(z − w)

)∣∣∣∣
dt

t

≤
∫ +∞

|z−w|
2

t−s p 1

t N

∣∣∣∣∇ψ

(
RΩ − t

RΩ t
(z − w)

)∣∣∣∣
dt

t

≤
(N + 1) 2N+s p

ωN (N + s p)
|z − w|−N−s p.
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By inserting this estimate in (4.9), we now get (4.8). This and (4.7) then give

∫ RΩ
2

0

(
K (t, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t
≤ C ‖u‖p

D
s,p
0 (Ω)

, (4.10)

for a constant C = C(N , p, E(Ω)).

We are left with estimating the integral of the K -functional on (RΩ/2,+∞): for this, we

can use the trivial decomposition

u = (u − 0) + 0,

which gives

∫ +∞

RΩ
2

(
K (t, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t
≤
∫ +∞

RΩ
2

‖u‖p

L p(Ω)

t s p

dt

t

=
‖u‖p

L p(Ω)

s p

(
RΩ

2

)−s p

≤
2s p

s p
‖u‖p

D
s,p
0 (Ω)

(
1

λs
p(Ω) R

s p
Ω

)
,

where we used the Poincaré inequality for D
s,p
0 (Ω). By recalling that for a convex set with

finite inradius, we have (see [8, Corollary 5.1])

λs
p(Ω) R

s p
Ω ≥

C

s (1 − s)
,

for a constant C = C(N , p) > 0, we finally obtain

∫ +∞

RΩ
2

(
K (t, u, L p(Ω), D

1,p
0 (Ω))

t s

)p
dt

t
≤

2s p

p
‖u‖p

D
s,p
0 (Ω)

(
1 − s

C

)
.

By using this in conjunction with (4.10), we finally conclude the proof. ⊓⊔

For general unbounded convex sets, the previous proof does not work anymore. However,

for convex cones the result still holds. We say that a convex set Ω ⊂ R
N is a convex cone

centered at x0 ∈ R
N if for every x ∈ Ω and τ > 0, we have

x0 + τ (x − x0) ∈ Ω.

Then we have the following

Corollary 4.8 (Comparison of norms II: convex cones) Let 1 < p < ∞ and 0 < s < 1. If

Ω ⊂ R
N is an open convex cone centered at x0 ∈ R

N , then for every u ∈ C∞
0 (Ω) we have

‖u‖p

X
s,p
0 (Ω)

≤ C ‖u‖p

D
s,p
0 (Ω)

,

for a constant C = C(N , p, E(Ω ∩ B1(x0))) > 0. In particular, we have X
s,p
0 (Ω) =

D
s,p
0 (Ω).

Proof We assume for simplicity that x0 = 0 and take u ∈ C∞
0 (Ω). Since u has compact

support, we have that u ∈ C∞
0 (Ω ∩ BR(0)), for R large enough. From Theorem 4.7, we

know that

‖u‖p

X
s,p
0 (Ω∩BR(0))

≤ C ‖u‖
D

s,p
0 (Ω∩BR(0)) = C ‖u‖

D
s,p
0 (Ω).
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1316 L. Brasco, A. Salort

We recall that the constant C depends on the eccentricity of Ω ∩ BR(0). However, since Ω

is a cone, we easily get

E(Ω ∩ BR(0)) = E(Ω ∩ B1(0)), for every R > 0,

i.e., the constant C is independent of R. Finally, by observing that

‖u‖p

X
s,p
0 (Ω)

≤ ‖u‖p

X
s,p
0 (Ω∩BR(0))

,

we get the desired conclusion. ⊓⊔

Remark 4.9 (Rotationally symmetric cones) Observe that if Ω is the rotationally symmetric

convex cone

Ω = {x ∈ R
N : 〈x − x0, ω〉 > β |x − x0|}, for some 0 ≤ β < 1, x0 ∈ R

N and ω ∈ S
N−1,

we have

E(Ω ∩ B1(0)) =
1

2
max

{
2

√
1 − β2, 1

} (
1 +

1√
1 − β2

)
,

by elementary geometric considerations.

In particular, when Ω is a half-space (i.e., when β = 0), then we have E(Ω ∩ B1(0)) = 2.

4.3 Lipschitz sets and beyond

In this section, we show that the norms of X
s,p
0 and D

s,p
0 are equivalent on open bounded

Lipschitz sets. We also make some comments on more general sets, see Remark 4.11.

By generalizing the idea of [22, Theorem 11.6] (see also [6, Theorem 2.1]) for p = 2 and

smooth sets, we can rely on the powerful extension theorem for Sobolev functions proved

by Stein and obtain the following

Theorem 4.10 (Comparison of norms II: Lipschitz sets) Let 1 < p < ∞ and 0 < s < 1. Let

Ω ⊂ R
N be an open bounded set, with Lipschitz boundary. Then for every u ∈ C∞

0 (Ω) we

have

‖u‖p

X
s,p
0 (Ω)

≤ C1 ‖u‖p

D
s,p
0 (Ω)

,

for a constant C1 > 0 depending on N , p, diam(Ω) and the Lipschitz constant of ∂Ω . In

particular, we have X
s,p
0 (Ω) = D

s,p
0 (Ω) in this case as well.

Proof We take an open ball B ⊂ R
N with radius diam(Ω) and such that Ω ⋐ B. We then

take a linear and continuous extension operator

T : W 1,p(B\Ω) → W 1,p(B),

such that ⎧
⎨
⎩

‖T (u)‖L p(B) ≤ eΩ ‖u‖L p(B\Ω),

‖∇T (u)‖L p(B) ≤ eΩ ‖u‖W 1,p(B\Ω),

(4.11)

where eΩ > 0 depends on N , p, diam(Ω) and the Lipschitz constant of ∂Ω . We observe

that such an operator exists, thanks to the fact that Ω has a Lipschitz boundary, see [27,

Theorem 5, p. 181]. We also observe that the first estimate in (4.11) is not explicitly stated

by Stein, but it can be extrapolated by having a closer look at the proof, see [27, p. 192].
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For every v ∈ C∞
0 (B), we define the operator

R(v) = v − T (v · 1B\Ω ),

and observe that

R(v) ≡ 0 in B\Ω and R(v) ∈ W 1,p(B).

Since Ω has continuous boundary, this implies that R(v) ∈ D
1,p
0 (Ω), see Remark 2.1. We

now fix u ∈ C∞
0 (B), for every v ∈ C∞

0 (B) and every t, ε > 0, we take ϕε,t ∈ C∞
0 (Ω) such

that

(
λ1

p(Ω)
) 1

p ‖ϕε − R(v)‖L p(Ω) ≤ ‖∇ϕε,t − ∇R(v)‖L p(Ω) < ε

(
t +

(
λ1

p(Ω)
)− 1

p

)−1

.

This is possible, thanks to the definition of D
1,p
0 (Ω). Then for t > 0 we can estimate the

relevant K -functional as follows

K (t, R(u), L p(Ω), D
1,p
0 (Ω)) ≤ ‖R(u) − ϕε,t‖L p(Ω) + t ‖∇ϕε,t‖L p(Ω)

≤ ‖R(u) − R(v)‖L p(Ω) + ‖ϕε,t − R(v)‖L p(Ω)

+ t ‖∇R(v)‖L p(Ω) + t ‖∇ϕε,t − ∇R(v)‖L p(Ω)

≤ ‖R(u − v)‖L p(Ω) + t ‖∇R(v)‖L p(Ω)

+
(

t +
(
λ1

p(Ω)
)− 1

p

)
‖∇ϕε,t − ∇R(v)‖L p(Ω)

≤ ‖u − v‖L p(Ω) + ‖T ((u − v) · 1B\Ω )‖L p(Ω)

+ t
(
‖∇v‖L p(Ω) + ‖∇T (v · 1B\Ω )‖L p(Ω)

)
+ ε.

By applying (4.11) and using that

‖∇T (v · 1B\Ω )‖L p(B) ≤ eΩ ‖v · 1B\Ω‖W 1,p(B\Ω) = eΩ ‖v‖W 1,p(B\Ω) ≤ eΩ ‖v‖W 1,p(B),

we then get

K (t,R(u), L p(Ω),D
1,p
0 (Ω)) ≤ (1 + eΩ ) ‖u − v‖L p(B) + t

(
‖∇v‖L p(B) + eΩ ‖v‖W 1,p(B)

)
+ ε.

We now use that

‖v‖W 1,p(B) =
(
‖v‖p

L p(B)
+ ‖∇v‖p

L p(B)

) 1
p ≤ ‖∇v‖L p(B)

(
1 +

1

λ1
p(B)

) 1
p

,

thanks to Poincaré inequality. By spending this information in the previous estimate and

using the arbitrariness of ε, we get

K (t, R(u), L p(Ω), D
1,p
0 (Ω)) ≤ (1 + eΩ ) ‖u − v‖L p(B)

+ t

⎛
⎝1 + eΩ

(
1 +

1

λ1
p(B)

) 1
p

⎞
⎠ ‖∇v‖L p(B).
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We set for simplicity

γΩ = 1 + eΩ

(
1 +

1

λ1
p(B)

) 1
p

,

then by taking the infimum over v ∈ C∞
0 (B)

K (t, R(u), L p(Ω), D
1,p
0 (Ω)) ≤ γΩ K (t, u, L p(B), D

1,p
0 (B)).

As usual, we integrate in t , so to get

‖R(u)‖p

X
s,p
0 (Ω)

≤ γ
p
Ω ‖u‖p

X
s,p
0 (B)

, for u ∈ C∞
0 (B). (4.12)

We now observe that if u ∈ C∞
0 (Ω), then we have R(u) = u. Thus, from (4.12) and Theorem

4.7 for the convex set B, we get

‖u‖p

X
s,p
0 (Ω)

≤ C γ
p
Ω ‖u‖p

D
s,p
0 (RN )

= C γ
p
Ω ‖u‖p

D
s,p
0 (Ω)

, for every u ∈ C∞
0 (Ω),

where C only depends on N and p. This concludes the proof. ⊓⊔

Remark 4.11 (More general sets) It is not difficult to see that the previous proof works (and

thus X
s,p
0 (Ω) and D

s,p
0 (Ω) are equivalent), whenever the set Ω is such that there exists a

linear and continuous extension operator

T : W 1,p(B\Ω) → W 1,p(B),

such that (4.11) holds. Observe that there is a vicious subtlety here: the first condition in

(4.11) is vital and, in general, it may fail to hold for an extension operator. For example,

there is a beautiful extension result by Jones [21, Theorem 1], which is valid for very irregular

domains (possibly having a fractal boundary): however, the construction given by Jones does

not assure that the first estimate in (4.11) holds true, see the statement of [21, Lemma 3.2].

In order to complement the discussion of Remarks 3.4 and 4.6 on “extensions by zero” in

X
s,p
0 , we explicitly state the following consequence of Proposition 4.1 and Theorem 4.10.

Corollary 4.12 Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R
N be an open bounded set, with

Lipschitz boundary. Then for every u ∈ C∞
0 (Ω), we have

‖u‖p

X
s,p
0 (Ω)

≤ 2p (1−s) N ωN C1 ‖u‖p

X
s,p
0 (RN )

,

where C1 > 0 is the same constant as in Theorem 4.10.

5 Capacities

Let 1 < p < N , we recall that for every compact set F ⊂ R
N , its p-capacity is defined by

capp(F) = inf
u∈C∞

0 (RN )

{∫

RN

|∇u|p dx : u ≥ 0 and u ≥ 1F

}
,

see [17, Chapter 4, Section 7].
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Similarly, given 1 < p < ∞ and 0 < s < 1 such that3 s p < N , we define the (s, p)-

capacity of F through

caps,p(F) = inf
u∈C∞

0 (RN )

{
[u]p

W s,p(RN )
: u ≥ 0 and u ≥ 1F

}
,

and the interpolation (s, p)-capacity of F by

int caps,p(F) = inf
u∈C∞

0 (RN )

{
‖u‖p

X
s,p
0 (RN )

: u ≥ 0 and u ≥ 1F

}
.

As a straightforward consequence of Propositions 4.1 and 4.5, we have the following

Corollary 5.1 (Comparison of capacities) Let 1 < p < ∞ and 0 < s < 1 be such that

s p < N. Let F ⊂ R
N be a compact set, then we have

1

C
caps,p(F) ≤ int caps,p(F) ≤ C caps,p(F),

for a constant C = C(N , p) > 1. In particular, it holds

caps,p(F) = 0 if and only if int caps,p(F) = 0.

Proposition 5.2 Let 1 < p < ∞ and 0 < s < 1 be such that s p < N. For every E, F ⊂ R
N

compact sets, we have

caps,p(E ∪ F) ≤ caps,p(E) + caps,p(F).

Proof We fix n ∈ N\{0} and choose two nonnegative functions ϕn, ψn ∈ C∞
0 (RN ) such that

[ϕn]p

W s,p(RN )
≤ caps,p(E) +

1

n
, ϕn ≥ 1E ,

and

[ψn]p

W s,p(RN )
≤ caps,p(F) +

1

n
, ψn ≥ 1F .

We then set

Un,ε =
(

max{ϕn, ψn}
)

∗ ̺ε, 0 < ε ≪ 1,

where {̺ε}ε>0 is a family of standard Friedrichs mollifiers. We observe that for every n ∈
N\{0}, it holds that Un,ε ∈ C∞

0 (RN ). Moreover, by construction we have

Un,ε ≥ 1E∪F .

By observing that Jensen’s inequality implies

[Un,ε]W s,p(RN ) ≤
[

max{ϕn, ψn}
]p

W s,p(RN )
,

we thus get

caps,p(E ∪ F) ≤ [Un,ε]W s,p(RN ) ≤
[

max{ϕn, ψn}
]p

W s,p(RN )
.

3 As usual, the restriction s p < N is due to the scaling properties of the relevant energies. It is not difficult
to see that for s p ≥ N , both infima are identically 0.
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By using the sub-modularity of the Sobolev–Slobodeckiı̆ seminorm (see [19, Theo-

rem 3.2 & Remark 3.3]), we obtain

caps,p(E ∪ F) ≤ [ϕn]p

W s,p(RN )
+ [ψn]p

W s,p(RN )
.

Finally, thanks to the choice of ϕn and ψn , we get the desired conclusion by the arbitrariness

of n. ⊓⊔

In the next result, we denote by H
τ the τ -dimensional Hausdorff measure.

Proposition 5.3 Let 1 < p < ∞ and 0 < s < 1 be such that s p < N. Let Ω ⊂ R
N be an

open set. We take a compact set E ⋐ Ω such that

caps,p(E) = 0.

Then we have

H
τ (E) = 0 for every τ > N − s p, (5.1)

and

λs
p(Ω\E) = λs

p(Ω). (5.2)

Proof To prove (5.1), we can easily adapt the proof of [17, Theorem 4, p. 156], dealing with

the local case.

In order to prove (5.2), we first assume Ω to be bounded. Let ε > 0, we take uε ∈ C∞
0 (Ω)

such that

‖uε‖p

D
s,p
0 (Ω)

< (1 + ε) λs
p(Ω) and

∫

Ω

|uε|p dx = 1.

We further observe that the boundedness of Ω implies that

λs
p(Ω) = inf

u∈C∞
0 (Ω)

{
‖u‖p

D
s,p
0 (Ω)

: ‖u‖L p(Ω) = 1
}

= min
u∈D

s,p
0 (Ω)

{
‖u‖p

D
s,p
0 (Ω)

: ‖u‖L p(Ω) = 1
}
,

and that any solution u ∈ D
s,p
0 (Ω) has norm L∞(Ω) bounded by a constant M =

M(N , s, p,Ω), see [7, Theorem 3.3]. Thus, without the loss of generality, we can also

assume that

‖uε‖L∞(Ω) ≤ M + 1, for 0 < ε ≪ 1.

Since E has null (s, p)-capacity, there exists ϕε ∈ C∞
0 (Ω) such that

[ϕε]p

W s,p(RN )
< ε, ϕε ≥ 0 and ϕε ≥ 1E .

We set ψε = ϕε/‖ϕε‖L∞(RN ) and observe that ‖ϕε‖L∞(RN ) ≥ 1. The function uε (1 − ψε)

is admissible for the variational problem defining λs
p(Ω\E); then by using the triangle

inequality, we have

(
λs

p(Ω\E)
) 1

p ≤
[uε (1 − ψε)]W s,p(RN )

‖uε (1 − ψε)‖L p(Ω\E)

≤
[uε]W s,p(RN ) ‖1 − ψε‖L∞(RN )

‖uε (1 − ψε)‖L p(Ω\E)

+
‖uε‖L∞ [ψε]W s,p(RN )

‖uε (1 − ψε)‖L p(Ω\E)

.

From the first part of the proof, we know that E has N -dimensional Lebesgue measure 0;

thus, the L p norm over Ω\E is the same as that over Ω . If we now take the limit as ε goes
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to 0 and use the properties of uε , together with4

[ψε]p

W s,p(RN )
<

ε p

‖ϕε‖L∞(RN )

≤ ε p,

and

lim
ε→0

‖1 − ψε‖L∞(RN ) = lim
ε→0

sup
RN

(1 − ψε) ≤ 1,

we get

(
λs

p(Ω\E)
) 1

p ≤
(
λs

p(Ω)
) 1

p
.

The reverse inequality simply follows from the fact that C∞
0 (Ω\E) ⊂ C∞

0 (Ω); thus, we get

the conclusion when Ω is bounded.

In order to remove the last assumption, we consider the sets ΩR = Ω ∩ BR(0). For R

large enough, this is a nonempty open bounded set and E ⋐ ΩR as well. We thus have

λs
p(ΩR\E) = λs

p(ΩR).

By taking the limit5 as R goes to +∞, we get the desired conclusion in the general case as

well. ⊓⊔

The previous result giving the link between the Poincaré constant and sets with null

capacity does not hold true in the interpolation space X
s,p
0 (Ω). Indeed, we have the following

result, which shows that the interpolation Poincaré constant is sensitive to removing sets with

null (s, p)-capacity.

Lemma 5.4 Let 1 < p < N and 0 < s < 1. Let Ω ⊂ R
N be an open set and E ⋐ Ω a

compact set such that

int caps,p(E) = 0 < capp(E).

Then we have

Λs
p(Ω\E) > Λs

p(Ω).

Proof By Corollary 3.3, we know that

p s (1 − s)Λs
p(Ω\E) =

(
λ1

p(Ω\E)
)s

and p s (1 − s)Λs
p(Ω) =

(
λ1

p(Ω)
)s

.

It is now sufficient to use that λ1
p(Ω\E) > λ1

p(Ω), as a consequence of the fact that E has

positive p-capacity. ⊓⊔

4 Observe that, from the first condition, we get that ψε converges to 0 strongly in L p(Ω), by Sobolev inequality.
Since the family {uε} is bounded in L∞(Ω), this is enough to infer

lim
ε→0

∫

Ω
|uε |p |1 − ψε |p dx = 1.

5 Such a limit exists by monotonicity.
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Remark 5.5 As an explicit example of the previous situation, we can take s p < 1 and the

(N − 1)-dimensional set

F = [−a, a]N−1 × {0}.

Observe that capp(F) > 0 by [17, Theorem 4, p. 156]. On the other hand, we have

int caps,p(F) = 0.

Indeed, we set

Fε =
{

x ∈ R
N : dist(x, F) < ε

}
.

We then take the usual sequence of Friedrichs mollifiers {̺ε}ε>0 ⊂ C∞
0 (RN ) and define

ϕε = 1Fε ∗ ̺ε ∈ C∞
0 (RN ).

Observe that by construction we have

ϕε ≡ 1 on Fε and ϕε ≡ 0 on R
N \F2 ε.

By definition of (s, p)-capacity and using the interpolation estimate (4.3), we get

caps,p(F) ≤ [ϕε]p

W s,p(RN )

≤ C

(∫

RN

|ϕε|p dx

)1−s (∫

RN

|∇ϕε|p dx

)s

≤ C

(∫

RN

|1Fε |p dx

)1−s (∫

RN

|1Fε |p dx

)s (∫

RN

|∇̺ε| dx

)s p

≤ C |Fε| ε−s p ≤ C ε1−s p.

We then observe that the last quantity goes to 0 as ε goes to 0, thanks to the fact that s p < 1.

By Corollary 5.1, we have

int caps,p(F) = caps,p(F) = 0.

as desired.

6 Double-sided estimates for Poincaré constants

We already observed that for an open set Ω ⊂ R
N we have

p s (1 − s)Λs
p(Ω) =

(
λ1

p(Ω)
)s

.

We now want to compare λ1
p with the sharp Poincaré constant for the embedding D

s,p
0 (Ω) →֒

L p(Ω).

Theorem 6.1 Let 1 < p < ∞ and 0 < s < 1. Let Ω ⊂ R
N be an open set, then

s (1 − s) λs
p(Ω) ≤

2p (1−s) N ωN

p

(
λ1

p(Ω)
)s

. (6.1)

If in addition:
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• Ω ⊂ R
N is bounded with Lipschitz boundary, then we also have the reverse inequality

1

p C1

(
λ1

p(Ω)
)s

≤ s (1 − s) λs
p(Ω), (6.2)

where C1 > 0 is the same constant as in Theorem 4.10;

• Ω ⊂ R
N is convex, then we also have the reverse inequality

1

C2

(
λ1

p(Ω)
)s

≤ s (1 − s) λs
p(Ω), (6.3)

where C2 is the universal constant given by

C2 =

(
λ1

p(B1(0))
)s

C
,

and C = C(N , p) > 0 is the same constant as in the Hardy inequality for D
s,p
0 (Ω) (see

[8, Theorem 1.1]).

Proof The first inequality (6.1) is a direct consequence of the interpolation inequality (4.3).

Indeed, by using the definition of λs
p(Ω), we obtain from this inequality

s (1 − s) λs
p(Ω) ‖u‖p

L p(Ω)
≤

2p (1−s) N ωN

p
‖u‖(1−s) p

L p(Ω)
‖∇u‖s p

L p(Ω)
,

for every u ∈ C∞
0 (Ω). By simplifying the factor ‖u‖p

L p(Ω)
on both sides and taking the

infimum over C∞
0 (Ω), we get the claimed inequality.

In order to prove (6.2), for every ε > 0 we take ϕ ∈ C∞
0 (Ω) such that

‖ϕ‖p

D
s,p
0 (Ω)

‖ϕ‖p

L p(Ω)

< λs
p(Ω) + ε,

then we use Theorem 4.10 to infer

1

C1

‖ϕ‖p

X
s,p
0 (Ω)

‖ϕ‖p

L p(Ω)

< λs
p(Ω) + ε.

This in turn implies

1

C1
Λs

p(Ω) ≤ λs
p(Ω),

by arbitrariness of ε > 0. A further application of Corollary 3.3 leads to the desired conclu-

sion.

Finally, if Ω ⊂ R
N is convex, we can proceed in a different way. We first observe that we

can always suppose that the inradius RΩ is finite; otherwise, both λ1
p(Ω) and λs

p(Ω) vanish,

and there is nothing to prove. Then (6.3) comes by joining the simple estimate

λ1
p(Ω) ≤

λ1
p(B1(0))

R
p
Ω

,

which follows from the monotonicity and scaling properties of λ1
p , and the estimate of [8,

Corollary 5.1], i.e.,

s (1 − s) λs
p(Ω) ≥

C

R
s p
Ω

.
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The latter is a consequence of the Hardy inequality in convex sets for D
s,p
0 . ⊓⊔

Remark 6.2 For p = 2, the double-sided estimate of Theorem 6.1 is contained in [12, The-

orem 4.5]. The proof in [12] relies on probabilistic techniques, and the result is proved by

assuming that Ω verifies a uniform exterior cone condition.

Remark 6.3 Inequality (6.2) cannot hold for a general open set Ω ⊂ R
N , with a constant

independent of Ω . Indeed, one can construct a sequence {Ωn}n∈N ⊂ R
N such that

lim
n→∞

(
λ1

p(Ωn)
)s

λs
p(Ωn)

= +∞, for 1 < p < ∞ and s <
1

p
,

see Lemma A.1.

Acknowledgements The first author would like to thank Yavar Kian and Antoine Lemenant for useful dis-
cussions on Stein’s and Jones’ extension theorems. Simon Chandler-Wilde is gratefully acknowledged for
some explanations on his paper [11]. This work started during a visit of the second author to the University of
Ferrara in October 2017.

Appendix A. An example

In this section, we construct a sequence of open bounded sets {Ωn}n∈N ⊂ R
N with rough

boundaries and fixed diameter, such that we have

lim
n→∞

(
λ1

p(Ωn)
)s

λs
p(Ωn)

= +∞, for 1 < p < ∞ and s <
1

p
. (A.1)

The sets Ωn are obtained by removing from an N -dimensional cube an increasing array of

regular (N − 1)-dimensional cracks (Fig. 1).

For N ≥ 1, we set6

Q =
[
−

1

2
,

1

2

]N

and F =
[
−

1

4
,

1

4

]N−1

× {0}.

For every n ∈ N, we also define

Z
N
n =

{
z = (z1, . . . , zN ) ∈ Z

N : max{|z1|, . . . , |zN |} ≤ n
}
.

Finally, we consider the sets

Ω = Q\F, Ω̃n =
⋃

z∈ZN
n

(
Ω + z

)
=
[
−n −

1

2
, n +

1

2

]N

\
⋃

z∈ZN
n

(F + z),

and

E =
⋃

n∈N

Ω̃n = R
N \

⋃

z∈ZN

(F + z).

Then (A.1) is a consequence of the next result.

6 For N = 1, the set F simply coincides with the point {0}.
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Fig. 1 The set Ωn in dimension N = 2, for n = 3

Lemma A.1 With the notation above, for 1 < p < ∞ and s < 1/p we have

λ1
p(Ω̃n) ≥ C = C(N , p, F) > 0, for every n ∈ N, (A.2)

and

lim
n→∞

λs
p(Ω̃n) = 0. (A.3)

In particular, the new sequence of rescaled sets {Ωn}n∈N ⊂ R
N defined by

Ωn = |Ω̃n |−
1
N Ω̃n =

[
−

1

2
,

1

2

]N

\
⋃

z∈ZN
n

(F + z)

2 n + 1
,

is such that

diam(Ωn) =
√

N , for every n ∈ N and lim
n→∞

(
λ1

p(Ωn)
)s

λs
p(Ωn)

= +∞.

Proof We divide the proof in two parts, for ease of readability. Of course, it is enough to

prove (A.2) and (A.3). Indeed, the last statement is a straightforward consequence of these

facts and of the scaling properties of the diameter and of the Poincaré constants. ⊓⊔

Proof of (A.2). For 1 < p < ∞ we define

μp(Q; F) = min
u∈W 1,p(Q)\{0}

⎧
⎪⎪⎨
⎪⎪⎩

∫

Q

|∇u|p dx

∫

Q

|u|p dx

: u = 0 on F

⎫
⎪⎪⎬
⎪⎪⎭

.

We first observe that F is a compact set with positive (N−1)-dimensional Hausdorff measure;

thus, by [23, Theorem 10.1.2] we can infer the existence of a constant C = C(N , p, F) > 0
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such that

1

C

∫

Q

|u|p dx ≤
∫

Q

|∇u|p dx, for every u ∈ W 1,p(Q) such that u = 0 on F .

This shows that μp(Q; F) > 0.

For every ε > 0, we consider uε ∈ C∞
0 (E)\{0} such that

λ1
p(E) + ε >

∫

E

|∇uε|p dx

∫

E

|uε|p dx

.

We now observe that for every z ∈ Z
N , there holds

∫

Q+z

|∇uε|p dx ≥ μ(Q, F)

∫

Q+z

|uε|p dx,

thanks to the fact that uε vanishes on (the relevant translated copy of) F and to the fact that

μp(Q, F) = μp(Q + z, F + z). By using this information, we get
∫

E

|∇uε|p dx =
∑

z∈ZN

∫

Q+z

|∇uε|p dx

≥ μp(Q, F)
∑

z∈ZN

∫

Q+z

|uε|p dx = μp(Q, F)

∫

E

|uε|p dx .

By recalling the choice of uε, we then get

λ1
p(E) + ε ≥ μp(Q; F).

Thanks to the arbitrariness of ε > 0 and to the fact that Ω̃n ⊂ E , this finally gives

λ1
p(Ω̃n) ≥ λ1

p(E) ≥ μp(Q; F), for every n ∈ N, (A.4)

as desired. ⊓⊔

Proof of (A.3). We recall that

Ω̃n =
⋃

z∈ZN
n

(
Ω + z

)
=
[
−n −

1

2
, n +

1

2

]N

\
⋃

z∈ZN
n

(F + z),

and that each (N − 1)-dimensional set F + z has null (s, p)-capacity, thanks to Remark 5.5.

By using Proposition 5.2, we also obtain

caps,p

⎛
⎝ ⋃

z∈ZN
n

(F + z)

⎞
⎠ = 0.

Then by Proposition 5.3, we get

λs
p(Ω̃n) = λs

p

([
−n −

1

2
, n +

1

2

]N
)

= (2 n + 1)−s p λs
p(Q).

This is turn gives the desired conclusion (A.3). ⊓⊔
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Appendix B. One-dimensional Hardy inequality

In the proof of Proposition 4.5, we used the following general form of the one-dimensional

Hardy inequality. (The classical case corresponds to α = p − 1 below.) This can be found,

for example, in [23, p. 39]. For the sake of completeness, we give a sketch of a proof based

on Picone’s inequality.7

Lemma B.1 Let 1 < p < ∞ and α > 0. For every f ∈ C∞
0 ((0, T ]) we have

(
α

p

)p ∫ T

0

| f (t)|p

tα

dt

t
≤
∫ T

0

| f ′(t)|p

tα
t p dt

t
. (B.1)

Proof We take 0 < β < α/(p − 1) and consider the function ϕ(t) = tβ . Observe that this

solves

−
(
|ϕ′(t)|p−2 ϕ′(t) t p−α−1

)′ = β p−1 (α − β (p − 1)) tβ (p−1)−α−1

= β p−1 (α − β (p − 1)) t−α−1 ϕ(t)p−1.

Thus, for every ψ ∈ C∞
0 ((0, T ]) we have the weak formulation

β p−1 (α − β (p − 1))

∫ T

0

ϕ p−1

tα
ψ

dt

t
=
∫ T

0

|ϕ′|p−2 ϕ′

tα
ψ ′ t p dt

t
.

We take ε > 0 and f ∈ C∞
0 ((0, T ]) nonnegative, we insert the test function

ψ =
f p

(ε + ϕ)p−1
,

in the previous integral identity. By using Picone’s inequality, we then obtain

β p−1 (α − β (p − 1))

∫ T

0

ϕ p−1

(ε + ϕ)p−1

f p

tα

dt

t
=
∫ T

0

|ϕ′|p−2 ϕ′

tα

(
f p

(ε + ϕ)p−1

)′
t p dt

t

≤
∫ T

0

| f ′(t)|p

tα
t p dt

t
.

If we take the limit as ε goes to 0, by Fatou’s lemma we get

β p−1 (α − β (p − 1))

∫ T

0

f p

tα

dt

t
≤
∫ T

0

| f ′(t)|p

tα
t p dt

t
.

The previous inequality holds true for every 0 < β < α/(p − 1) and β p−1 (α − β (p − 1))

is maximal for β = α/p. This concludes the proof. ⊓⊔

Appendix C. A geometric lemma

When comparing the norms of X
s,p
0 (Ω) and D

s,p
0 (Ω) for a convex set, we used the following

geometric result. We recall that

7 For u, v differentiable functions with v ≥ 0 and u > 0, we have the pointwise inequality

|u′|p−2 u′
(

v p

u p−1

)′
≤ |v′|p .
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Fig. 2 The case (ii) in the proof
of Lemma C.1. Colored in red,
the distance of t z from ∂Cz

(color figure online)

RΩ = sup
x∈Ω

dist(x, ∂Ω),

is the inradius of Ω , i.e., the radius of the largest ball inscribed in Ω .

Lemma C.1 Let Ω ⊂ R
N be an open convex set such that RΩ < +∞. Let x0 ∈ Ω be a point

such that

dist(x0, ∂Ω) = RΩ .

Then for every 0 < t < 1 we have

dist
(
x0 + t (Ω − x0), ∂Ω

)
≥ (1 − t) RΩ .

Proof Without the loss of generality, we can assume that 0 ∈ Ω and that x0 = 0. Clearly, it

is sufficient to prove that

dist
(
∂(t Ω), ∂Ω

)
≥ (1 − t) RΩ .

Every point of ∂(t Ω) is of the form t z, with z ∈ ∂Ω . We now take the cone Cz , obtained

as the convex envelope of BRΩ (0) and the point z. By convexity of Ω , we have of course

Cz ⊂ Ω . We thus obtain

dist(t z, ∂Ω) ≥ dist(t z, ∂Cz). (C.1)

We now distinguish two cases:

(i) |z| = RΩ ;

(ii) |z| > RΩ .

When alternative (i) occurs, then Cz = BRΩ (0) and thus

dist(t z, ∂Cz) = dist(t z, ∂ BRΩ (0)) = |t z − z| = (1 − t) |z| = (1 − t) RΩ .

By using this in (C.1), we get the desired estimate.

If on the contrary we are in case (ii), then by elementary geometric considerations we

have

dist(t z, ∂Cz)

|t z − z|
=

RΩ

|z|
,

see Fig. 2. This gives again the desired conclusion. ⊓⊔
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