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1. INTRODUCTION 

Bolidan Zelinka [6] has shown that a compatible tolerance on a group is a con
gruence. We give an example which shows that a compatible tolerance on a regular 
semigroup is not a congruence. We prove that a compatible tolerance on a regular 
semigroup, which is contained in Ж, is a congruence and hence an idempotent 
separating congruence [3]. In [4] Meakin defined a certain relation and proved that 
it is a maximum idempotent separating congruence on a regular semigroup. By 
making use of the notion of sandwich sets introduced by K. S. S. Nambooripad [5] 
we give an alternative elegant proof for the above. Throughout this paper we follow 
the terminology and notations of [ l ] and [3]. 

2. DEFINITIONS AND PRELIMINARY RESULTS 

A reflexive and symmetric relation defined on a semigroup is called a tolerance 
relation. A tolerance (̂  on a semigroup 5 is left weakly compatible if (a, b) e ^ 
implies (ra, rb) e £, for every r in 5. A right weakly compatible tolerance is defined 
dually. A tolerance on a semigroup is called weakly compatible if if is both left and 
right weakly compatible. A tolerance (̂  in a semigroup S is called strongly compatible 
if (a, b) G (̂  and (c, d)e ^ imply [ac, bd) e Ç. Strong compatibility of a tolerance 
implies its weak compatibility whereas weak compatibility of a tolerance does not 
imply its strong compatibility. This is illustrated by the following example. 

Let S — [e, a,f, b} be a semigroup with the multiplication table: 

e a f b 

e e a f b 
a a e b f 
f f bf b 
b bf bf 
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A relation g = {{e, e), (a, a), ( / , / ) , (b, b), (e, a), {a, e), (/, b), (bj), (a, b), (b, a), 
{e,f), (/, e)} is a tolerance on S and it is obviously weakly compatible, (a, b) e Q 
and (a, e) e Q but (a^, be), that is, (e, b) ^ ^. So ^ is not strongly compatible. It can 
be seen that transitivity and weak compatibility of a binary relation on a semigroup 
implies its strong compatibihty. Zelinka's [6] notion of compatibility is compatibility 
in the strong sense. 

Hereafter S stands for a regular semigroup and E^ denotes its set of idempotents. 
If ae S then V(a) denotes the set of inverses of a in S. For e^feE^ the sandwich set 
of e,/as introduced by K. S. S. Nambooripad [5] is S (ej) = {g e E^: ge = fg = g, 
egf = ef]. 

The following result is due to K. S. S. Nambooripad [5] and A. H. Clifford [2]. 

Lemma 2.1. Suppose eJ, h, ke E^, a,be S, a' e V{a) and b' e V{b), Then (i) 
S{eJ) Ф D; (ii) if eSeh and f^k then S{eJ) = S(/z, /c); (iii) if g e S{a'a, bb') then 
agb = ab and b'ga' e V{ab). 

An interesting consequence of the above lemma is the following. 

Corollary 2.2. If g e S{a'a, bb') then (i) b'g e V(gbl (ii) да' e V{ag). 
Following Meakin [4] we define for a E S, 

EL{a) = {eGE,:L, ^ LJ , 

ER{a) = {eeE,:R,uRa} • 
Clearly E L[a) ф D and £ R{a) Ф П for every a in S. 

Lemma 2.3. If g e S(a'a, bb') and ее E L[ab) then (i) beb' eE^, (ii) (gb) e{gb)' e 
e£L(a). 

Proof. esEL[ab) implies ee Sab ^ Sb. So there exists w in S such that e = ub. 
beb'beb' = bubb'bubb' = bububb' = beeb' = beb'. Now e e EL[ab) = EL{agb) 
implies e e Sagb ^ Sgb. Hence there exists v in S such that e = vgb. (gb) e{gb)'. 
. {gb) e(gb)' = gbvgbb'ggbvgbb'g (using Cor. 2.2) = gbvgggbvgbb'g = 
= gbvgbvgbb'g = gbvgbb'g = gbe{gb)'. Now Ьдъ^ъ'д S h = ha'a й К and so 
gbeb'g G L[a). Therefore gbe(gb)' e EL(a). 

3. A COUNTER-EXAMPLE AND THE MAIN THEOREM 

Example 3.1. A strongly compatible tolerance on a regular semigroup need not be 
a congruence. The following simple and elegant counterexample is due to Dr. Boris 
M. Schien. 

L = [e,f, g] is a commutative idempotant semigroup with the multiplication table 
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given below: 
e f g 

e e e e 
f ef e 
g e e g 

A relation g = {{e, e), (e, g), {g, e), {g, g), (ej), (/, e), (fj)} is obviously a strongly 

compatible tolerance on L. However, it is not a congruence since {g, e), {ej) e Q but 

Theorem 3.2. / / ^ is a strongly compatible tolerance on S such that ^ ^ Ж then ^ 
is an idempotent separating congruence on S. 

Proof. Let (fl, b), {b, c) G ^. The condition ^ ^ Ж implies {a, b) and (b, c) e Ж. 
There exist a' e V(a), b*, b' e V(b) and c* e V{c) such that a'a = b'b and aa' = bb' 
and Ь*Ь = <:*c and bb* = cc*. J f being transitive we have (a, c) e c^. Hence there 
exist a* G F(a) and c' G F(C) such that a'a = b'b = c'c; aa' = bb' = cc'', a^a = 
= Ь*Ь = c*c; aa* = bb* = cc*. Now (a, b) G ^ and (b', b') e ^ imply (ab \ bb') G (̂ . 
From (ab', bb') G (̂  and (b, c)e ^ we get (ab'b, bb'c) e ^. Hence (aa'a, cc'c) G (J. 
That is (a, c) G (̂ . 

Now ^, being a congruence contained in Ж, is an idempotent separating con
gruence [3]. 

We observe that only reflexivity and strong compatibility of ^ have been used in the 
above proof. 

Meaking [4] defined a relation ft = {(a, Ь)Е S x S: there are inverses a' of a 
and b' of b such that a^a' = beb', Vc G £L(a) u EL{b) and a'/a = Ь'/Ь У/еЕК^а) u 
u £K(b)}. Clearly /z is a tolerance in S". It was proved that {л Я: Ж [A\. Making use 
of sandwich sets we prove that ß is strongly compatible; whereas Meakin proves its 
transitivity and weak compatibility separately [4]. 

Proposition 3.3. ju /5 strongly compatible. 

Proof. Let (a, b), (c, d) G ß. Now [a,b)E Ж ^ ^ implies a'a = b'b and (c, ti) G 
e c# ^ ^ implies cc' = rfJ' where a' e V(a), b' e F(fo), c' e V{c) and d' e V{d). 
Hence we get a'a i f b'b and cc' ^ dd' which by Lemma 2.1 imply (ii) S(a'a, cc') = 
= S{b'b, dd'). Let e e EL[ac) u EL{bd) and Ö' e S(a'a, cc') = S{b'b, dd'). 

Now L^ g L^̂  ^ L^ or Lg ^ L̂ ,rf ^ Lf,̂ . Therefore ^ G £ L ( C ) U EL{d), consequently 
cec' = ded' and gcec'g = gded'g. By Lemma 2.3, gcec'g G EL{a) and gded'g e 
G EL[b). Hence gcec'g = gded'g G £L(a) u £L(b) which in turn implies agcec'ga' = 
^ bgded'gb'. That is, (ac) e (ac) '= (bJ) e(M)'. Similarly we get (ac) ' /(ac) = 
^ {bd)'f(bd) where fe ER(ac) и ER[bd). Hence (ac,bd)e ß. By Theorem 3.2, 
/z is an idempotent separating congruence on S. It was proved that /г is a maximum 
idempotent separating congruence on S [4]. 
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