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Abstract

Tankov (2011) improved the Fréchet bounds for a bivariate copula when its values on a
compact subset of [0, 1]2 are given. He showed that the best possible bounds are quasi-
copulas and gave a sufficient condition for these bounds to be copulas. In this note we give
weaker sufficient conditions to ensure that the bounds are copulas. We also show how
this can be useful in portfolio selection. It turns out that finding a copula as a lower bound
plays a key role in determining optimal investment strategies explicitly for investors with
some type of state-dependent constraints.
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1. Introduction

Unless otherwise stated, in this note we adopt all the notation and conventions of Tankov
(2011). Hence, let Q : [0, 1]2 → [0, 1] be a quasi-copula, i.e. Q satisfies the following
properties.

(i) Boundary conditions: Q(0, u) = Q(u, 0) = 0 and Q(1, u) = Q(u, 1) = u for all
u ∈ [0, 1].

(ii) Q is increasing in each argument (strictly speaking, Q is nondecreasing in each argument).

(iii) Lipschitz property: |Q(u2, v2) − Q(u1, v1)| ≤ |u2 − u1| + |v2 − v1| for all (u1, v1,

u2, v2) ∈ [0, 1].

Note that if, in addition, Q is also 2-increasing then it is a copula. We recall that Q is
2-increasing if VQ(R) = Q(u2, v2) + Q(u1, v1) − Q(u1, v2) − Q(u2, v1) ≥ 0 for every
rectangle R = [u1, u2] × [v1, v2] ⊆ [0, 1]2. Furthermore, let S denote a compact subset of the
unit square [0, 1]2 and let QS be the set of all quasi-copulas Q′ such that Q′(a, b) = Q(a, b)

for all (a, b) ∈ S. Tankov (2011) considered the problem of finding best possible bounds for
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the set QS . Of course, when S is the empty set, every quasi-copula Q′ satisfies the Fréchet–
Hoeffding bounds, i.e.

W(u, v) := max{0, u + v − 1} ≤ Q′(u, v) ≤ min{u, v} := M(u, v).

In the general case this problem appears more challenging; see Nelsen (2006) for best possible
bounds when S is a singleton. Tankov (2011) defined

AS,Q(u, v) := min
{
u, v, min

(a,b)∈S
{Q(a, b) + (u − a)+ + (v − b)+}

}
,

BS,Q(u, v) := max
{

0, u + v − 1, max
(a,b)∈S

{Q(a, b) − (a − u)+ − (b − v)+}
}
, (1.1)

where (u, v) ∈ [0, 1]2, and showed in his Theorem 1 that AS,Q and BS,Q are respectively best
possible upper and lower bounds, and thus improve the Fréchet–Hoeffding upper and lower
bounds, respectively. Note that improvement results for the Fréchet–Hoeffding bounds when
there are additional (inequality) constraints have already been given in Rachev and Rüschendorf
(1994) and discussed extensively in Section 7.3 of Rachev and Rüschendorf (1998). Tankov
(2011) also demonstrated that a sufficient condition for AS,Q or BS,Q to be a copula is to suppose
that S is nonincreasing or, respectively, nondecreasing. In this note, we extend this result by
showing that, when Q is a copula, AS,Q or BS,Q is a copula when S is a compact set satisfying
some additional conditions, namely a ‘nonincreasingness’or, respectively, ‘nondecreasingness’
and a ‘connectivity’ property. For instance, when S is a rectangle, then both AS,Q and BS,Q

are copulas.
Theorem 1 of Tankov (2011) and our additions to it are of interest in finance. Tankov

already demonstrated how his results are instrumental in finding model-free bounds for the
prices of some two-asset derivatives. He showed how information embedded in the financial
market (such as the price of another two-asset option) translates into extra information about
dependence, and thus leads to sharper traditional bounds for prices, which are based on Fréchet–
Hoeffding bounds on copulas (where information on dependence is ignored). In this note we
show that the study of optimal investment strategies is intimately connected to finding bounds on
the dependence between the final wealth and the so-called stochastic discount factor (pricing
kernel or state-price process) at maturity. In particular, knowing that BS,Q is a copula is
useful to determine investment strategies that are optimal for investors with state-dependent
constraints, i.e. when they do not only care about the distribution of final wealth but also about
the states where cash flows are received. More details are given in Section 3. Both mentioned
applications make clear that it is of interest to know more situations for which the bounds
appearing in Tankov (2011) are copulas (see Theorems 2.1, 2.2, and 2.3 in this note).

2. Extensions of Theorem 1 of Tankov (2011)

In this section we extend Theorem 1 of Tankov (2011). To this end, we need the following
lemma.

Lemma 2.1. Assume that f : [0, 1]2 �→ R is 2-increasing, nondecreasing in each argument,
and satisfies the Lipschitz property. Define the function g : [0, 1]2 �→ R as

g = max{f, W },
where W(u, w) = max{u+v−1, 0} is the anti-monotonic copula. Then g is also 2-increasing,
nondecreasing in each argument, and satisfies the Lipschitz property.
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Proof. Note that W satisfies the Lipschitz property. Hence, g, as the maximum of two
functions with the Lipschitz property, also satisfies the Lipschitz property (as shown in part (i)
of the proof of Theorem 1 of Tankov (2011)). It is obvious that g is also nondecreasing
in each argument. In order to prove that g is 2-increasing, let us consider any rectangle
R = [u1, u2] × [v1, v2] in the unit square (we conventionally assume that u1 < u2 and
v1 < v2). We identify the following three cases.

Case 1: assume that either max{f (u2, v1), u2+v1−1} ≤ 0 or max{f (u1, v2), u1+v2−1} ≤
0. Since both functions are nondecreasing in each argument, we find that

max{f (u1, v1), u1 + v1 − 1} ≤ 0.

Without loss of generality, we can take max{f (u2, v1), u2 + v1 − 1} ≤ 0 (the other case is
similar). Then the g-volume of the rectangle R is given by

Vg(R) = g(u2, v2) − g(u2, v1) − g(u1, v2) + g(u1, v1)

= g(u2, v2) − g(u1, v2)

= max{f (u2, v2), W(u2, v2)} − max{f (u1, v2), W(u1, v2)}
≥ 0,

where the last inequality follows from f (u2, v2) ≥ f (u1, v2) and W(u2, v2) ≥ W(u1, v2).
For cases 2 and 3, we can now assume that both max{f (u2, v1), u2 + v1 − 1} > 0 and

max{f (u1, v2), u1 + v2 − 1} > 0.
Case 2: assume that f (u2, v1) ≥ u2 + v1 − 1 and f (u1, v2) ≥ u1 + v2 − 1. This implies

that g(u2, v1) = f (u2, v1) and g(u1, v2) = f (u1, v2). Hence, the g-volume of the rectangle R

satisfies
Vg(R) = g(u2, v2) − g(u2, v1) − g(u1, v2) + g(u1, v1)

≥ f (u2, v2) − f (u2, v1) − f (u1, v2) + f (u1, v1)

≥ 0,

where the last inequality follows from the 2-increasing property for f .
Case 3: assume that f (u2, v1) < u2 + v1 − 1 or f (u1, v2) < u1 + v2 − 1. Without

loss of generality, we take f (u2, v1) < u2 + v1 − 1 (the other case is similar). Since
max{f (u2, v1), u2 +v1 −1} > 0, it follows that u2 +v1 −1 > 0 and, thus, also u2 +v2 −1 > 0.
Furthermore, the Lipschitz property for f then also implies that f (u2, v2) < u2 + v2 − 1.
Therefore,

Vg(R) = g(u2, v2) − g(u2, v1) − g(u1, v2) + g(u1, v1)

= (u2 + v2 − 1) − (u2 + v1 − 1) − g(u1, v2) + g(u1, v1)

= (v2 − v1) − (g(u1, v2) − g(u1, v1))

≥ 0,

where the last inequality follows from the Lipschitz property for g.

Let us denote by S1 the set obtained by the first variable projection of the compact set S,
namely, u ∈ S1 if and only if there exists v ∈ (0, 1) such that (u, v) ∈ S. Similarly, we define
S2 as the second variable projection. Define the two functions

γ1 : S1 → S2,

u �→ min{v | (u, v) ∈ S} (2.1)
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and
γ2 : S1 → S2,

u �→ max{v | (u, v) ∈ S}. (2.2)

The compactness of S guarantees the existence of the above maxima and minima. The points
(u, γ1(u))u∈S1 are the ‘lower’ boundary points of S. Similarly, (u, γ2(u))u∈S1 are the ‘upper’
boundary points. We are now ready to prove the following result.

Theorem 2.1. Let Q be a copula, and let S ⊆ [0, 1]2 be a compact set with both γ1 and γ2
nondecreasing functions that satisfies the following property:(

u,
v0 + v1

2

)
∈ S for all (u, v0), (u, v1) ∈ S. (2.3)

Then BS,Q is a copula.

Proof. Tankov (2011) has already shown that BS,Q is a quasi-copula. We thus need to
only show that BS,Q is 2-increasing. Let us write BS,Q as max{f S,Q, W }, where f S,Q is the
function

f S,Q(u, v) := max
(a,b)∈S

{Q(a, b) − (a − u)+ − (b − v)+}.
Tankov (2011) proved that f S,Q satisfies the Lipschitz condition. Since f S,Q is also non-
decreasing in each argument, it remains to prove that it is also 2-increasing. Then, Lemma 2.1
implies that BS,Q is a 2-increasing quasi-copula and, therefore, a copula. Let us consider any
rectangular area R = [u1, u2]×[v1, v2]. We want to prove that Vf S,Q([u1, u2]×[v1, v2]) ≥ 0.

By the compactness of S, there exist (u∗
1, v

∗
2) ∈ S and (u∗

2, v
∗
1) ∈ S such that

f S,Q(u1, v2) = max
(a,b)∈S

{Q(a, b) − (a − u1)
+ − (b − v2)

+}
= Q(u∗

1, v
∗
2) − (u∗

1 − u1)
+ − (v∗

2 − v2)
+

and
f S,Q(u2, v1) = max

(a,b)∈S
{Q(a, b) − (a − u2)

+ − (b − v1)
+}

= Q(u∗
2, v

∗
1) − (u∗

2 − u2)
+ − (v∗

1 − v1)
+.

Case 1: assume that (u∗
1, v

∗
2) and (u∗

2, v
∗
1) form a nondecreasing set. Observe that

f S,Q(u2, v2) = max
(a,b)∈S

{Q(a, b) − (a − u2)
+ − (b − v2)

+}
≥ Q(u∗

1, v
∗
2) − (u∗

1 − u2)
+ − (v∗

2 − v2)
+

and
f S,Q(u1, v1) = max

(a,b)∈S
{Q(a, b) − (a − u1)

+ − (b − v1)
+}

≥ Q(u∗
2, v

∗
1) − (u∗

2 − u1)
+ − (v∗

1 − v1)
+.

Then we bound the volume of the rectangle [u1, u2] × [v1, v2] from below as follows:

f S,Q(u2, v2) − f S,Q(u1, v2) − f S,Q(u2, v1) + f S,Q(u1, v1)

≥ [Q(u∗
1, v

∗
2) − (u∗

1 − u2)
+ − (v∗

2 − v2)
+] − [Q(u∗

1, v
∗
2) − (u∗

1 − u1)
+ − (v∗

2 − v2)
+]

− [Q(u∗
2, v

∗
1) − (u∗

2 − u2)
+ − (v∗

1 − v1)
+]

+ [Q(u∗
2, v

∗
1) − (u∗

2 − u1)
+ − (v∗

1 − v1)
+]
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= Q(u∗
1, v

∗
2) − Q(u∗

1, v
∗
2) − Q(u∗

2, v
∗
1) + Q(u∗

2, v
∗
1) + [(u∗

1 − u1)
+ − (u∗

1 − u2)
+]

− [(u∗
2 − u1)

+ − (u∗
2 − u2)

+]
= [(u∗

1 − u1)
+ − (u∗

1 − u2)
+] − [(u∗

2 − u1)
+ − (u∗

2 − u2)
+]. (2.4)

Hence, if u∗
1 ≥ u∗

2 in (2.4) then Vf S,Q([u1, u2] × [v1, v2]) ≥ 0 holds. When u∗
1 < u∗

2, we
proceed similarly. Indeed, it also holds that

f S,Q(u2, v2) ≥ Q(u∗
2, v

∗
1) − (u∗

2 − u2)
+ − (v∗

1 − v2)
+,

f S,Q(u1, v1) ≥ Q(u∗
1, v

∗
2) − (u∗

1 − u1)
+ − (v∗

2 − v1)
+,

and, therefore, we obtain

f S,Q(u2, v2) − f S,Q(u1, v2) − f S,Q(u2, v1) + f S,Q(u1, v1)

≥ [(v∗
2 − v2)

+ − (v∗
2 − v1)

+] − [(v∗
1 − v2)

+ − (v∗
1 − v1)

+]
≥ 0, (2.5)

where the last inequality in (2.5) follows from the fact that v∗
2 ≤ v∗

1 , since (u∗
1, v

∗
2) and (u∗

2, v
∗
1)

form a nondecreasing set.
Case 2: assume that (u∗

1, v
∗
2) and (u∗

2, v
∗
1) form a nonincreasing set. When u∗

1 ≤ u∗
2, then

v∗
2 ≥ v∗

1 . By the compactness of S, property (2.3) implies that, for each u ∈ S1, S contains
the vertical segment connecting (u, γ1(u)) and (u, γ2(u)). Thus, γ1(u

∗
1) ≤ v∗

2 ≤ γ2(u
∗
1) and

γ1(u
∗
2) ≤ v∗

1 ≤ γ2(u
∗
2). Moreover, by the nondecreasing property of γ1 and γ2, we have

γ1(u
∗
1) ≤ γ1(u

∗
2) and γ2(u

∗
1) ≤ γ2(u

∗
2). Therefore, γ1(u

∗
1) ≤ v∗

1 ≤ γ2(u
∗
1) and γ1(u

∗
2) ≤ v∗

2 ≤
γ2(u

∗
2). Hence, (u∗

1, v
∗
1) ∈ S and (u∗

2, v
∗
2) ∈ S. Similarly, we can prove that, when u∗

2 < u∗
1,

(u∗
1, v

∗
1) ∈ S and (u∗

2, v
∗
2) ∈ S.

We obtain, for (u1, v1) and (u2, v2),

f S,Q(u1, v1) ≥ Q(u∗
1, v

∗
1) − (u∗

1 − u1)
+ − (v∗

1 − v1)
+

and

f S,Q(u2, v2) ≥ Q(u∗
2, v

∗
2) − (u∗

2 − u2)
+ − (v∗

2 − v2)
+.

We can then conclude that the volume of the rectangle [u1, u2] × [v1, v2] is nonnegative
because

f S,Q(u2, v2) − f S,Q(u1, v2) − f S,Q(u2, v1) + f S,Q(u1, v1)

≥ [Q(u∗
2, v

∗
2) − (u∗

2 − u2)
+ − (v∗

2 − v2)
+] − [Q(u∗

1, v
∗
2) − (u∗

1 − u1)
+ − (v∗

2 − v2)
+]

− [Q(u∗
2, v

∗
1) − (u∗

2 − u2)
+ − (v∗

1 − v1)
+]

+ [Q(u∗
1, v

∗
1) − (u∗

1 − u1)
+ − (v∗

1 − v1)
+]

= Q(u∗
2, v

∗
2) − Q(u∗

1, v
∗
2) − Q(u∗

2, v
∗
1) + Q(u∗

1, v
∗
1)

≥ 0,

where the last inequality follows the fact that Q is 2-increasing, and (u∗
1, v

∗
2) and (u∗

2, v
∗
1) form

a nonincreasing set. We have thus proved that f S,Q is 2-increasing. Lemma 2.1 implies that
BS,Q is a copula.
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The following two functions define the ‘left’ and ‘right’ boundary points of S:

γ3 : S2 → S1,

v �→ min{u | (u, v) ∈ S}
and

γ4 : S2 → S1,

v �→ max{u | (u, v) ∈ S}.
The following result is dual to Theorem 2.1: its proof is obtained by symmetry.

Theorem 2.2. Let Q be a copula, and let S ⊆ [0, 1]2 be a compact set with both γ3 and γ4
nondecreasing functions that satisfies the following property:(

u0 + u1

2
, v

)
∈ S for all (u0, v), (u1, v) ∈ S. (2.6)

Then BS,Q is a copula.

Remark 2.1. The conditions in Theorems 2.1 and 2.2 cannot be readily relaxed. Indeed,
consider S = {A, B, C, D}, where A = ( 1

3 , 0), B = ( 1
3 , 2

3 ), C = ( 2
3 , 1

3 ), and D = ( 2
3 , 1), and

let Q = min{u, v}. Note that property (2.3) is not satisfied and also that γ3 (as well as γ4) is
not nondecreasing, so neither Theorem 2.1 nor Theorem 2.2 can be invoked to show that BS,Q

is a copula. We observe that BS,Q is indeed not a copula because

BS,Q
( 2

3 , 2
3

) − BS,Q
( 2

3 , 1
3

) − BS,Q
( 1

3 , 2
3

) + BS,Q
( 1

3 , 1
3

) = 1
3 − 1

3 − 1
3 + 0 = − 1

3 < 0.

Remark 2.2. At first glance, part (ii) of Theorem 1 of Tankov (2011) does not appear to
always follow from Theorem 2.1 or Theorem 2.2. For example, let us consider the compact
set S = {A, B, C}, where A = (x1, y1), B = (x2, y1), and C = (x2, y2), with x1 < x2
and y1 < y2. Then neither property (2.3) nor property (2.6) is satisfied. Nevertheless, S

is a nondecreasing compact set for which part (ii) of Theorem 1 of Tankov (2011) can be
applied, implying that BS,Q is a copula. However, we can also use our results combined with
a limiting argument to obtain the same result. Consider Sn = {A, Bn, C}, where A = (x1, y1),
Bn = (x2 − (x2 − x1)/n, y1), and C = (x2, y2). Then, using Theorem 2.1, for all positive
n ∈ N, BSn,Q is a copula. Moreover,

BSn,Q(u, v) = max

{
0, u + v − 1, Q(x1, y1) − (x1 − u)+ − (y1 − v)+,

Q(x2, y2) − (x2 − u)+ − (y2 − v)+,

Q

(
x2 − x2 − x1

n
, y1

)
−

(
x2 − x2 − x1

n
− u

)+
− (y1 − v)+

}

converges pointwise for all (u, v) ∈ [0, 1]2 to BS,Q(u, v). Finally, to prove that BS,Q is a
copula, we need to verify the boundary conditions and the 2-increasing property. Both elements
are obviously satisfied when the sequence converges pointwise. In fact, if the pointwise limit
of a sequence of copulas exists at each point of [0, 1]2 then the limit must be a copula (see
the comment after Definition 3.3.4 of Nelsen (2006, p. 97)). The same limiting arguments can
be used to show that BS,Q is a copula when S is a nondecreasing compact set that contains a
vertical part and a horizontal part that are both disconnected (so that both (2.3) and (2.6) are
not satisfied). In this sense, the results of Tankov (2011) appear as a special case of ours.
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Figure 1: The support of the copula in Example 2.1.

Corollary 2.1. Let Q be a copula, and let S ⊆ [0, 1]2 be a compact convex set satisfying

there exist (a0, b0) ∈ S and (a1, b1) ∈ S for all (u, v) ∈ S, a0 ≤ u ≤ a1, b0 ≤ v ≤ b1.

(2.7)
Then BS,Q is a copula.

Proof. We prove that γ1 and γ2 are nondecreasing on (a0, a1), and apply Theorem 2.1 (since
property (2.3) is satisfied). Indeed, by the convexity of S, for any two points (x1, γ2(x1)) and
(x2, γ2(x2)), we have ((x1 + x2)/2, (γ2(x1) + γ2(x2))/2) ∈ S. We can conclude that

γ2(x1) + γ2(x2)

2
≤ max

{
v

∣∣∣∣
(

x1 + x2

2
, v

)
∈ S

}
= γ2

(
x1 + x2

2

)
;

thus, γ2 is concave. Similarly, γ1 is convex. Finally, since γ2 is concave, R(x1, x2) = (γ2(x2)−
γ2(x1))/(x2 − x1) is nonincreasing in x1 for x2 fixed, and in x2 for x1 fixed. Therefore, γ2 is
nondecreasing on [a0, a1] because of property (2.7). A similar reasoning shows that γ1 is also
nondecreasing.

Note that Corollary 2.1 is not valid when the compact set S is simply convex and compact
as shown by the following example.

Example 2.1. Let S be the line connecting ( 1
3 , 2

3 ) with ( 2
3 , 1

3 ). Let Q be the copula defined by
the support in Figure 1, namely,

Q(u, v) =
{

max
{
u + min

{
v, 1

3

} − 1
3 , 0

}
, v ∈ [

0, 1
3

]
,

max
{
u + v − 1, min

{
v, 1

3

}}
, v ∈ [ 1

3 , 1
]
.

It can be easily shown that Q takes the constant value 1
3 on S. Observe that

BS,Q
( 2

3 , 2
3

) = 1
3 , BS,Q

( 1
3 , 2

3

) = 1
3 , BS,Q

( 2
3 , 1

3

) = 1
3 , and BS,Q

( 1
3 , 1

3

) = 0.

Therefore, on the rectangle [ 1
3 , 2

3 ]2, BS,Q is not 2-increasing.

Theorems 2.1 and 2.2 show that there is a wide class of convex compact sets such that BS,Q

given by (1.1) is a copula. Similar results can be obtained for AS,Q.
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Theorem 2.3. Let Q be a copula, and let S ⊆ [0, 1]2 be a compact set.

(i) If γ1 and γ2 are nonincreasing functions and S satisfies (2.3), then AS,Q is a copula.

(ii) If γ3 and γ4 are nonincreasing functions and S satisfies (2.6), then AS,Q is a copula.

Proof. (i) Similarly as in the proof of Theorem 1 of Tankov (2011) we note that

AS,Q(u, v) = BS,Q(u, v),

where
S = {(a, b) | (a, 1 − b) ∈ S} and Q(u, v) = u − Q(u, 1 − v).

The nonincreasing property of γ1 and γ2 implies that γ 1 and γ 2 (defined in an obvious way for
S) are nondecreasing. Since Q is a copula, the first part of the proof implies that BS,Q(u, v) is

copula; hence, AS,Q(u, v) = BS,Q(u, v) is also a copula. The proof of (ii) is similar.

As an immediate result of Theorems 2.1 and 2.3, we have the following corollary.

Corollary 2.2. For any copula Q and any rectangle S = [u1, u2]× [v1, v2] in the unit square,
AS,Q and BS,Q are both copulas.

Proof. For a rectangle S, γ1 and γ2 (as defined by (2.1) and (2.2)) are clearly nondecreasing
and nonincreasing, and property (2.3) is obviously satisfied. Therefore, using Theorems 2.1
and 2.3, AS,Q and BS,Q are both copulas.

3. Application to optimal investment strategies

Let (�, F , P) be a probability space describing a financial market. Using a suitable
equilibrium model or no-arbitrage arguments, financial theory shows that the price of a strategy
with terminal payoff XT (paid at time T > 0) can be written as

c(XT ) = E[ξT XT ], (3.1)

where ξT is some given stochastic discount factor (also called the state-price process at T ),
and where it is tacitly assumed that expectation (3.1) exists. In fact, for ω ∈ �, ξT (ω) can be
interpreted as the price of consuming one unit in state ω and 0 in all others. It is high in the
worst states of the economy, that is, when the ‘market’ is at its lowest level.

For investors with increasing law-invariant preferences (i.e. when they only consider the
distribution of terminal wealth and prefer more to less), it can be shown that optimal strategies
are obtained by minimizing the price E[ξT XT ] such that XT has a given final distribution. Note
that f (x, y) = xy is 2-increasing; hence, minimizing E[ξT XT ] for fixed marginals is equivalent
to minimizing the copula C of (ξT , XT ); see Meilijson and Nadas (1979), Rüschendorf (1983),
and Tchen (1980). Hence, it becomes clear that optimal strategies are anti-monotonic with ξT .
In other words, the copula C corresponds to the Fréchet–Hoeffding lower bound; see also
Bernard et al. (2010).

It thus also turns out that such optimal strategies exhibit their worst outcomes when ξT is
high corresponding to bearish financial markets. In practice, investors may want to impose
constraints on the copula C, reflecting that they take into account the states where cash flows
are received, or, more precisely, the dependence between the strategy and the financial market.
The constraints can be described by a set S and a copula Q. When BS,Q(u, v) is a copula, the
optimal investment strategy can be constructed. This idea has recently been pursued in Bernard
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Figure 2: Supports for the copulas AS,Q (left) and BS,Q (right) of Example 3.1 with u0 = 0.56. The
supports are obtained by simulation using the facts that (∂AS,Q/∂u)−1(y) = (u/u0) 1{u≤u0} +y 1{u>u0}

and (∂BS,Q/∂u)−1(y) = (1 − u/u0) 1{u≤u0} +y 1{u>u0}.

and Vanduffel (2011) (for the case when S is nondecreasing and compact). The theorems
discussed in this note allow us to apply this idea to a much broader setting covering a variety
of financially interesting situations. We now give an illustration.

Example 3.1. Let Q(u, v) = uv be the independence copula. Let S be given as

S = {(a, b) ∈ [0, 1]2 | a ≥ u0, b ∈ [0, 1]}.
Applying Corollary 2.2, we find after some calculations that the maximum copula AS,Q

satisfying
AS,Q(u, v) = uv for all (u, v) ∈ S

is given by
AS,Q(u, v) = min(u, u0v) 1{u≤u0} +uv 1{u>u0} .

Similarly, we find that

BS,Q(u, v) = max(0, u0(v − 1) + u) 1{u≤u0} +uv 1{u>u0}

is the minimum copula. The supports of AS,Q and BS,Q are represented graphically in Figure 2.

The minimum copula obtained in Example 3.1 allows us to construct a strategy that provides,
at the lowest possible cost, the desired distribution which also exhibits independence with the
market when the latter is low (high states for ξT ). This is thus a very useful strategy for investors
who seek diversification (i.e. some degree of protection) in times of a crisis.
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