
A NOTE ON HURWITZIAN NUMBERS

Y. HARTONO AND C. KRAAIKAMP

Abstract. In this note Hurwitzian numbers are defined for the nearest inte-
ger, and backward continued fraction expansions, and Nakada’s α-expansions.
It is shown that the set of Hurwitzian numbers for these continued fractions
coincides with the classical set of such numbers.

1. Introduction

A real number x with a continued fraction expansion of the form

x = [a0; a1, . . . , an, an+1(k), . . . , an+p(k)]∞k=0,(1)

is called Hurwitzian if a0 is an integer, ai’s are all positive integers, an+1, . . . , an+p

(called a quasi period of x) are polynomials with rational coefficients which take
positive integral values for k = 0, 1, 2, . . . , and at least one of them is not constant.
A well-known example of such numbers is e = [2; 1, 2k + 2, 1]∞k=0; see [P] for more
examples. Hurwitzian numbers are generalizations of numbers with an eventually
periodic continued fraction expansion. An old and classical result states, that a
number x is a quadratic irrational (that is, an irrational root of a polynomial of
degree 2 with integer coefficients) if and only if x has a continued fraction expansion
which is eventually periodic, i.e., if x is of the form

x = [a0; a1, . . . , ap, ap+1, . . . , ap+`], p ≥ 0, ` ≥ 1,(2)

where the bar indicates the period, see [HW], [O] or [P] for various classical proofs
of this result.

Apart from the regular continued fraction (RCF) expansion of x there are very
many other—classical—continued fraction expansions of x, such as the nearest in-
teger continued fraction (NICF) expansion, the ‘backward’ continued fraction ex-
pansion, and Nakada’s α-expansions. In this note we will define what Hurwitzian
numbers are for such continued fraction expansions and show that their set of
Hurwitzian numbers coincides with the classical set of Hurwitzian numbers. As a
by-product quadratic irrationals will have an eventually period expansion for each
of these expansions.

2. Hurwitzian numbers for the NICF

Every x ∈ R \Q can be expanded in a unique continued fraction expansion

x = b0 +
e1

b1 +
e2

b2 +
.. . +

en

bn +
.. .

=: [ b0; e1/b1, e2/b2, · · · , en/bn, · · · ] ,
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satisfying b0 ∈ Z, x− b0 ∈ [− 1
2 , 1

2 ), en = ±1, bn ∈ N and en+1 + bn ≥ 2 for n ≥ 1.
This continued fraction expansion is known as the nearest integer continued fraction
(NICF) expansion of x.

In [K] it is shown that the NICF expansion can be obtained from the RCF by
singularizing the first, the third, etc. 1’s in every block of consecutive 1’s preceded
by either a partial quotient different from 1 or preceded by a0. This singularization
process is based upon the identity

A +
e

1 +
1

B + ξ

= A + e +
− e

B + 1 + ξ
.

Example 1. The NICF expansion of e is given by

[3;−1/4, −1/2, 1/(2k + 5)]∞k=0.

In view of this example we have the following definition.

Definition 1. Let x ∈ R \Q. Then x has an NICF-Hurwitzian expansion if

x = [ b0; e1/b1, . . . , en/bn, en+1/bn+1(k), . . . , en+p/bn+p(k) ]∞k=0(3)

where b0 ∈ Z, x − b0 ∈ [− 1
2 , 1

2 ), en = ±1, bn ∈ N and en+1 + bn ≥ 2 for n ≥
1. Moreover, for i = 1, . . . , p we have that bn+i are polynomials with rational
coefficients which take positive integral values for k = 0, 1, 2, . . . , and at least one
of them is non-constant.

The following result gives the necessary and sufficient condition for an irrational
number to have an NICF-Hurwitzian expansion.

Theorem 1. Let x ∈ R \Q. Then x is Hurwitzian if and only if x has an NICF-
Hurwitzian expansion.

Proof. Let x be a Hurwitzian number with RCF expansion (1). Let m0 ∈ N,
m0 ≥ n, be such that am0 > 1, and that for all m ≥ m0 all non-constant polynomials
am are greater than 1.

For i ∈ {1, . . . , p− 1}, we consider 2 cases:

Case (i): am0+i = 1. By definition of a Hurwitzian number there exist numbers
j1 ∈ {0, 1, . . . , i−1} and j2 ∈ {i+1, . . . , p} for which am0+j1 > 1, am0+j2 > 1, and

am0+j1+1 = · · · = am0+i = · · · = am0+j2−1 = 1.

In case i − j1 is odd the digit am0+i = 1 will be singularized, and in case i − j1 is
even it will not be singularized, but it will either change into −1/2 if j2 = i + 1, or
into −1/3 if j2 ≥ i + 2. Due to the quasi-periodicity we have for each k ∈ N that

am0+j1+kp+1 = · · · = am0+i+kp = · · · = am0+j2+kp−1 = 1,

and each of these blocks is singularized in the same way as the block am0+j1+1 =
· · · = am0+i = · · · = am0+j2−1 was singularized, which means the same thing will
happen to am0+i+(k−1)p = 1 for all k ∈ N.

Case (ii): am0+i > 1 (am0+i is either a constant or a polynomial). We have 4
possible cases:

(a) am0+i−1 = 1 = am0+i+1. In this case, am0+i−1 = 1 belongs to a block of
1’s and will be singularized if and only if this block has odd length. On
the other hand, am0+i+1 = 1 will always be singularized, so that am0+i will
either become −1/(am0+i + 2) (if the block of 1’s ‘before’ am0+i has odd
length), or becomes 1/(am0+i + 1).
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(b) am0+i−1 6= 1 = am0+i+1. In this case, am0+i becomes 1/(am0+i + 1), due
to the singularization of am0+i+1 = 1.

(c) am0+i−1 = 1 6= am0+i+1. In this case, am0+i becomes either −1/am0+i + 2,
or remains unchanged, depending on whether am0+i−1 = 1 is singularized
or not.

(d) am0+i−1 6= 1 6= am0+i+1. In this case, it is obvious that am0+i will remain
unchanged.

Due to the periodicity the same thing will happen to am0+i+(k−1)p > 1 for all k ∈ N.

To conclude, from (i) and (ii) we see that for each i ∈ {1, . . . , p} and for all
k ∈ N one has exactly one of the following possibilities:

— am0+i+(k−1)p = 1 always disappears due to a singularization;
— am0+i+(k−1)p > 1 always remains unchanged;
— am0+i+(k−1)p > 1 always becomes −1/(am0+i+(k−1)p + 1) due to the singu-

larization of a digit 1 before it;
— am0+i+(k−1)p = 1 always becomes 1/(am0+i+(k−1)p + 1) due to the singu-

larization of a digit 1 after it;
— am0+i+(k−1)p = 1 always becomes −1/(am0+i+(k−1)p + 2) due to the singu-

larization of a digit 1 before and after it.

Thus we obtain a quasi-period for the NICF expansion of x.
Conversely, since the singularization process can be reversed in a unique way, we

see that a NICF-Hurwitzian number x is also Hurwitzian. ¤

Applying the procedure given in the proof of Theorem 1 yields that the NICF-
expansion of e is given by e = [3;−1/4, −1/2, 1/(2k + 5),−1/2]∞k=0, which is an-
other way of writing e in Example 1.

From the proof of Theorem 1 it is at once clear that x is a quadratic irrational
if and only if the NICF-expansion of x is eventually periodic.

3. Hurwitzian numbers for the backward continued fraction

Every x ∈ R \Q can be expanded in a unique continued fraction expansion

c0 −
1

c1 −
1

c2 − . . . − 1

cn −
. . .

=: [ c0; −1/c1, −1/c2, · · · , −1/cn, · · · ] ,

where c0 ∈ Z such that x − c0 ∈ [−1, 0) and ci’s are all integers greater than 1.
This continued fraction is known as the backward continued fraction expansion of
x; see [DK] for details.

Proposition 2 in [DK] gives an algorithm yielding the backward continued frac-
tion expansion from the regular one using singularizations and insertions. The
latter is based on the following identity.

A +
1

B + ξ
= A + 1 +

− 1

1 +
1

B − 1 + ξ

.

From this algorithm it follows that x = [a0; a1, a2, . . . ] has as backward expansion

[a0 + 1; (−1/2)a1−1, −1/(a2 + 2), (−1/2)a3−1, −1/(a4 + 2), . . . ](4)
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where (−1/2)t is an abbreviation of −1/2, . . . ,−1/2︸ ︷︷ ︸
t−times

for t ≥ 1. In case t = 0, the

term (1/2)t should be omitted.

Example 2. The backward expansion of e is given by

[3; −1/(4k + 4), −1/3, (−1/2)4k+3, −1/3 ]∞k=0 .

This example leads to the following definition.

Definition 2. Let x ∈ R \Q. Then x has a backward-Hurwitzian expansion if

x = [ c0; (−1/c1)r1 , . . . , (−1/cn)rn ,

(−1/cn+1(k))rn+1(k), . . . , (−1/cn+p(k))rn+p(k) ]∞k=0

where c0 ∈ Z such that x − c0 ∈ [−1, 0); (ci, ri) = (c, 1) or (2, r) for i = 1, . . . , n,
where c is an integer greater than 2 and r a positive interger. We call p the ‘length’
of the quasi-period. Moreover,

(cn+i(k), rn+i(k)) = (fi(k), 1) or (2, gi(k))

for i = 1, . . . , p where fi(k) and gi(k) are polynomials with rational coefficients
which take positive integral values for k = 0, 1, 2, . . . and at least one of them is
not constant. Here (−1/c)r is an abbreviation of −1/c, . . . , −1/c︸ ︷︷ ︸

r−times

.

The following result gives the necessary and sufficient condition for an irrational
number to have a backward-Hurwitzian expansion.

Theorem 2. Let x ∈ R\Q. Then x is Hurwitzian if and only if x has a backward-
Hurwitzian expansion.

Proof. Let x be a Hurwitzian number, with RCF-expansion (1). We first notice
in (4) that an in the RCF-expansion of x becomes (−1/2)an−1 in the backward
expansion of x if n is odd, and becomes −1/(an +2) if n is even. Let m0 be defined
as in the proof of Theorem 1. Then for all i > m0 we observe the following:

(i) If ai = 1, then it either disappears in case i is odd, or becomes −1/3 in
case i is even.

(ii) If ai > 1, then it either becomes (−1/2)ai−1 in case i is odd, or −1/(ai +2)
in case i is even.

Let p be the length of the quasi-period of the RCF-expansion of x. We see that
for all k ∈ N the same thing will happen to each ai+(k−1)p if p is even or to each
ai+2(k−1)p if p is odd, which yields a quasi-periodicity for the backward expansion
of x.

Conversely, since the singularization and insertion processes can be reversed in
a unique way, we see that a backward-Hurwitzian number x is also Hurwitzian. ¤

Clearly x is a quadratic irrational if and only if the backward-expansion of x is
eventually periodic. The next section gives a generalization of Section 2.

4. Hurwitzian Numbers for α-expansions

In this section we will define Hurwitzian numbers for the so-called α-expansions,
of which the nearest interger continued fraction expansion is an example. These α-
expansions were introduced and studied by H. Nakada in 1981 ([N]). We will show
that Hurwitzian numbers for these α-expansions also coincide with the classical
Hurwitzian numbers.
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For α ∈ [1/2, 1], let x ∈ [α− 1, α] and define

f1 = f1(x) := b|1/x|+ 1− αc, x 6= 0,

fn = fn(x) := f1(Tn−1
α (x)), n ≥ 2, Tn−1

α (x) 6= 0,
(5)

where Tα : [α− 1, α] → [α− 1, α] is defined by

Tα = |1/x| − b|1/x|+ 1− αc
and bξc denotes the largest integer not exceeding ξ.

Every x ∈ R \Q can be expanded in a continued fraction expansion

x = [ f0; e1/f1, e2/f2, . . . , en/fn, . . . ],

where f0 ∈ Z, x − f0 ∈ [α − 1, α), en = ±1, fn ∈ N, n ≥ 1, are given by (5). We
call this continued fraction α-expansion of x.

Remark. Note that for α = 1/2 one has the NICF-expansion, while α = 1 is the
RCF case.

In [K] it is shown that α-expansions can be viewed as S-expansions, with singu-
larization areas

Sα = [α, 1]× [0, 1], if g < α ≤ 1
and

Sα = [α, g)× [0, g) ∪ [g, (1− α)/α]× [0, g] ∪ ((1− α)/α, 1]× [0, 1]

in case 1/2 ≤ α ≤ g, where g = (
√

5−1)/2; see Figure 1. In general a singularization



1
2

g α0

1

0 1

1

g



1
2

gα1 1−α
α

.......................................................................................................................

(i) g < α ≤ 1 (ii) 1/2 ≤ α ≤ g

Figure 1. Singularization areas for α-expansions

area S is a subset of the so-called natural extension [0, 1) × [0, 1] of the RCF-
expansion, which satisfies the following three conditions:

(i): S ⊂ [ 12 , 1)× [0, 1]; (ii): T (S) ∩ S = ∅ and (iii): λ(∂S) = 0.
Here λ is Lebesgue measure on [0, 1) × [0, 1], and T : [0, 1) × [0, 1] → [0, 1) × [0, 1]
is the natural extension map of the RCF-expansion, given by

T (x, y) =
(

1
x
− b 1

x
c, 1
b 1

xc+ y

)
, (x, y) ∈ (0, 1)× [0, 1]; T (0, y) = (0, 0), y ∈ [0, 1].
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Let x ∈ [0, 1), with RCF-expansion [a0; a1, a2, . . . ]. Then the S-expansion of x is
obtained via the following algorithm:

singularize an+1 = 1 if and only if (Tn, Vn) ∈ Sα,

where Tn = [0; an+1, an+2, . . . ] and Vn = [0; an, . . . , a1], i.e., (Tn, Vn) = T n(x, 0),
for more details, see [K].

The following lemma is very handy.

Lemma 1. Let x, y ∈ [0, 1), with RCF-expansions

x = [0; a1(x), a2(x), . . . ], y = [0; a1(y), a2(y), . . . ].

Let x 6= y and k ∈ N ∪ {0} be such that

a1(x) = a1(y), . . . , ak−1(x) = ak−1(y), and ak(x) 6= ak(y).

Then one has

x > y if and only if





ak(x) < ak(y) if k is odd,

ak(x) > ak(y) if k is even.

Proof. For n ∈ N, a1, . . . , an ∈ N, define cylinders ∆n(a1, . . . , an) by

∆n(a1, . . . , an) = {x ∈ [0, 1) ; a1(x) = a1, . . . , an(x) = an}.
For x, y ∈ ∆k−1(a1, . . . , ak−1), x < y, one has by definition of the RCF-map
T = T1 that T (x), T (y) ∈ ∆k−2(a2, . . . , ak−1), and T (x) > T (y). Repeating
this argument k − 2-times, we find that T k−2(x), T k−2(y) ∈ ∆1(ak−1), and that
T k−2(x) < T k−2(y) if and only if k is even. Since T (∆1(ak−1)) = [0, 1) and ak(x) 6=
ak(y), it follows from the definition of T that T k−1(x) > T k−1(y) if and only if k

is even. Since T k−1(x) ∈ ∆1(ak(x)) =
(

1
ak+1 , 1

ak

]
, and T k−1(y) ∈ ∆1(ak(y)), it

follows that ak(x) < ak(y) if and only if k is even. ¤

We now define Hurwitzian numbers for α-expansions.

Definition 3. Let x ∈ R\Q. Then, for a fixed α ∈ [1/2, 1], x has an α-Hurwitzian
expansion if

x = [ f0; e1/f1, . . . , en/fn, en+1/fn+1(k), . . . , en+p/fn+p(k) ]∞k=0(6)

is the α-expansion of x, where f0 ∈ Z, x− f0 ∈ [α− 1, α), en = ±1, fn ∈ N, n ≥ 1,
are given by (5). Moreover, for i = 1, . . . , p we have that fn+i are polynomials with
rational coefficients which take positive integral values for k = 0, 1, 2, . . . , and at
least one of them is non-constant.

We have the following theorem.

Theorem 3. Let x ∈ R \ Q. Then x is Hurwitzian if and only if x has a α-
Hurwitzian expansion.

Proof. Case 1: g < α ≤ 1. Let m0 ∈ N be such that for all m ≥ m0 all non-
constant polynomials am are greater than 1. Let k ∈ {m, m + 1, . . . , m + p} be
such that ak = 1. Then

T k−1(x) = [0; 1, ak+1, . . . ].

So ak = 1 must be singularized if and only if T k−1(x) ≥ α.
Clearly there exists a minimal i ∈ {1, . . . , p} such that ak+i is a non-constant

polynomial. Further, let j ∈ N ∪ {∞} be such that

ak+j 6= aj+1(α)

where α = [0; 1, a2(α), . . . ].
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In case j ≥ i, there exists an `0 ≥ 0 such that, by Lemma 1 for all ` ≥ `0

T k+`p−1(x) > α ⇐⇒ j is odd,

implying ak+`p = 1 must be singularized for all ` ≥ `0. Otherwise, they are never
singularized.

If 1 ≤ j � i, then ak+j is a constant different from aj+1(α), so

T k+`p−1(x) ≥ α ⇐⇒ j is odd and ak+j > aj+1(α).

Case 2: 1/2 ≤ α ≤ g. In this case we have to consider (Tn, Vn). It is clear that
there exist an `1 ≥ 1 and a minimal h ∈ {1, . . . , p} such that for all ` ≥ `1, one
has ak+`p−h > 1. If h is odd implying Vk−1 < g, then ak = 1 must be singularized
if and only if Tk−1 > α. In this case, let i and j be defined as in Case 1. If j ≥ i,
then there exists an `2 ≥ `1 such that for all ` ≥ `2 one has

Tk+`p−1 > α ⇐⇒ j is odd.

If 1 ≤ j � i, one has

Tk+`p−1 ≥ α ⇐⇒ j is odd and ak+j > aj+1(α).

On the other hand, if h is even implying Vk−1 > g, then ak = 1 must be
singularized if and only if Tk−1 > (1 − α)/α. Again let i be defined as in Case 1,
but j be such that

ak+j 6= aj+1((1− α)/α).
If j ≥ i, then there exists an `2 ≥ `1 such that for all ` ≥ `2 one has

Tk+`p−1 > (1− α)/α ⇐⇒ j is odd.

If 1 ≤ j � i, one has

Tk+`p−1 ≥ (1− α)/α ⇐⇒ j is odd and ak+j > aj+1((1− α)/α).

¤
Example 3. Here we give α-expansions of e for some values of α.

(i) For α = 0.7,

e = [3; −1/3, 1/2, −1/(2k + 5), 1/2]∞k=0.

(ii) For α = 0.52,

e = [3;−1/4, −1/2, 1/5,

−1/2, 1/7, −1/2, 1/9, −1/2, 1/10, 1/2, −1/(2k + 13), 1/2]∞k=0.

(iii) For α = 0.53,

e = [3;−1/4, −1/2, 1/5, −1/2, 1/6, 1/2, −1/(2k + 9), 1/2]∞k=0.

Remarks. 1. From the proof of Theorem 3 it is at once clear that x is a quadratic
irrational if and only if the α-expansion of x is eventually periodic.
2. Analogous to Definitions 1 and 3 we can define S-Hurwitzian number for any
S-expansion. In case the singularization-area is ‘nice’ (such as the singularization-
areas for Nakada’s α-expansion, or for Minkowski’s diagonal continued fraction
expansion, see [H]), one can show that being S-Hurwitzian is equivalent to being
Hurwitzian. However, it is possible to find singularization-areas S and numbers
x such that x is Hurwitzian, but not S-Hurwitzian. Consider for example the
following singularization-area S:

S =
⋃

p prime

(2p + 2, 2p + 1]× (
1
2 , 1

)
.

One easily convinces oneself that e does not have an S-expansion which is S-
Hurwitzian.
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