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We improve the Jordan, Adamović-Mitrinović, and Cusa inequalities. As applications, several new Shafer-Fink type inequalities for
inverse sine function and bivariate means inequalities are established, and a new estimate for sine integral is given.

1. Introduction

The classical Jordan inequality [1] is given by

2

𝜋
<
sin𝑥
𝑥

< 1, (1)

for 𝑥 ∈ (0, 𝜋/2).
Some new developments on refinements, generalizations,

and applications for the Jordan inequality can be found in [2]
and the references therein.

In the recent past, the following two-side inequality

(cos𝑥)1/3 < sin𝑥
𝑥

<
2 + cos𝑥

3
(0 < 𝑥 <

𝜋

2
) (2)

has attracted the attention of many researchers (see, e.g., [2–
14]).The left inequality in (2) was obtained byMitrinović (see
[1, p. 238]), while the right one is due to Huygens (see, e.g.,
[15]) and it is called Cusa inequality [3, 5, 6, 8, 14].

In [16], the following open problem was proposed: for
each 𝑝 > 0, there are greatest value 𝑞 = 𝑞(𝑝) and least value
𝑟 = 𝑟(𝑝) such that the double inequality

𝑞 sin𝑥
1 + 𝑝 cos𝑥

< 𝑥 <
𝑟 sin𝑥

1 + 𝑝 cos𝑥 (3)

holds for all 𝑥 ∈ (0, 𝜋/2).This was answered by Carver in [17].
In [1, p. 238, 3.4.15], it was listed that

(1 + 𝑝) sin𝑥
1 + 𝑝 cos𝑥

< 𝑥 <
(𝜋/2) sin𝑥
1 + 𝑝 cos𝑥

(4)

for 𝑝 ∈ (0, 1/2] and 𝑥 ∈ [0, 𝜋/2]. Wu [18] proved that the
double inequality

(1 + 𝑝) cos𝑥
1 + 𝑝 cos𝑥

<
sin𝑥
𝑥

<
1 + 𝑞

1 + 𝑞 cos𝑥
(5)

holds for 𝑥 ∈ (0, 𝜋/2), 𝑝 ∈ [−1, 2], and 𝑞 ∈ [−1/4,∞). In
particular, he obtained that for 𝑥 ∈ (0, 𝜋/2),

3 cos𝑥
1 + 2 cos𝑥

<
sin𝑥
𝑥

<
3

4 − cos𝑥
. (6)

The first inequality in (6) is equivalent to the Huygen
inequality:

2
sin𝑥
𝑥

+
tan𝑥
𝑥

> 3. (7)

Jiang [19] showed that for 𝑥 ∈ (0, 𝜋/2),

sin𝑥
𝑥

>
1 + 2 cos𝑥
2 + cos𝑥

. (8)

Li and He [20] gave an improvement of (6) as follows:

7 + 5 cos𝑥
11 + cos𝑥

<
sin𝑥
𝑥

<
9 + 6 cos𝑥
14 + cos𝑥

. (9)
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The main purpose of this paper is to give sharp bounds
for (sin𝑥)/𝑥 in terms of the functions 𝐻

1
(cos 𝑡, 𝑝) and

𝐻
2
(cos 𝑡, 𝑝), where

𝐻
1
(𝑥, 𝑝) =

2𝑝 + (𝑝 + 3) 𝑥

3𝑝 + 1 + 2𝑥
, 𝑥 ∈ (0, 1) ,

𝑝 ∈ (−∞, −1] ∪ [0,∞) ,

(10)

𝐻
2
(𝑥, 𝑝) =

3𝑝 + 1

𝜋𝑝

2𝑝 + (𝑝 + 3) 𝑥

(3𝑝 + 1) + 2𝑥
, 𝑥 ∈ (0, 1) ,

𝑝 ∈ (−∞, −1] ∪ (0,∞) .

(11)

The rest of this paper is organized as follows. Several
lemmas are given in Section 2. Main results and their proofs
are given in Section 3, in which Theorem 7 unifies and
generalizes Jordan and Cusa inequalities; Theorem 13 shows
that Adamović-Mitrinović and Cusa inequalities (2) can be
interpolated by𝐻

1
(cos𝑥, 𝑝) for suitable 𝑝; Theorem 18 gives

a hyperbolic version of Theorem 7. In Section 4, some new
Shafer-Fink type inequalities for inverse sine function and
several inequalities for bivariate means are presented, and
a simpler but more accurate estimate for sine integral is
provided.

2. Lemmas

Lemma 1. Let 𝐻
1
and 𝐻

2
be defined by (10) and (11),

respectively. Then 𝐻
1
and 𝐻

2
are, respectively, increasing and

decreasing with respect to 𝑝 on (−∞, −1] ∪ (0,∞) with the
limits

lim
𝑝→−∞

𝐻
1
(𝑥, 𝑝) = lim

𝑝→∞
𝐻
1
(𝑥, 𝑝) =

2 + 𝑥

3
,

lim
𝑝→−∞

𝐻
2
(𝑥, 𝑝) = lim

𝑝→∞
𝐻
2
(𝑥, 𝑝) =

2 + 𝑥

𝜋
.

(12)

Proof. From (10) and (11) we have

𝜕𝐻
1

𝜕𝑝
=

2(𝑥 − 1)
2

(3𝑝 + 1 + 2𝑥)
2
> 0,

𝜕𝐻
2

𝜕𝑝
= −

3𝑥

𝜋𝑝
2
(3𝑝 + 2𝑥 + 1)

2
(𝑝 + 1)

× ((5 − 2𝑥) 𝑝 + (2𝑥 + 1)) .

(13)

If 𝑝 ∈ (0,∞), then we clearly see that 𝜕𝐻
2
/𝜕𝑝 < 0. If

∈ (−∞, −1), then (5 − 2𝑥)𝑝 + (2𝑥 + 1) < 4(𝑥 − 1) < 0, and
then 𝜕𝐻

2
/𝜕𝑝 < 0.

Simple computations give (12).

Lemma 2. Let 𝑢
1
, 𝑢
2
be defined on (0, 1) × (−∞, −1] ∪ [0,∞)

by

𝑢
1
(𝑥, 𝑝) = (2𝑝 + (3 + 𝑝) 𝑥) (3𝑝 + 1 + 2𝑥) , (14)

𝑢
2
(𝑥, 𝑝) = 2 (𝑝 + 3) 𝑥

3
+ 8𝑝𝑥

2
+ 2𝑝 (3𝑝 + 1) 𝑥 + 3(𝑝 + 1)

2

,

(15)

respectively. Then 𝑢
1
(𝑥, 𝑝), 𝑢

2
(𝑥, 𝑝) > 0.

Proof. It is not difficult to see that 𝑢
1
(𝑥, 𝑝), 𝑢

2
(𝑥, 𝑝) > 0 for

𝑝 ∈ [0,∞). If 𝑝 ∈ (−∞, −1], then

2𝑝 + (3 + 𝑝) 𝑥 < 2 (𝑥 − 1) < 0,

(3𝑝 + 1 + 2𝑥) < 2 (𝑥 − 1) < 0,

(16)

and then 𝑢
1
(𝑥, 𝑝) > 0. It remains to prove that 𝑢

2
(𝑥, 𝑝) > 0

for 𝑝 ∈ (−∞, −1]. Differentiation leads to

𝜕𝑢
2

𝜕𝑝
= (12𝑥 + 6) 𝑝 + (2𝑥

3
+ 8𝑥
2
+ 2𝑥 + 6) . (17)

Hence, 𝜕𝑢
2
/𝜕𝑝 < −(12𝑥 + 6) + (2𝑥

3
+ 8𝑥
2
+ 2𝑥 + 6) = 2𝑥(𝑥 +

5)(𝑥 − 1) < 0, which implies that 𝑢
2
is decreasing in 𝑝 on

(−∞, −1), and therefore,

𝑢
2
(𝑥, 𝑝) > 𝑢

2
(𝑥, −1) = 4𝑥(𝑥 − 1)

2
> 0. (18)

This completes the proof.

Lemma 3. Let 𝑢
3
be defined on (0, 1) × (−∞, −1] ∪ [0,∞) by

𝑢
3
(𝑥, 𝑝) = (𝑝 + 3)

2

𝑥
2
+ (𝑝 + 3) (7𝑝 + 3) 𝑥

+ (−3𝑝
3
+ 13𝑝

2
+ 21𝑝 + 9) .

(19)

Then

(i) 𝑢
3
(𝑥, 𝑝) ≥ 0 for all 𝑥 ∈ (0, 1) if and only if 𝑝 ∈

(−∞, 𝑝
3
], where 𝑝

3
≈ 5.6630 is the unique solution

of the equation 𝑢
3
(0, 𝑝) = −3𝑝

3
+ 13𝑝

2
+ 21𝑝 + 9 = 0;

(ii) 𝑢
3
(𝑥, 𝑝) ≤ 0 if and only if 𝑝 ∈ [9,∞);

(iii) for every 𝑝 ∈ (𝑝
3
, 9), there exists a unique 𝑥

1
∈ (0, 1)

such that 𝑢
3
(𝑥, 𝑝) < 0 for 𝑥 ∈ (0, 𝑥

1
) and 𝑢

3
(𝑥, 𝑝) > 0

for 𝑥 ∈ (𝑥
1
, 1).

Proof. In order to prove the desired results, we need to rewrite
𝑢
3
(𝑥, 𝑝) as

𝑢
3
(𝑥, 𝑝) = ((𝑝 + 3) 𝑥 +

7𝑝 + 3

2
)

2

− 3 (𝑝 −
9

4
) (𝑝 + 1)

2

.

(20)

We clearly see that

𝑢
3
(0, 𝑝) = − 3𝑝

3
+ 13𝑝

2
+ 21𝑝 + 9,

𝑢
3
(1, 𝑝) = − 3(𝑝 + 1)

2

(𝑝 − 9) .

(21)

We claim that there exists unique 𝑝
3
∈ (5, 6) such that

𝑢
3
(0, 𝑝) > 0 for 𝑝 ∈ (−∞, 𝑝

3
) and 𝑢

3
(0, 𝑝) < 0 for 𝑝 ∈

(𝑝
3
,∞). Indeed, we have

𝑢


3
(0, 𝑝) = −9𝑝

2
+ 26𝑝 + 21

= −9(𝑝 −
13 − √358

9
)(𝑝 −

13 + √358

9
) ,

(22)
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which implies that 𝑢
3
(0, 𝑝) is increasing on ((13 − √358)/9,

(13+√358)/9) and decreasing on (−∞, (13−√358)/9)∪((13+

√358)/9,∞). Since

𝑢
3
(0,

13 − √358

9
) =

13952

243
−
716

243

√358 ≈ 1.6652 > 0,

𝑢
3
(0,

13 + √358

9
) =

716

243

√358 +
13952

243
> 0,

𝑢
3
(0,∞) = −∞,

(23)

there exists unique 𝑝
3
∈ ((13 + √358)/9,∞) such that

𝑢
3
(0, 𝑝
3
) = 0 and 𝑢

3
(0, 𝑝) > 0 for 𝑝 ∈ (−∞, 𝑝

3
) and

𝑢
3
(0, 𝑝) < 0 for 𝑝 ∈ (𝑝

3
,∞). An easy calculation reveals that

𝑝
3
≈ 5.6630.
(i) Now we prove the necessary and sufficient condition

for 𝑢
3
(𝑥, 𝑝) ≥ 0 for all 𝑥 ∈ (0, 1). Since 𝑢

3
(𝑥, −3) = 144 >

0, we assume that 𝑝 ̸= − 3. Denote the minimum point of
𝑢
3
(𝑥, 𝑝) by 𝑥

0
. Then 𝑥

0
= −(7𝑝 + 3)/(2(𝑝 + 3)). And then,

due to 𝜕2𝑢
3
/𝜕𝑥
2
> 0, 𝑢

3
(𝑥, 𝑝) ≥ 0 for all 𝑥 ∈ (0, 1) if and only

if at least one of the following cases occur.

Case 1.Consider that𝑥
0
= −(7𝑝+3)/(2(𝑝+3)) ≥ 1, 𝑢

3
(1, 𝑝) ≥

0. It is derived that 𝑝 ∈ (−3, −1].

Case 2.Consider that𝑥
0
= −(7𝑝+3)/(2(𝑝+3)) ≤ 0,𝑢

3
(0, 𝑝) ≥

0. It implies that 𝑝 ∈ (−∞, −3), ∪[−3/7, 𝑝
3
].

Case 3. Consider that 𝑥
0
= −(7𝑝 + 3)/(2(𝑝 + 3)) ∈ (0, 1),

𝑢
3
(𝑥
0
, 𝑝) = −3(𝑝 − 9/4)(𝑝 + 1)

2
≥ 0. It yields 𝑝 ∈ (−1, −3/7).

To sum up, 𝑢
3
(𝑥, 𝑝) ≥ 0 for all 𝑥 ∈ (0, 1) if and only if

𝑝 ∈ (−∞, 𝑝
3
].

(ii) It is clear that 𝑢
3
(𝑥, 𝑝) ≤ 0 if and only if 𝑢

3
(0, 𝑝) ≤ 0

and 𝑢
3
(1, 𝑝) ≤ 0. Solving the inequalities for 𝑝 leads to 𝑝 ≥ 9.

(iii) In the case of𝑝 ∈ (𝑝
3
, 9), we clearly see that 𝑢

3
(0, 𝑝) <

0, 𝑢
3
(1, 𝑝) > 0, and 𝑥

0
= −(7𝑝+3)/(2(𝑝+3)) < 0.This implies

that there exists a unique 𝑥
1
∈ (0, 1) such that 𝑢

3
(𝑥, 𝑝) < 0

for 𝑥 ∈ (0, 𝑥
1
) and 𝑢

3
(𝑥, 𝑝) > 0 for 𝑥 ∈ (𝑥

1
, 1).

This completes the proof.

Now let us consider the sign of function 𝑔 defined on
(0, 𝜋/2) × (−∞, −1] ∪ [0,∞) by

𝑔 (𝑡, 𝑝) = 𝑡 − ( ((2𝑝 + (𝑝 + 3) cos 𝑡) (3𝑝 + 1 + 2 cos 𝑡))

× (2 (𝑝 + 3) cos3𝑡 + 8𝑝cos2𝑡

+2𝑝 (3𝑝 + 1) cos 𝑡 + 3(𝑝 + 1)2)
−1

sin 𝑡)

= 𝑡 −
𝑢
1
(cos 𝑡, 𝑝)

𝑢
2
(cos 𝑡, 𝑝)

sin 𝑡,

(24)

where 𝑢
1
(𝑥, 𝑝) and 𝑢

2
(𝑥, 𝑝) are defined by (14) and (15),

respectively. We have the following.

Lemma 4. Let 𝑔 be defined on (0, 𝜋/2) × (−∞, −1] ∪ [0,∞)

by (24). Then

(i) 𝑔(𝑡, 𝑝) < 0 for all 𝑡 ∈ (0, 𝜋/2) if and only if 𝑝 ∈

(−∞, −1] ∪ [9,∞);
(ii) 𝑔(𝑡, 𝑝) > 0 for all 𝑡 ∈ (0, 𝜋/2) if and only if 𝑝 ∈ [0, 𝑝

1
],

where

𝑝
1
=
2√6𝜋 + 1 + 3𝜋 − 2

12 − 3𝜋
≈ 6.3433; (25)

(iii) in the case of 𝑝 ∈ (𝑝
1
, 9), there exists a unique 𝑡

0
∈

(0, 𝜋/2) such that 𝑔(𝑡, 𝑝) > 0 for 𝑡 ∈ (0, 𝑡
0
) and

𝑔(𝑡, 𝑝) < 0 for 𝑡 ∈ (𝑡
0
, 𝜋/2).

Proof. We first give two limit relations as follows:

lim
𝑡→0
+

𝑔 (𝑡, 𝑝)

𝑡
5

= −
1

45

𝑝 − 9

𝑝 + 1
if 𝑝 ̸= − 1,

𝑔 (
𝜋

2

−

, 𝑝) = −
12 − 3𝜋

6(𝑝 + 1)
2
(𝑝 − 𝑝

1
) (𝑝 − 𝑝

2
) if 𝑝 ̸= − 1,

(26)

where

𝑝
1
=
2√6𝜋 + 1 + 3𝜋 − 2

12 − 3𝜋
≈ 6.3433,

𝑝
2
= −

2√6𝜋 + 1 − 3𝜋 + 2

12 − 3𝜋
< 0.

(27)

In fact, if 𝑝 ̸= − 1, then making use of power series we get

𝑔 (𝑡, 𝑝) = −
1

45

𝑝 − 9

𝑝 + 1
𝑡
5
+ 𝑜 (𝑡
5
) , (28)

which implies the first relation. Direct computations yield the
second one.

Differentiating 𝑔(𝑡, 𝑝) with respect to 𝑡 leads to

𝜕𝑔

𝜕𝑡
= 1 −

𝑢
1
(cos 𝑡, 𝑝)

𝑢
2
(cos 𝑡, 𝑝)

cos 𝑡 + (sin2𝑡) 𝑑

𝑑𝑥

𝑢
1
(𝑥, 𝑝)

𝑢
2
(𝑥, 𝑝)

𝑥=cos 𝑡

=

4 (1 − 𝑥) (1 − 𝑥
2
)

𝑢
2

2
(𝑥, 𝑝)

× ℎ (𝑥, 𝑝) ,

(29)

where 𝑢
1
(𝑥, 𝑝) and 𝑢

2
(𝑥, 𝑝) are defined by (14) and (15),

respectively, and

ℎ (𝑥, 𝑝) = (𝑥 +
3𝑝 + 1

2
) × 𝑢
3
(𝑥, 𝑝) ; (30)

here 𝑢
3
(𝑥, 𝑝) is defined by (19) and 𝑥 = cos 𝑡 ∈ (0, 1).

(i) We now prove that 𝑔(𝑡, p) ≤ 0 for all 𝑡 ∈ (0, 𝜋/2) if and
only if 𝑝 ∈ (−∞, −1] ∪ [9,∞). The necessity easily follows
from the inequalities lim

𝑡→0
+𝑡
−5
𝑔(𝑡, 𝑝) ≤ 0 and 𝑔(𝜋/2−, 𝑝) ≤

0 if 𝑝 ̸= − 1 and 𝑔(𝑡, −1) = 𝑡 − tan 𝑡 < 0 together with the
relation (26).
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Next we prove the sufficiency. If 𝑝 ∈ [9,∞), then by
Lemma 3 𝑢

3
(𝑥, 𝑝) ≤ 0, and then ℎ(𝑥, 𝑝) ≤ 0. This indicates

that 𝑔 is decreasing in 𝑡 on (0, 𝜋/2), and therefore, we get
𝑔(𝑡, 𝑝) < 𝑔(0

+
, 𝑝) = 0. If 𝑝 ∈ (−∞, −1], then 𝑢

3
(𝑥, 𝑝) ≥ 0

and 𝑥 + (3𝑝 + 1)/2 < 𝑥 − 1 < 0, which yields ℎ(𝑥, 𝑝) ≤ 0.
This also yields that 𝑔 is decreasing in 𝑡 on (0, 𝜋/2), and so
𝑔(𝑡, 𝑝) < 𝑔(0

+
, 𝑝) = 0.

(ii) Similarly, we can prove that 𝑔(𝑡, 𝑝) > 0 for all 𝑡 ∈
(0, 𝜋/2) if and only if 𝑝 ∈ [0, 𝑝

1
]. If 𝑔(𝑡, 𝑝) > 0 for all

𝑡 ∈ (0, 𝜋/2), then we have lim
𝑡→0
+𝑡
−5
𝑔(𝑡, 𝑝) ≥ 0 and

𝑔(𝜋/2
−
, 𝑝) ≥ 0, which together with (26) and 𝑝 ∈ (−∞, −1]∪

[0,∞) lead to 𝑝 ∈ [0, 𝑝
1
].

In order to prove the sufficiency, we distinguish two cases.
In the case of 𝑝 ∈ [0, 𝑝

3
], by Lemma 3 we have 𝑢

3
(𝑥, 𝑝) ≥

0, which implies that 𝑔 is increasing in 𝑡 on (0, 𝜋/2), and so,
𝑔(𝑡, 𝑝) > 𝑔(0

+
, 𝑝) = 0.

In the case of 𝑝 ∈ (𝑝
3
, 𝑝
1
], from Lemma 3 there is a

unique 𝑥
1
∈ (0, 1) such that 𝑢

3
(𝑥, 𝑝) < 0 for 𝑥 ∈ (0, 𝑥

1
) and

𝑢
3
(𝑥, 𝑝) > 0 for 𝑥 ∈ (𝑥

1
, 1). This in conjunction with (30)

and (29) shows that 𝑔 is decreasing in 𝑡 on (arccos𝑥
1
, 𝜋/2)

and increasing on (0, arccos𝑥
1
), and consequently, we have

𝑔 (𝑡, 𝑝) > 𝑔 (0
+
, 𝑝) = for 𝑡 ∈ (0, arccos𝑥

1
) ,

𝑔 (𝑡, 𝑝) > 𝑔 (
𝜋

2

+

, 𝑝) = −
12 − 3𝜋

6(𝑝 + 1)
2
(𝑝 − 𝑝

1
) (𝑝 − 𝑝

2
) ≥ 0

for 𝑡 ∈ (arccos𝑥
1
,
𝜋

2
) ,

(31)

which proves the sufficiency.
(iii) In the case when 𝑝 ∈ (𝑝

1
, 9), we have seen that

𝑔 is decreasing in 𝑡 on (arccos𝑥
1
, 𝜋/2) and increasing on

(0, arccos𝑥
1
) and 𝑔(𝑡, 𝑝) > 0 for 𝑡 ∈ (0, arccos𝑥

1
), but

𝑔(
𝜋

2

−

, 𝑝) = −
12 − 3𝜋

6(𝑝 + 1)
2
(𝑝 − 𝑝

1
) (𝑝 − 𝑝

2
) < 0. (32)

Thus, there is a unique 𝑡
0
∈ (arccos𝑥

1
, 𝜋/2) such that𝑔(𝑡, 𝑝) >

0 for 𝑡 ∈ (0, 𝑡
0
) and 𝑔(𝑡, 𝑝) < 0 for 𝑡 ∈ (𝑡

0
, 𝜋/2).

The whole proof is complete.

We next observe the function 𝑓 defined on (0, 𝜋/2) ×

(−∞, −1] ∪ [0,∞) by

𝑓 (𝑡, 𝑝) = ln sin 𝑡
𝑡

− ln𝐻
1
(cos 𝑡, 𝑝)

= ln sin 𝑡
𝑡

− ln
2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

.

(33)

Differentiation yields that

𝜕𝑓

𝜕𝑡
=
cos 𝑡
sin 𝑡

−
1

𝑡
−

2 sin 𝑡
3𝑝 + 1 + 2 cos 𝑡

+
(𝑝 + 3) sin 𝑡

2𝑝 + (𝑝 + 3) cos 𝑡

= ((2 (𝑝 + 3) cos3𝑡 + (3𝑝2 + 14𝑝 + 3) cos2𝑡

+ 3(𝑝 + 1)
2

(sin2𝑡) +2𝑝 (3𝑝 + 1) cos 𝑡)

×((sin 𝑡) (2𝑝+3 cos 𝑡+𝑝 cos 𝑡) (3𝑝+2 cos 𝑡+1))−1)− 1
𝑡

=
1

sin 𝑡
𝑢
2
(cos 𝑡, 𝑝)

𝑢
1
(cos 𝑡, 𝑝)

−
1

𝑡
=

1

𝑡 sin 𝑡
𝑢
2
(cost, 𝑝)

𝑢
1
(cos 𝑡, 𝑝)

× 𝑔 (𝑡, 𝑝) ,

(34)

where 𝑢
1
(𝑥, 𝑝), 𝑢

2
(𝑥, 𝑝), and 𝑔(𝑡, 𝑝) are defined by (14), (15),

and (24), respectively. From Lemmas 2 and 4 the following
assertion is immediate.

Lemma 5. Let 𝑓 be the function defined on (0, 𝜋/2) ×

(−∞, −1] ∪ [0,∞) by (33). Then

(i) 𝑓 is decreasing in 𝑡 on (0, 𝜋/2) if and only if 𝑝 ∈

(−∞, −1] ∪ [9,∞);

(ii) 𝑓 is increasing in 𝑡 on (0, 𝜋/2) if and only if 𝑝 ∈ [0, 𝑝
1
],

where 𝑝
1
≈ 6.3433 is given by (25);

(iii) in the case when 𝑝 ∈ (𝑝
1
, 9), there is a unique 𝑡

0
∈

(0, 𝜋/2) such that 𝑓 is increasing in 𝑡 on (0, 𝑡
0
) and

decreasing on (𝑡
0
, 𝜋/2).

Lastly, for later use, we also give the following.

Lemma 6. Let𝐻
1
be defined on (0, 1) × (−∞, −1] ∪ [0,∞) by

(10). Then𝐻
1
(𝑥
3
, 𝑝) ≥ 𝑥 if and only if 𝑝 ∈ (−∞, −1] ∪ [1,∞),

and𝐻
1
(𝑥
3
, 𝑝) ≤ 𝑥 if and only if 𝑝 = 0.

Proof. For 𝑝 ∈ (−∞,∞), we define

𝑢
4
(𝑥, 𝑝) = 2𝑥

2
+ (1 − 𝑝) 𝑥 − 2𝑝

= 2(𝑥 −
𝑝 − 1

4
)

2

−
1

7
(14𝑝 + 𝑝

2
+ 1) .

(35)

Then 𝑢
4
(𝑥, 𝑝) ≥ 0 holds for all 𝑥 ∈ (0, 1) if and only if 𝑝 ∈

(−∞, 0].
In fact, 𝑢

4
(𝑥, 𝑝) ≥ 0 if and only if at least one case of the

following occurs.

Case 1. Consider that (𝑝 − 1)/4 ≥ 1, 𝑢
4
(1, 𝑝) = 3 − 3𝑝 ≥ 0. It

is impossible.

Case 2. Consider that (𝑝 − 1)/4 ≤ 0, 𝑢
4
(0, 𝑝) = −2𝑝 ≥ 0. It

indicates 𝑝 ∈ (−∞, 0].

Case 3. Consider that 0 < (𝑝 − 1)/4 < 1, 𝑢
4
((𝑝 − 1)/4, 𝑝) ≥ 0.

It is impossible.
In the same way, we can prove that 𝑢

4
(𝑥, 𝑝) ≤ 0 holds for

all 𝑥 ∈ (0, 1) if and only if 𝑝 ∈ [1,∞).
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We now prove that 𝐻
1
(𝑥
3
, 𝑝) ≥ 𝑥 if and only if 𝑝 ∈

(−∞, −1] ∪ [1,∞). Factoring yields

𝐻
1
(𝑥
3
, 𝑝) − 𝑥 = −2(𝑥 − 1)

2
2𝑥
2
+ (1 − 𝑝) 𝑥 − 2𝑝

3𝑝 + 2𝑥
3
+ 1

= −(𝑥 − 1)
2

𝑢
4
(𝑥, 𝑝)

3𝑝 + 2𝑥
3
+ 1

.

(36)

If 𝑝 ∈ (−∞, −1], then 3𝑝 + 2𝑥
3
+ 1 < 0, and then,

𝐻
1
(𝑥
3
, 𝑝) ≥ 𝑥 if and only if 𝑢

4
(𝑥, 𝑝) ≥ 0, which is equivalent

to 𝑝 ∈ (−∞, −1] ∩ (−∞, 0] = (−∞, −1]. If 𝑝 ∈ [0,∞),
then 3𝑝 + 2𝑥3 + 1 > 0, and then, 𝐻

1
(𝑥
3
, 𝑝) ≥ 𝑥 if and

only if 𝑢
4
(𝑥, 𝑝) ≤ 0, which is equivalent to 𝑝 ∈ [0,∞) ∩

[1,∞) = [1,∞). Consequently, 𝐻
1
(𝑥
3
, 𝑝) ≥ 𝑥 if and only

if 𝑝 ∈ (−∞, −1] ∪ [1,∞).
Next we show that 𝐻

1
(𝑥
3
, 𝑝) ≤ 𝑥 if and only if 𝑝 = 0.

In fact, if 𝑝 ∈ (−∞, −1], then 𝐻
1
(𝑥
3
, 𝑝) ≤ 𝑥 if and only

if 𝑢
4
(𝑥, 𝑝) ≤ 0, which yields 𝑝 ∈ [1,∞). It is clearly a

contradiction. If 𝑝 ∈ [0,∞), then the statement in question if
and only if𝑢

4
(𝑥, 𝑝) ≥ 0, which leads to𝑝 ∈ [0,∞)∩(−∞, 0] =

{0}. Thus the proof is complete.

3. Main Results

Theorem 7. Let 𝑝 ∈ (−∞, −1] ∪ [0,∞). Then for 𝑡 ∈ (0, 𝜋/2),

sin 𝑡
𝑡

<
2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

(37)

holds if and only if 𝑝 ∈ (−∞, −1] ∪ [9,∞). Moreover, we have

𝐻
2
(cos 𝑡, 𝑝) = 𝜆

𝑝

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

<
2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

= 𝐻
1
(cos 𝑡, 𝑝)

(38)

for𝑝 ∈ (−∞, −1]∪[9,∞), where 𝜆
𝑝
= (3𝑝+1)/(𝜋𝑝) is the best

possible. And the lower and upper bounds in (38) are decreasing
and increasing in p on (−∞, −1] ∪ (0,∞), respectively.

Proof. Clearly, the desired result is equivalent to 𝑓(𝑡, 𝑝) < 0

if and only if 𝑝 ∈ (−∞, −1] ∪ [9,∞), where 𝑓(𝑡, 𝑝) is defined
by (33). To this end, we give two limit relations. The first one
follows by expanding 𝑓(𝑡, 𝑝) in power series for 𝑡. We have

𝑓 (𝑡, 𝑝) = −
1

180

𝑝 − 9

𝑝 + 1
𝑡
4
+ 𝑜 (𝑡
4
) if 𝑝 ̸= − 1, (39)

which yields

lim
𝑡→0
+

𝑓 (𝑡, 𝑝)

𝑡
4

= −
1

180

𝑝 − 9

𝑝 + 1
if 𝑝 ̸= − 1. (40)

The second one is derived by a simple computation; that is,

𝑓(
𝜋

2

−

, 𝑝) = ln
3𝑝 + 1

𝜋𝑝
. (41)

Now we prove that 𝑓(𝑡, 𝑝) < 0 for all 𝑡 ∈ (0, 𝜋/2) if and only
if 𝑝 ∈ (−∞, −1] ∪ [9,∞).

The necessity easily follows by solving the simultaneous
inequalities:

lim
𝑡→0
+

𝑓 (𝑡, 𝑝)

𝑡
4

= −
1

180

𝑝 − 9

𝑝 + 1
≤ if 𝑝 ̸= − 1,

𝑓 (𝑡, −1) = ln sin 𝑡
𝑡

< 0,

𝑓 (
𝜋

2

−

, 𝑝) = ln
3𝑝 + 1

𝜋𝑝
≤ 0,

(42)

which implies 𝑝 ∈ (−∞, −1] ∪ [9,∞).
The sufficiency is due to Lemma 5. In fact, If 𝑝 ∈

(−∞, −1] ∪ [9,∞), then by Lemma 5 we see that 𝑓 is
decreasing in 𝑡 on (0, 𝜋/2). Hence, 𝑓(𝑡, 𝑝) < 𝑓(0+, 𝑝) = 0.

Utilizing the monotonicity of𝑓 in 𝑡 on (0, 𝜋/2) gives (38).
And fromLemma 1 it is seen that the lower and upper bounds
in (38) are decreasing and increasing in 𝑝 on (−∞, −1] ∪

(0,∞), respectively.
Thus the proof is finished.

By Theorem 7 and Lemma 1, we have the following
interesting chain of inequalities.

Corollary 8. For 𝑡 ∈ (0, 𝜋/2), one has

2

𝜋
= 𝐻
2
(cos 𝑡, −1) < ⋅ ⋅ ⋅ < 𝐻

2
(cos 𝑡, −∞)

=
2 + cos 𝑡

𝜋
= 𝐻
2
(cos 𝑡,∞) < ⋅ ⋅ ⋅ < 𝐻

2
(cos 𝑡, 9) < sin 𝑡

𝑡

< 𝐻
1
(cos 𝑡, 9) < ⋅ ⋅ ⋅ < 𝐻

1
(cos 𝑡,∞) =

2 + cos 𝑡
3

= 𝐻
1
(cos 𝑡, −∞) ⋅ ⋅ ⋅ < 𝐻

1
(cos 𝑡, −1) = −1.

(43)

Remark 9. It is clear that our results unify and refine Jordan
and Cusa’s inequalities and show that the first one in (9)
is sharp. Also, Theorem 7 contains other known results, for
example, taking 𝑝 = −3 in (38) we get

8

𝜋

1

4 − cos 𝑡
<
sin 𝑡
𝑡

< 3
1

4 − cos 𝑡
, (44)

which contain (6). After a simple transformation, (44) can be
written as

8

𝜋

𝑡

sin 𝑡
+ cos 𝑡 < 4 < 3 𝑡

sin 𝑡
+ cos 𝑡, (45)

where the second inequality in (45) is due to Neuman and
Sándor [6, (2.12)].

Theorem 10. Let 𝑝 ∈ (−∞, −1]∪[0,∞).Then for 𝑡 ∈ (0, 𝜋/2)

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

(46)

holds if and only if 𝑝 ∈ [0, 𝑝
0
], where 𝑝

0
= (𝜋 − 3)

−1
≈ 7.0625.
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Moreover, for 𝑝 ∈ (0, 𝑝
1
], one has

𝐻
1
(cos 𝑡, 𝑝) =

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

< 𝜆
𝑝

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

= 𝐻
2
(cos 𝑡, 𝑝) ,

(47)

where 𝑝
1
≈ 6.3433, 𝜆

𝑝
= (3𝑝 + 1)/(𝜋𝑝) is the best possible.

And𝐻
1
(cos 𝑡, 𝑝),𝐻

2
(cos 𝑡, 𝑝) are decreasing and increasing in

𝑝 on (−∞, −1] ∪ (0,∞), respectively.
For 𝑝 ∈ (𝑝

1
, 𝑝
0
] one has

𝐻
1
(cos 𝑡, 𝑝) =

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

< 𝛿
𝑝

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

= 𝛿
𝑝
𝐻
1
(cos 𝑡, 𝑝) ,

(48)

where 𝛿
𝑝
= (sin 𝑡

0
/𝑡
0
)(((3𝑝+1)+2 cos 𝑡

0
)/(2𝑝+(𝑝+3) cos 𝑡

0
))

is the best possible and 𝑡
0
is the unique root of the equation

(2𝑝 + (3 + 𝑝) cos 𝑡) (3𝑝 + 1 + 2 cos 𝑡)
2 (𝑝 + 3) cos3𝑡 + 8𝑝cos2𝑡 + 2𝑝 (3𝑝 + 1) cos 𝑡 + 3(𝑝 + 1)2

× sin 𝑡 = 𝑡
(49)

on (0, 𝜋/2).

Proof. Since the inequality (46) is equivalent to 𝑓(𝑡, 𝑝) > 0, it
suffices to prove that 𝑓(𝑡, 𝑝) > 0 holds for 𝑡 ∈ (0, 𝜋/2) if and
only if 𝑝 ∈ [0, 𝑝

0
].

Similarly, solving the simultaneous inequalities
lim
𝑡→0

𝑡
−4
𝑓(𝑡, 𝑝) ≥ 0 and 𝑓(𝜋/2

−
, 𝑝) ≥ 0 with

𝑝 ∈ (−∞, −1] ∪ (0,∞) yields 𝑝 ∈ [0, 𝑝
0
], which proves the

necessity.
Conversely, the condition 𝑝 ∈ [0, 𝑝

0
] is also sufficient for

𝑓(𝑡, 𝑝) > 0 to be valid. For this end, we divide the proof into
two cases.

Case 1. Consider that 𝑝 ∈ [0, 𝑝
1
]. By Lemma 5 it is seen that

𝑓 is increasing in 𝑡 on (0, 𝜋/2), which indicates that 𝑓(𝑡, 𝑝) >
𝑓(0
+
, 𝑝) = 0.

Case 2. Consider that 𝑝 ∈ (𝑝
1
, 𝑝
0
]. By Lemma 5 we see that

there is a unique 𝑡
0
∈ (0, 𝜋/2) such that 𝑓 is increasing in 𝑡 on

(0, 𝑡
0
) and decreasing on (𝑡

0
, 𝜋/2). It is acquired that

𝑓 (𝑡
0
, 𝑝) > 𝑓 (𝑡, 𝑝) > 𝑓 (0

+
, 𝑝) = 0 for 𝑡 ∈ (0, 𝑡

0
) ,

𝑓 (𝑡
0
, 𝑝) > 𝑓 (𝑡, 𝑝) > 𝑓 (𝜋/2

−
, 𝑝) = ln

3𝑝 + 1

𝜋𝑝
≥ 0

for 𝑡 ∈ (𝑡
0
,
𝜋

2
) ;

(50)

that is,

𝑓 (𝑡
0
, 𝑝) ≥ 𝑓 (𝑡, 𝑝) > for 𝑡 ∈ (0, 𝜋/2) , (51)

which proves the sufficiency.

In the first case, application of the monotonicity of 𝑓 in
𝑡 on (0, 𝜋/2) leads to (47), and 𝜆

𝑝
= (3𝑝 + 1)/(𝜋𝑝). In the

second case, (51) also yields (47), and

𝛿
𝑝
= exp𝑓 (𝑡

0
, 𝑝) =

sin 𝑡
0

𝑡
0

(3𝑝 + 1) + 2 cos 𝑡
0

2𝑝 + (𝑝 + 3) cos 𝑡
0

. (52)

Thus we complete the proof.

Remark 11. Taking 𝑝 = 7 in (46), we get the first inequality in
(9).

Letting 𝑝 = 𝑝
0

= (𝜋 − 3)
−1 and solving (49) by

mathematical computation software, we find that 𝑡
0
≈ 1.3055

and 𝛿
𝑝
0

≈ 1.0015. Letting 𝑝 = 𝑝
1
be defined by (25) yields

𝜆
𝑝
1

= (3𝑝
1
+ 1)/(𝜋𝑝

1
) ≈ 1.0051. By Theorem 10 we get the

following.

Corollary 12. For 𝑡 ∈ (0, 𝜋/2), one has

2𝑝
0
+ (𝑝
0
+ 3) cos 𝑡

(3𝑝
0
+ 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

< 𝛿
𝑝
0

2𝑝
0
+ (𝑝
0
+ 3) cos 𝑡

(3𝑝
0
+ 1) + 2 cos 𝑡

,

2𝑝
1
+ (𝑝
1
+ 3) cos 𝑡

(3𝑝
1
+ 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

< 𝜆
𝑝
1

2𝑝
1
+ (𝑝
1
+ 3) cos 𝑡

(3𝑝
1
+ 1) + 2 cos 𝑡

,

(53)

where 𝛿
𝑝
0

≈ 1.0015 and 𝜆
𝑝
1

≈ 1.0051 are the best possible
constants.

Letting 𝑥 = cos1/3𝑡 in Lemma 6 and using Theorems
7 and 10, we obtain a chain of inequalities that interpo-
lates Adamović-Mitrinović and Cusa’s inequalities (2) by
𝐻
1
(cos𝑥, 𝑝).

Theorem 13. For 𝑡 ∈ (0, 𝜋/2), the inequalities

2𝑝 + (𝑝 + 3) cos 𝑡
(3𝑝 + 1) + 2 cos 𝑡

< cos1/3𝑡 <
2𝑞 + (𝑞 + 3) cos 𝑡
(3𝑞 + 1) + 2 cos 𝑡

<
sin 𝑡
𝑡

<
2𝑟 + (𝑟 + 3) cos 𝑡
(3𝑟 + 1) + 2 cos 𝑡

<
2 + cos 𝑡

3

<
2𝑠 + (𝑠 + 3) cos 𝑡
(3𝑠 + 1) + 2 cos 𝑡

(54)

hold if and only if 𝑝 = 0, 𝑞 ∈ [0, 𝑝
0
], 𝑟 ∈ [9,∞), and 𝑠 ∈

(−∞, −1], where 𝑝
0
= (𝜋 − 3)

−1.

Using themonotonicity of𝑓(𝑡, 𝑝) in 𝑡 on (0, 𝜋/4) given by
parts one and two of Lemma 5, we see that

ln(4
𝜋

3𝑝 + √2 + 1

(2√2 + 1) 𝑝 + 3

)

= 𝑓(
𝜋

4
, 𝑝) ≤ 𝑓(

𝑡

2
, 𝑝) = ln 2 sin (𝑡/2)

𝑡

− ln𝐻
1
(cos 𝑡

2
, 𝑝) ≤ 𝑓 (0, 𝑝) = 0

(55)
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hold for 𝑝 ∈ (−∞, −1] ∪ [9,∞). And then we have

4

𝜋

3𝑝 + √2 + 1

(2√2 + 1) 𝑝 + 3

𝐻
1
(cos 𝑡

2
, 𝑝) cos 𝑡

2

<
sin 𝑡
𝑡

= 𝐻
1
(cos 𝑡

2
, 𝑝) cos 𝑡

2
.

(56)

It is clear that the right-hand in (56) is increasing in 𝑝 on
(−∞, −1] ∪ [0,∞), but the monotonicity of left-hand is to be
checked. We define

𝐻
3
(𝑥, 𝑝) =

4

𝜋

3𝑝 + √2 + 1

(2√2 + 1) 𝑝 + 3

𝐻
1
(𝑥, 𝑝) , (57)

where 𝑥 = cos(𝑡/2) ∈ [1/√2, 1]. Logarithmic differentiation
leads to

𝜕 ln𝐻
3

𝜕𝑝

=
3

(3𝑝 + √2 + 1)

−
2√2 + 1

(𝑝 (2√2 + 1) + 3)

−
3

(3𝑝 + 2𝑥 + 1)
+

𝑥 + 2

2𝑝 + 𝑥 (𝑝 + 3)

= −((6 (2√2 + 1)(𝑥 −
√2

2
)(

22 − 9√2

7
− 𝑥))

× ((3𝑝 + √2 + 1) (𝑝 (2√2 + 1) + 3) (3𝑝 + 2𝑥 + 1)

× (2𝑝 + 𝑥 (𝑝 + 3)) )
−1

) (𝑝 + 1) (𝑝 − 𝑢
5
(𝑥)) ,

(58)

where

𝑢
5
(𝑥) =

(5 − 2√2) 𝑥 − (√2 + 2)

(5√2 − 2) − (2√2 + 1) 𝑥

. (59)

Since

𝑢


5
(𝑥) = −

12 (3 − 2√2)

(5√2 − 2 − (2√2 + 1) 𝑥)
2
< 0, (60)

we have −1 = 𝑢
5
(1) < 𝑢

5
(𝑥) < 𝑢

5
(1/√2) = −(24√2+5)/49 ≈

−0.7947. Consequently, 𝜕(ln𝐻
3
)/𝜕𝑝 < 0 for 𝑝 ∈ (−∞, −1] ∪

[0,∞).
The result can be stated as a theorem.

Theorem 14. Let 𝑝 ∈ (−∞, −1]∪[0,∞). Then for 𝑡 ∈ (0, 𝜋/2)
the inequalities

𝜎
𝑝

2𝑝 cos (𝑡/2) + (𝑝 + 3) cos2 (𝑡/2)
(3𝑝 + 1) + 2 cos (𝑡/2)

<
sin 𝑡
𝑡

<
2𝑝 cos (𝑡/2) + (𝑝 + 3) cos2 (𝑡/2)

(3𝑝 + 1) + 2 cos (𝑡/2)
.

(61)

hold if and only if 𝑝 ∈ (−∞, −1] ∪ [9,∞), where 𝜎
𝑝
=

(4/𝜋)((3𝑝 + √2 + 1)/((2√2 + 1)𝑝 + 3)) is the best constant.
And the right-hand and left-hand in (61) are increasing and
decreasing in 𝑝, respectively. Inequality (61) is reversed if and
only if 𝑝 ∈ [0, 𝑝

1
], where 𝑝

1
≈ 6.3433 is defined by (25).

Putting 𝑝 = 9,∞, 0, 1 in Theorem 14 we have the
following.

Corollary 15. For 𝑡 ∈ (0, 𝜋/2) the following inequalities hold:

2 (41√2 − 25)

7𝜋

2cos2 (𝑡/2) + 3 cos (𝑡/2)
cos (𝑡/2) + 14

<
sin 𝑡
𝑡

< 3
2cos2 (𝑡/2) + 3 cos (𝑡/2)

cos (𝑡/2) + 14
,

(62)

4 (2√2 − 1)

7

cos2 (𝑡/2) + 2 cos (𝑡/2)
𝜋

<
sin 𝑡
𝑡

<
cos2 (𝑡/2) + 2 cos (𝑡/2)

3
,

(63)

3
cos2 (𝑡/2)

2 cos (𝑡/2) + 1
<
sin 𝑡
𝑡

<

4 (√2 + 1)

𝜋

cos2 (𝑡/2)
2 cos (𝑡/2) + 1

, (64)

2cos2 (𝑡/2) + 1
cos (𝑡/2) + 2

<
sin 𝑡
𝑡

<

2 (3 − √2)

𝜋

2cos2 (𝑡/2) + 1
cos (𝑡/2) + 2

. (65)

Further, let𝐻
4
be defined on [1/√2, 1]×(−∞, −1]∪[0,∞)

by

𝐻
4
(𝑥, 𝑝) =

𝐻
1
(2𝑥
2
− 1, 𝑝)

𝑥𝐻
1
(𝑥, 𝑝)

, (66)

where𝐻
1
is defined by (10).We can show that themonotonic-

ity of𝐻
4
in 𝑥 for certain fixed 𝑝. Differentiation again yields

𝜕 ln𝐻
4
(𝑥, 𝑝)

𝜕𝑥
=

2

1 + 3𝑝 + 2𝑥
−
1

𝑥
−

𝑝 + 3

2𝑝 + (𝑝 + 3) 𝑥

+
4 (𝑝 + 3) 𝑥

(𝑝 − 3) + 2 (𝑝 + 3) 𝑥
2
−

8𝑥

4𝑥
2
+ 3𝑝 − 1

.

(67)

It is easy to verify that
𝜕 ln𝐻

4
(𝑥, 9)

𝜕𝑥

= −2

(𝑥 − 1)
2
(594𝑥

2
+ 240𝑥

3
+ 8𝑥
4
+ 910𝑥 + 273)

𝑥 (2𝑥 + 3) (𝑥 + 14) (2𝑥
2
+ 13) (4𝑥

2
+ 1)

< 0,

𝜕 ln𝐻
4
(𝑥,∞)

𝜕𝑥
= −2

(1 − 𝑥) (2𝑥 + 1)

𝑥 (𝑥 + 2) (2𝑥
2
+ 1)

< 0,

𝜕 ln𝐻
4
(𝑥, 1)

𝜕𝑥
= 2

(1 − 𝑥) (2𝑥
3
+ 8𝑥
2
+ 𝑥 + 1)

𝑥 (2𝑥 − 1) (𝑥 + 2) (2𝑥
2
+ 1)

> 0.

(68)



8 Abstract and Applied Analysis

Consequently, we have

1 =
𝐻
1
(1, 𝑝)

𝐻
1
(1, 𝑝)

<

𝐻
1
(2𝑥
2
− 1, 𝑝)

𝑥𝐻
1
(𝑥, 𝑝)

<
𝐻
1
(0, 𝑝)

(1/√2)𝐻
1
(1/√2, 𝑝)

=
4𝑝

3𝑝 + 1

3𝑝 + 1 + √2

(2√2 + 1) 𝑝 + 3

for 𝑝 = 9,∞.

(69)

It is reversed for 𝑝 = 1. From these we can obtain the
following.

Theorem 16. For 𝑡 ∈ (0, 𝜋/2) the following inequalities hold:

28

9𝜋

6 cos 𝑡 + 9
cos 𝑡 + 14

<

41 (2√2 − 25)

7𝜋

2cos2 (𝑡/2) + 3 cos (𝑡/2)
cos (𝑡/2) + 14

<
sin 𝑡
𝑡

<
6cos2 (𝑡/2) + 9 cos (𝑡/2)

cos (𝑡/2) + 14

<
6 cos 𝑡 + 9
cos 𝑡 + 14

,

2 + cos 𝑡
𝜋

<

12 (2√2 − 1)

7𝜋

cos2 (𝑡/2) + 2 cos (𝑡/2)
3

<
sin 𝑡
𝑡

<
cos2 (𝑡/2) + 2 cos (𝑡/2)

3

<
2 + cos 𝑡

3
,

2 cos 𝑡 + 1
cos 𝑡 + 2

<
2cos2 (𝑡/2) + 1
cos (𝑡/2) + 2

<
sin 𝑡
𝑡

<

2 (3 − √2)

𝜋

2cos2 (𝑡/2) + 1
cos (𝑡/2) + 2

<
4

𝜋

2 cos 𝑡 + 1
cos 𝑡 + 2

.

(70)

Additionally, Lemma 4 implies an optimal two-side
inequality.

Theorem 17. Let 𝑝 ∈ (−∞, −1] ∪ [0,∞) and let 𝑢
1
(𝑥, 𝑝) and

𝑢
2
(𝑥, 𝑝) be defined by (14) and (15), respectively. Then for 𝑡 ∈

(0, 𝜋/2) the two-side inequality

𝑢
2
(cos 𝑡, 𝑝)

𝑢
1
(cos 𝑡, 𝑝)

<
sin 𝑡
𝑡

<
𝑢
2
(cos 𝑡, 𝑞)

𝑢
1
(cos 𝑡, 𝑞)

(71)

holds if and only if 𝑝 ∈ (−∞, −1] ∪ [9,∞) and 𝑞 ∈ [0, 𝑝
1
],

where 𝑝
1
≈ 6.3433. And, for 𝑥 ∈ (0, 1), the function 𝑝 →

𝑢
2
(𝑥, 𝑝)/𝑢

1
(𝑥, 𝑝) is decreasing on (−∞, −1] ∪ [0,∞).

Proof. Since 𝑢
1
(𝑥, 𝑝), 𝑢

2
(𝑥, 𝑝) > 0 for 𝑝 ∈ (−∞, −1] ∪ [0,∞)

and 𝑥 ∈ (0, 1) by Lemma 2 and 𝑔(𝑡, 𝑝) defined by (24) can be
written as

𝑔 (𝑡, 𝑝) = −𝑡
𝑢
1
(cos 𝑡, 𝑝)

𝑢
2
(cos 𝑡, 𝑝)

(
sin 𝑡
𝑡

−
𝑢
2
(cos 𝑡, 𝑝)

𝑢
1
(cos 𝑡, 𝑝)

) , (72)

it follows from Lemma 4 that (71) k holds if and only
if 𝑝 ∈ (−∞, −1] ∪ [9,∞) and 𝑞 ∈ [0, 𝑝

1
]. It remains

to check the monotonicity of 𝑢
2
(cos 𝑡, 𝑝)/𝑢

1
(cos 𝑡, 𝑝) in 𝑝.

Differentiation yields

𝑑

𝑑𝑝

𝑢
2
(𝑥, 𝑝)

𝑢
1
(𝑥, 𝑝)

= − 6 (𝑥 + 1) (𝑥 − 1)
2

×
(𝑝 + 1) ((5 + 𝑥) 𝑝 + 5𝑥 + 1)

(2𝑝 + 3𝑥 + 𝑝𝑥)
2

(3𝑝 + 2𝑥 + 1)
2
,

(73)

where 𝑥 ∈ (0, 1). If 𝑝 ∈ [0,∞), then the numerator of the
fraction in right-hand above is clearly positive. Consider that
(𝑝+1)((5+𝑥)𝑝+5𝑥+1) > 0. If 𝑝 ∈ (−∞, −1], then (𝑝+1) ≤ 0
and ((5 + 𝑥)𝑝 + 5𝑥 + 1) ≤ 5(𝑥 − 1) < 0, which yields that the
numerator is nonnegative.

This proves the assertion.

Similarly, we can obtain a hyperbolic version ofTheorems
7 and 10

Theorem 18. Let 𝑝 ∈ (−∞, −1] ∪ [0,∞). Then for 𝑡 ∈ (0,∞)

2 + (1 + 3𝑝) cosh 𝑡
3 + 𝑝 + 2𝑝 cosh 𝑡

<
sinh 𝑡
𝑡

(74)

holds if and only if 𝑝 ∈ (−∞, −1] ∪ [1/9,∞). It is reversed if
and only if 𝑝 = 0.

Proof. Let 𝐹 be the function defined on (0,∞) × (−∞, −1] ∪

[0,∞) by

𝐹 (𝑡, 𝑝) =
3 + 𝑝 + 2𝑝 cosh 𝑡
2 + (1 + 3𝑝) cosh 𝑡

sinh 𝑡 − 𝑡. (75)

Then the inequalities (74) are equivalent to 𝐹(𝑡, 𝑝) > 0.
Expanding in power series yields

𝐹 (𝑡, 𝑝) =
𝑡
5

180

9𝑝 − 1

𝑝 + 1
+ 𝑜 (𝑡
5
) , (76)

which implies

lim
𝑡→0

𝐹 (𝑡, 𝑝)

𝑡
5

=
1

20

𝑝 − 1/9

𝑝 + 1
if 𝑝 ̸= − 1,

𝐹 (𝑡, −1) = sinh 𝑡 − 𝑡 > 0.
(77)

On the other hand, we have

lim
𝑡→∞

𝐹 (𝑡, 𝑝)

sinh 𝑡
=

2𝑝

1 + 3𝑝
. (78)

Now we prove desired results.
(i) We first prove that 𝐹(𝑡, 𝑝) > 0 holds if and only if 𝑝 ∈

(−∞, −1] ∪ [1/9,∞).
If 𝐹(𝑡, 𝑝) > 0 for all 𝑡 > 0, then we have

lim
𝑡→0

𝐹 (𝑡, 𝑝)

𝑡
5

=
1

20

𝑝 − 1/9

𝑝 + 1
≥ 0,

𝐹 (𝑡, −1) = sinh 𝑡 − 𝑡 > 0,

lim
𝑡→∞

𝐹 (𝑡, 𝑝)

sinh 𝑡
=

2𝑝

1 + 3𝑝
≥ 0.

(79)

Solving the inequalities yields 𝑝 ∈ (−∞, −1] ∪ [1/9,∞).
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We prove the condition 𝑝 ∈ (−∞, −1] ∪ [1/9,∞) is
sufficient for𝐹(𝑡, 𝑝) > 0 to hold for 𝑡 ∈ (0,∞). Differentiation
gives

𝜕𝐹

𝜕𝑡
=
(3𝑝 + 1 + 2 cosh 𝑡)
2𝑝 + (𝑝 + 3) cosh 𝑡

cosh 𝑡

−
3(𝑝 + 1)

2sinh2𝑡
(2𝑝 + (𝑝 + 3) cosh 𝑡)2

− 1

= (𝑥 − 1)
2
2𝑝 (3𝑝 + 1) 𝑥 + (3𝑝

2
+ 6𝑝 − 1)

(𝑥 + 3𝑝𝑥 + 2)
2

,

(80)

where 𝑥 = cosh 𝑡 ∈ (1,∞).
Due to 𝑝 ∈ (−∞, −1]∪ [1/9,∞), we see that 2𝑝(3𝑝+1) >

0, which yields

2𝑝 (3𝑝 + 1) 𝑥 + (3𝑝
2
+ 6𝑝 − 1)

> 2𝑝 (3𝑝 + 1) + (3𝑝
2
+ 6𝑝 − 1)

= (𝑝 + 1) (9𝑝 − 1) ≥ 0.

(81)

Then 𝜕𝐹/𝜕𝑡 > 0; that is, 𝐹 is increasing in 𝑡 on (0,∞).
It is obtained that 𝐹(𝑡, 𝑝) > 𝐹(0, 𝑝) = 0, which proves the
sufficiency.

(ii) Next we prove that the reverse inequality of (74) holds
if and only if 𝑝 = 0. The necessity follows from

lim
𝑡→0

𝐹 (𝑡, 𝑝)

𝑡
5

=
1

20

𝑝 − 1/9

𝑝 + 1
≤ 0,

lim
𝑡→∞

𝐹 (𝑡, 𝑝)

sinh 𝑡
=

2𝑝

1 + 3𝑝
≤ 0,

(82)

and the assumption 𝑝 ∈ (−∞, −1] ∪ [0,∞). We get 𝑝 = 0.
Now we prove 𝐹(𝑡, 𝑝) < 0 when 𝑝 = 0. We have

𝜕𝐹

𝜕𝑡
= −

(𝑥 − 1)
2

(𝑥 + 3𝑝𝑥 + 2)
2
< 0, (83)

where 𝑥 = cosh 𝑡 ∈ (1,∞), then 𝐹(𝑡, 0) < 𝐹(0, 0) = 0.
Thus the proof of Theorem 18 is complete.

Denote

𝐻
5
(𝑥, 𝑝) =

2 + (1 + 3𝑝) 𝑥

3 + 𝑝 + 2𝑝𝑥
. (84)

It is easy to verify that 𝐻
5
(𝑥, 𝑝) = 𝐻

1
(𝑥, 𝑝
−1
) for 𝑝 ̸= 0. By

Lemma 1, we see that 𝐻
5
is decreasing in 𝑝 on (−∞, −1] ∪

[0,∞). Thus, as a consequence of Theorem 14, we have the
following.

Corollary 19. One has
2 + cosh 𝑡

3
>
sinh 𝑡
𝑡

> 𝐻
5
(cosh 𝑡, 1

9
)

> ⋅ ⋅ ⋅ > 𝐻
5
(cosh 𝑡,∞) =

3 cosh 𝑡
2 cosh 𝑡 + 1

= 𝐻
5
(cosh 𝑡, −∞) > ⋅ ⋅ ⋅ 𝐻

5
(cosh 𝑡, −1) = 1.

(85)

Furthermore, note that 𝐻
5
(𝑥, 𝑝) = 𝐻

−1

1
(𝑥
−1
, 𝑝) and by

Lemma 6 we have the following.

Corollary 20. One has

2 + cosh 𝑡
3

>
sinh 𝑡
𝑡

> cosh1/3𝑡 > 1 + 2 cosh 𝑡
2 + cosh 𝑡

> 𝐻
5
(cosh 𝑡, 𝑝) ,

(86)

where 𝑝 ∈ (−∞, −1] ∪ (1,∞).

4. Applications

In this section, we give some applications of our results.

4.1. Shafer-Fink Type Inequalities. In [1, p. 247, 3.4.31], it was
listed that the inequality

arcsin𝑥 >
6 (√𝑥 + 1 − √1 − 𝑥)

4 + √𝑥 + 1 + √1 − 𝑥

>
3𝑥

2 + √1 − 𝑥
2

(87)

holds for 𝑥 ∈ (0, 1), which is due to Shafer [21]. Fink [22]
proved that the double inequality

3𝑥

2 + √1 − 𝑥
2
≤ arcsin𝑥 ≤ 𝜋𝑥

2 + √1 − 𝑥
2

(88)

is true for 𝑥 ∈ [0, 1]. There has been some improvements and
generalizations of Shafer-Fink inequality (see [23]). Letting
sin 𝑡 = 𝑥 in Theorems 7, 10, 13, 14, 16 and 17 we can obtain
corresponding Shafer-Fink type inequalities, which clearly
contain many known results. For example, Theorems 7 and
10 can be changed into the following.

Proposition 21. For 𝑥 ∈ (0, 1), the two-side inequality

𝑥

𝐻
1
(√1 − 𝑥

2
, 𝑝)

= 𝑥
(3𝑝 + 1) + 2√1 − 𝑥

2

2𝑝 + (𝑝 + 3)√1 − 𝑥
2
< arcsin𝑥

<
𝜋𝑝

3𝑝 + 1
𝑥
(3𝑝 + 1) + 2√1 − 𝑥

2

2𝑝 + (𝑝 + 3)√1 − 𝑥
2

=
𝑥

𝐻
2
(√1 − 𝑥

2
, 𝑝)

(89)

holds if and only if 𝑝 ∈ (−∞, −1] ∪ [9,∞), where 𝜋𝑝/(3𝑝 + 1)
is the best possible. And, the lower and upper bounds in (89)
are decreasing and increasing in 𝑝 on (−∞, −1] ∪ (0,∞),
respectively.

Inequality (89) is reversed if p ∈ [0, p
1
], where p

1
≈ 6.3433

is defined by (25).

Letting sin 𝑡 = 𝑥, then cos(𝑡/2) = (1/2)(√1 + 𝑥+√1 − 𝑥).
Theorem 14 can be restated as follows.



10 Abstract and Applied Analysis

Proposition 22. For 𝑥 ∈ (0, 1), the two-side inequality

2

(3𝑝 + 1) (√1 + 𝑥 − √1 − 𝑥) + 2𝑥

4𝑝 + (𝑝 + 3) (√1 + 𝑥 + √1 − 𝑥)

< arcsin𝑥 < 2

𝜎
𝑝

(3𝑝 + 1) (√1 + 𝑥 − √1 − 𝑥) + 2𝑥

4𝑝 + (𝑝 + 3) (√1 + 𝑥 + √1 − 𝑥)

(90)

holds if and only if 𝑝 ∈ (−∞, −1] ∪ [9,∞), where 𝜎
𝑝
=

(4/𝜋)((3𝑝 + √2 + 1)/((2√2 + 1)𝑝 + 3)) is the best constant.
And, the lower and upper bounds in (90) are decreasing and
increasing in 𝑝 on (−∞, −1] ∪ (0,∞), respectively.

Inequality (90) is reversed if p ∈ [0, p
1
], where p

1
≈ 6.3433

is defined by (25).

As another example, Theorem 16 can be rewritten as
follows.

Proposition 23. For 𝑥 ∈ (0, 1), all the following chains of
inequalities hold:

𝑥

3

√1 − 𝑥
2
+ 14

2√1 − 𝑥
2
+ 3

<
1

3

𝑥 + 14 (√𝑥 + 1 − √1 − 𝑥)

3 + √𝑥 + 1 + √1 − 𝑥

< arcsin𝑥

<

(41√2+25) 𝜋

782

𝑥+14 (√𝑥 + 1−√1 − 𝑥)

3+√𝑥 + 1+√1 − 𝑥

<
3𝜋𝑥

28

√1 − 𝑥
2
+ 14

2√1 − 𝑥
2
+ 3

,

(91)

3𝑥

2 + √1 − 𝑥
2
<

6 (√𝑥 + 1 − √1 − 𝑥)

4 + √𝑥 + 1 + √1 − 𝑥

< arcsin𝑥

<

(1 + 2√2) 𝜋

12

6 (√𝑥 + 1 − √1 − 𝑥)

4 + √𝑥 + 1 + √1 − 𝑥

<
𝜋𝑥

2 + √1 − 𝑥
2
,

(92)

𝜋𝑥

4

√1 − 𝑥
2
+ 2

2√1 − 𝑥
2
+ 1

<

(√2 + 3) 𝜋

14

𝑥 + 2 (√𝑥 + 1 − √1 − 𝑥)

1 + √𝑥 + 1 + √1 − 𝑥

< arcsin𝑥 <
𝑥 + 2 (√𝑥 + 1 − √1 − 𝑥)

1 + √𝑥 + 1 + √1 − 𝑥

< 𝑥

√1 − 𝑥
2
+ 2

2√1 − 𝑥
2
+ 1

.

(93)

Remark 24. Inequalities (92) are due to Zhu [23].

4.2. Inequalities for Certain Means. For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏,
the first and second Seiffert means [24, 25]; Nueman-Sándor
means [26] are defined by

𝑃 = 𝑃 (𝑎, 𝑏) =
𝑎 − 𝑏

2 arcsin ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

𝑇 = 𝑇 (𝑎, 𝑏) =
𝑎 − 𝑏

2 arctan ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

NS = NS (𝑎, 𝑏) = 𝑎 − 𝑏

2arcsinh ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

(94)

respectively. More new means can be found in [27]. We also
denote the logarithmic mean, arithmetic mean, geometric
mean, and quadratic mean of 𝑎 and 𝑏 by 𝐿,𝐴,𝐺, and𝑄.There
has been some inequalities for these means; we quote [7, 26–
36]. Now we establish some new ones involving these means.

Let 𝑥 = arcsin((𝑏−𝑎)/(𝑎+𝑏)), arctan((𝑏−𝑎)/(𝑎+𝑏)).Then
(sin𝑥)/𝑥 = 𝑃/𝐴, cos𝑥 = 𝐺/𝐴; (sin𝑥)/𝑥 = 𝑇/𝑄, cos𝑥 =

𝐴/𝑄. And thenTheorems 7, 10, 13, 14, 16 and 17 can be stated
as equivalent ones involving means 𝑃, 𝐴, 𝐺, and 𝑇, 𝑄. For
example, fromTheorems 7 and 17 we have the following.

Proposition 25. For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, both the two-side
inequalities

2𝑝𝐴 + (𝑝 + 3)𝐺

(3𝑝 + 1)𝐴 + 2𝐺
𝐴 < 𝑃 < 𝐴

2𝑞𝐴 + (𝑞 + 3)𝐺

(3𝑞 + 1)𝐴 + 2𝐺
,

2𝑝𝑄 + (𝑝 + 3)𝐴

(3𝑝 + 1)𝑄 + 2𝐴
𝑄 < 𝑇 < 𝑄

2𝑞𝑄 + (𝑞 + 3)𝐴

(3𝑞 + 1)𝑄 + 2𝐴

(95)

hold if and only if 𝑝 ∈ [0, 𝑝
0
] and 𝑞 ∈ (−∞, −1] ∪ [9,∞),

where 𝑝
0
= (𝜋 − 3)

−1
≈ 7.0625.

Making changes of variables 𝑥 = arctanh((𝑏 − 𝑎)/(𝑎 + 𝑏)),
arcsinh((𝑏−𝑎)/(𝑎+𝑏)) yield (sinh𝑥)/𝑥 = 𝐿/𝐺, cosh𝑥 = 𝐴/𝐺;
(sinh𝑥)/𝑥 = NS/𝐴, cosh𝑥 = 𝑄/𝐴, respectively. And then,
Theorem 18 can be equivalently written as follows.

Proposition 26. For 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, both the inequalities

2𝐺 + (1 + 3𝑝)𝐴

(3 + 𝑝)𝐺 + 2𝑝𝐴
𝐺 < 𝐿,

2𝐴 + (1 + 3𝑝)𝑄

(3 + 𝑝)𝐴 + 2𝑝𝑄
𝐴 < NS

(96)

hold if and only if 𝑝 ∈ (−∞, −1] ∪ [1/9,∞). They are reversed
if and only if 𝑝 = 0.

4.3. The Estimate for the Sine Integral. For the estimations for
the sine integral defined by

Si (𝑥) = ∫
𝑥

0

sin 𝑡
𝑡
𝑑𝑡, (97)
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there has been some results (see [37–39]). By our results we
can obtain many estimates for Si(𝑥). Here we give a simpler
but more accurate one.

Proposition 27. For 𝑥 ∈ (0, 𝜋/2], we have

4√2 − 2

7𝜋
(𝑥 + sin𝑥 + 8 sin 𝑥

2
)

< Si (𝑥) < 1

6
(𝑥 + sin𝑥 + 8 sin 𝑥

2
) .

(98)

Proof. By (63) we see that the inequalities

4 (2√2 − 1)

7

cos2 (𝑡/2) + 2 cos (𝑡/2)
𝜋

<
sin 𝑡
𝑡

<
cos2 (𝑡/2) + 2 cos (𝑡/2)

3

(99)

hold for 𝑡 ∈ [0, 𝜋/2]. Integrating both sides over [0, 𝑥] and
simple calculation yield (98).

Remark 28. By (98) we have

1.3682 ≈
2√2 − 1

7𝜋
(𝜋 + 8√2 + 2) < ∫

𝜋/2

0

sin 𝑡
𝑡
𝑑𝑡

<
1

12
(𝜋 + 8√2 + 2) ≈ 1.3713.

(100)
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http://arxiv.org/abs/1206.4911.

[11] Z.-H. Yang, “Renements of a two-sided inequality for trigono-
metric functions,” Journal of Mathematical Inequalities, vol. 7,
no. 4, pp. 601–615, 2013.

[12] Z.-H. Yang, “New sharp Jordan type inequalities and their
applications,” Gulf Journal of Mathematics, vol. 2, no. 1, pp. 1–
10, 2014.

[13] L. Zhu, “Some new wilker-type inequalities for circular and
hyperbolic functions,” Abstract and Applied Analysis, vol. 2009,
Article ID 485842, 9 pages, 2009.

[14] L. Zhu, “A source of inequalities for circular functions,”Comput-
ers & Mathematics with Applications, vol. 58, no. 10, pp. 1998–
2004, 2009.

[15] C. Huygens,Oeuvres Completes 1888–1940, Sociéte Hollondaise
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