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A NOTE ON INDEPENDENT SETS IN TREES*

BRUCE E. SAGANf

Abstract. We give a simple graph-theoretical proofthat the largest number ofmaximal independent vertex
sets in a tree with n vertices is given by

2k- + if n 2k,
m(T)

2 if n 2k + 1,

a result first proved by Wilf [SIAM J. Algebraic Discrete Methods, 7 (I 986), pp. 125-130]. We also characterize
those trees achieving this maximum value. Finally we investigate some related problems.
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1. Introduction. Herbert Wilf [5] was the first to answer the following question:
What is the largest number of maximal independent vertex sets in a tree with n vertices?
His proof had an algebraic flavor and was somewhat complicated. Subsequently Daniel
Cohen [1] was able to provide a graph-theoretical proof, but one which was still fairly
complex in view of the simplicity of the bound (see Theorem 3 below). The purpose of
this note is to give a simple graph-theoretical demonstration of this result which, in
addition, completely characterizes all trees achieving the maximum value. J. Griggs and
C. Grinstead [2] independently found a straightforward proofwhich is similar to ours in
some respects but differs in others.

2. Maximizing independent sets. We begin with some preliminary definitions and
lemmas. For any concepts that are not defined, the reader can consult Harary’s
book [4].

Given a graph, G, let V(G) be the vertex set of G and let v(G) IV(G)[ where
denotes cardinality. Recall that a vertex u V(G) is called an endpoint if deg u 1. We
will say that a vertex v V(G) is penultimate if v is not an endpoint and v is adjacent to
(at least) deg v endpoints. Note that v is adjacent to deg v endpoints if and only if v
is the center of the star Kt.

LEMMA 1. Everyfinite tree T with v(T) >-_ 3 has a penultimate vertex.

Proof. The next-to-last vertex on any diameter must be penultimate.
If v is penultimate in T, then T v consists of deg v isolated vertices and one

other component called the penultimate component P (if v is the center of a star, choose
any fixed component as the penultimate one). Now let

End v {wPlw is adjacent to v}
so that V(T) V(P) U {v} U End v where denotes disjoint union.

Call a set I
_

V(G) independent if no two vertices of I are adjacent in G. Now let
M(G) {I

_
V(G)II is independent and maximal}, i.e., if ! M(G) then there is no

independent set J with I J. Also set m(G) IM(G)i. We wish to find the maximum
value of m(T) over all trees T with v(T) n. First, however, we need an upper bound.
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106 BRUCE E. SAGAN

FIG. 1. Batons oflength O.

LEMMA 2. Let Tbe a tree and v V(T bepenultimate with corresponding component
P. Then

m(T)<=2m(P).

Proof Let I be a maximal independent set in T. Then either End v
_

I or v e I
(exclusive or). In the first case, I End v tO Ip where Ip is a maximal independent set of
P. In the second, I {v} tO (I { w}) where w is the unique vertex of P adjacent to v
(w need not be in I). [2]

Define a baton oflength l as follows. Start with a path L of length I and attach any
number of paths of length two to L’s endpoints. Hence the batons of length 0 are just
"extended" stars and the first few are displayed in Fig. 1.

Similarly, the batons of length form a family some of whose members are shown
in Fig. 2.

THEOREM 3. Among all labeled trees T with n vertices, the maximum value of
m(T) is

2k-+l ifn=2k,
m(T)=

2k ifn=2k+ 1.

Furthermore this maximum is attained only by the batons oflength 0 (when n is odd) or
by the batons oflengths and 3 (when n is even).

Proof Induct on n. The theorem can be checked by hand for v(T) <- 10 using
Lemma 2 and Harary’s tables [4, pp. 233-234]. (The author has made this calculation
and does not recommend it to the reader.) Now let T be a tree with re(T) maximum
among all trees with v(T) n > 10. By Lemma there exists a penultimate vertex
v V(T) with corresponding component P. There are two cases depending upon the
parity of n.

If n is odd, n 2k + 1, then consider the unique baton of length 0 with n vertices,
denoted Tn. Since T2k / contains k paths of length 2, a simple calculation shows that
m(T2k + 1) 2k. Hence

(1) m(T)>=2k.

FIG. 2. Batons oflength 1.
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FIG. 3. G and G2.

Now v(P) =< n 2 2k- 1. However, if v(P) < 2k- 1, then by Lemma 2 and
induction (for n at least 7) we have

(2) m(T)<=2m(P)<2 2k-= 2k,
which contradicts (1). Thus v(P) 2k- which implies that deg v 2, and End v
{ u} for a single vertex u. Furthermore P T2- since if it does not, induction applies
which yields m(P) < 2 (this baton is the unique tree attaining the maximum value).
But then (2) holds as before, a contradiction unless P T2_ .

Putting all these facts together, we see that T consists of a tree T2_ with a path of
length two w-v-u attached to some w V(T2k- ). This leaves only three possibilities for
T: T / , G or G, where G and G are given in Fig. 3.

To eliminate G1 and G2 as possibilities, consider a second penultimate vertex v’ as
shown. If p’ is the corresponding component, then for n

_
9 we have P’ q Tz,-.

Invoking Lemma 2 again we see that

m(Gi) <= 2m(P’) < 2.2- 2

for 1, 2 and so neither Gi maximizes re(T).
For n even, n 2k, exactly the same line of reasoning as in the odd case can be

used. It follows that the only possibilities for T are those obtained by attaching a path of
length 2 to a baton of length or 3 on 2k 2 vertices. Hence T is either a baton of
length or 3 and re(T) 2k- + or T is one of the five graphs H, H5 shown
in Fig. 4.

Note that in H2 (respectively H3) we require that deg c

_
3 (respectively deg d >- 2)

so that the graph does not degenerate into a baton of length 3 (respectively 1).
It is easy to verify that because n > 10 we can find in each of these five graphs a

second penultimate vertex v’ such that P’ is not a baton of length or 3. It follows from

FIG. 4. H through Hs.
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induction and from v(P’) n 2 2k 2 that we have m(P’) <= (2k- 2 q_ 1)
2k -2. Hence by Lemma 2

m(Hi) <= 2m(P’) =< 2.2k- 2 2k-

for 1, ..., 5 which is less than the value obtained for the batons. This finishes the
proof of the theorem.

Call a tree T extrema! if m(T) is a maximum as compared to all other trees with
the same number ofvertices. Let e(n) be the number ofextremal trees, up to the labeling,
on n vertices.

COROLLARY 4. The number ofextremal trees on n vertices is given by

e(n)={lk ifn=2k+ 1,

ifn=2k.
Proof It is a simple matter to count the number of batons of the appropri-

ate sizes.

3. Remarks. Finding the minimum value of m(T) is quite easy.
THEOREM 5. The minimum value ofm(T) over all trees with n vertices, n >= 2, is

m(T) 2. Furthermore the unique tree (up to relabeling) achieving this minimum is the
star gl,n- .

Proof. If v(T) >- 2, then for any edge vw there is a maximal independent set con-
taining v and a different one containing w. Hence m(T) >= 2 and dearly m(K,n-) 2.

If T q: K,n_ , then T contains a path u-v-w-x. This forces m(T) >= 3 since a third
maximal independent set containing u and x also exists, t--1

Once one has determined the lower and upper bounds, b and B, respectively, for a
graphical invariant fl(G) one looks for an interpolation theorem. Such a result has the
following form: For all integers z satisfying b <- z =< B there is a graph G with/(G) z.
Unfortunately there is no interpolation theorem for m(T) since when v(T) 9 we have
2 =< m(T) =< 16 but there is no tree with m(T) 15.

We should compare our proof of Theorem 3 with that of Griggs and Grinstead
mentioned in the Introduction. They also begin by proving Lemmas and 2. Then,
however, they use the lemmas to show that the maximum value of rn(F) over all forests
F with v(F) n is achieved precisely when F is a one-factor (possibly with an isolated
vertex). By carefully amalgamating the components ofthe one-factor, they finally obtain
the bound and extremal graphs for trees.

Following the dictum that once something is proved for trees it should be extended
to all connected graphs, one is led to pose the following question: What is the maximum
value ofm(G) over all connected graphs G with v(G) n? Griggs, Grinstead and Guichard
[3] have answered this query. Another proof has been found independently by Fiiredi.

Acknowledgments. I would like to thank Mihily Hujter for pointing out the proof
of Lemma 1. I also thank the referee for suggestions that considerably improved the
exposition.
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